Module 4: Duality Theory (Weak Duality)
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Recap: Shortest Path LP

Solutions to a shortest path instance
G=(V,E), s,t €V, c. >0 for all
e € F, correspond to feasible

0, 1-solutions for the LP

min Z Cele : € € E)

stz teed(U)) >1
(UCV,selUt¢U)
z>0

This LP is of the form:

min{c’z : Az > b,z > 0}

where

e b=1;

e A has a row for every s, t-cut
d(U), and a column for every
edge e; and

o Aye=1ifee€ §(U) and
Aye = 0 otherwise.
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Recap: Shortest Path Dual

min{c’z : Az > b,z >0} (P)
The dual of (P) is given by
max{b"y : ATy <c,y >0} (D)

If (P) is a shortest path LP, then we
can rewrite (D) as

max Z(yU cseUtgU)

st. Y (yu:ecd(U)) <ce
(e€ E)
y=>0

Theorem
If Z is feasible for (P) and 7 is
feasible for (D), then b7y < cT'z.

Equivalent: y feasible widths and P
an s,t-path — 17y < ¢(P)
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This Lecture

Question: Can we find
lower-bounds on the optimal
value of a general LP?

In the LP on the right,
Ax 7D

stands for a system of
inequalities whose sign is one of
<,=or >, and

z?70
indicates that variables are either

non-negative, non-positive, or
free.

max CTI

st. Az 7 b
z?70

Recall: in the primal-dual pair

Az > b,x > 0} (P)

min{c’z :
max{bTy : ATy <c,y>0} (D)

e each non-negative variable, ., in
(P) corresponds to a ‘<'-constraint
in (D), and

e each ‘>'-constraint in (P)
corresponds to a non-negative
variable yg; in (D).
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Weak Duality in General

Consider the primal LP Its dual LP is given by
max ¢!z min b'y
st. Az 7 b st. ATy ? ¢
7?0 y?70

Question: What are the question
marks?

A: As before:

primal variables = dual constraints

primal constraints = dual variables
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The following table shows how constraints and variables in primal and
dual LPs correspond:
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< constraint | > 0 variable
max cTx = constraint | free variable min by
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Example 2:
min d’y
s.t. WTy >e
y=>0
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To compute dual LP, check
right-hand side of table:
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st. Wa <d
z>0



Primal-Dual Pairs

Example 2:

min ¢
st. Az >b

Substitute:
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e— b
y— T
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To compute dual LP, check
right-hand side of table:
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Primal-Dual Pairs

Example 2:

min ¢’ x (P)

st. Ax > b
x>0

Substitute:
e d— ¢

eec— b
o y— x
e WT — A
o — vy

To compute dual LP, check
right-hand side of table:

max bl x (D)
st. ATy <ec
y=>0

This is consistent with the earlier
discussion we had!
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The following table shows how constraints and variables in primal and
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Primal-Dual Pairs

Theorem

Let (Pmax) and (P,yip) represent the above. If z and 7 are feasible for
the two LPs, then
Az <vTy

If Tz = bT'y, then 7 is optimal for (Pmax), and ¥ is optimal for (Pmin)-
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Primal-Dual Pairs

Theorem

Let (Pmax) and (P,yip) represent the above. If z and 7 are feasible for
the two LPs, then
Ti’ S ng

If "'z = b7y, then Z is optimal for (Pmax), and 7 is optimal for (P i,)-

Example 3 (continued): Its dual LP:
max (12,26, 20)x (P) min (—2,2,13)y (D)
1 2 1 > [—2 1 4 2 > (12
st. |4 6 5 |x < 2 st. |2 6 -1y = |26
2 -1 -3 = \13 1 5 =3 > \20
x1 >0, z9 free, zg >0 y1 < 0,y2 > 0,y3 free
Feasible solutions: = (5,—3,0)T and § = (0,4, —2)7.
Since (12,26,20)z = (—2,2,13)§ = —18 — both are optimal!



Proving the General Weak Duality Theorem

| (B ) | (Prin)
< constraint | > 0 variable

max c'x = constraint | free variable min by
| subject to > constraint | < 0 variable subject to
| Ax?bh > 0 variable | > constraint ATy?¢c
| x?0 | free variable | = constraint y?0
| < 0 variable | < constraint

General Primal LP:
max ¢! x

s.t I’OWi(A).’E < (’L S R1)

row;(A)x > b; (i € Ra)

row;(A)z = b; (i € R3)

z; >0 (j€Ch)

z; <0 (j€Cy)

x; free (j € Cs)



Proving the General Weak Duality Theorem

| (Ponax) | (Prin)
< constraint | > 0 variable

max c'x = constraint | free variable min by

| subject to > constraint | < 0 variable subject to

| Ax?bh > 0 variable | > constraint ATy?¢c

| x?0 | free variable | = constraint y?0

| < 0 variable | < constraint

General Primal LP: Its dual according to the table:
max ¢!z min b7y

s.t. row;(A)r < b; (i € ) s.t. colj(A) Ty >¢; (j € Cy)
row;(A)z > b; (i € Ro) col;(A) Ty < ¢ (j € Cy)
rowi(A):c. =bi (i € Ra) col;(A)Ty =¢; (j € C3)
ijO(.].ECl) yi 20 (i € Ry)
7 <07 € C) b0 (i€ Ry)
Lj free ('7 = Cg) Yi free (Z S Rg)



Proving the General Weak Duality Theorem

General Primal LP: Its dual according to the table:
max ¢z min b’y

s.t. row; (A)z < b; (i € Ry) s.t. colj(A)Ty > ¢; (€ Cy)
row;(A)z > b; (i € Ro) col;(A) 'y <¢j (j € Cy)
row;(A)x = b; (i € R3) colj(A)Ty =c; (j € Cs)
z; >0 (jeC) yi >0 (i € Ry)
z; <0 (j€Cy) yi <0 (i € Ry)
x; free (j € Cs) y; free (i € R3)

We can rewrite the above LPs using slack variables!
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General Primal LP:

max CTiL'

st. Ax +s=10>
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Its dual according to the table:

min b7y

st. ATy+w=c¢c
w; <0 (jeC)
w; >0 (j €C2)
w; =0 (j € Cs)
yi >0 (i € Rq)
¥ <0 (i € Ra)
y; free (i € R3)
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Proving the General Weak Duality Theorem

General Primal LP:

max CTiL'

st. Ax+s=10
;>0 (i€ Ry)
si <0 (i € Ry)
s; =0 (i € R3)
zj 20 (j €Ch)
z; <0 (jeCy)
x; free (j € Cs)

Its dual according to the table:

min b7y

st. ATy+w=c
w; <0 (jeCy)
w; >0 (j €C2)
w; =0 (j € Cs)
yi >0 (i € Rq)
¥ <0 (i € Ra)
y; free (i € R3)

Suppose Z and ¥ are feasible for the original primal and dual LPs

Let 5=b— A%z and w = c — ATy.

Jb=7"(Az+35) = (§T Az +7§"5

It follows that



Proving the General Weak Duality Theorem

General Primal LP: Its dual according to the table:
max ¢!z min b7y
st. Ax+s=0 st. ATy+w=c
$; >0 (i € Ry) w; <0 (jeC)
$; <0 (i € Ro) w; >0 (5 €Cy)
5:=0 (i € Ry) w; =0 (j € Cs)
;>0 (j € Cy) yi >0 (i € Ry)
r; <0 (je€Cy) y; <0 (i € Rg)

z; free (j € Cs) y; free (i € R3)

Suppose Z and ¥ are feasible for the original primal and dual LPs
Let 5=b— Az and w = ¢ — ATg. It follows that
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Proving the General Weak Duality Theorem

General Primal LP: Its dual according to the table:
max ¢!z min b7y
st. Ax+s=0 st. ATy+w=c
$; >0 (i € Ry) w; <0 (jeC)
$; <0 (i € Ro) w; >0 (5 €Cy)
5:=0 (i € Ry) w; =0 (j € Cs)
;>0 (j € Cy) yi >0 (i € Ry)
r; <0 (je€Cy) y; <0 (i € Rg)

z; free (j € Cs) y; free (i € R3)

Suppose Z and ¥ are feasible for the original primal and dual LPs
Let 5=b— Az and w = ¢ — ATg. It follows that
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Proving the General Weak Duality Theorem

General Primal LP: Its dual according to the table:
max ¢!z min b7y
st. Ax+s=0 st. ATy+w=c
$; >0 (i € Ry) w; <0 (jeC)
$; <0 (i € Ro) w; >0 (5 €Cy)
5:=0 (i € Ry) w; =0 (j € Cs)
;>0 (j € Cy) yi >0 (i € Ry)
r; <0 (je€Cy) y; <0 (i € Rg)

z; free (j € Cs) y; free (i € R3)

Suppose Z and ¥ are feasible for the original primal and dual LPs
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Consequences of Weak Duality

Theorem

Let (Pmax) and (Ppj,) represent
the above table. If Z and g are
feasible for the two LPs, then

Tz <y

If "z = by, then Z is optimal for
(Pmax), and y is optimal for
(Pmin)'
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Theorem

Let (Pmax) and (Ppj,) represent

the above table. If Z and g are

feasible for the two LPs, then
Tz <y
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Consequences of Weak Duality

Theorem _ .

(i) (Pmax) is unbounded —»
Let (Pmax) and (Ppj,) represent (P, . ) infeasible
the above table. If Z and g are
feasible for the two LPs, then (ii) (Pmin) is unbounded —

(Pmax) infeasible

min

'z <bly
Tr _ T L (i) (Pmax) and (Pyip) feasible
Ific" 5 = by, then = istoptimalifor — both must have optimal
(Pmax), and % is optimal for solutions

(Pmin)'

Proof: (i) Suppose, for a contradiction, that 7 is feasible for (P ;p,)-



Consequences of Weak Duality

Theorem _ .

(i) (Pmax) is unbounded —»
Let (Pmax) and (Ppj,) represent (P, . ) infeasible
the above table. If Z and g are
feasible for the two LPs, then (ii) (Pmin) is unbounded —

(Pmax) infeasible

min

'z <vly
3T L (i) (Pmax) and (Pyip) feasible
If ¢*2 = b7y, then & is optimal for — both must have optimal
(Pmax), and % is optimal for solutions

(Pmin)'

Proof: (i) Suppose, for a contradiction, that 7 is feasible for (P ;p,)-
By weak duality — Tz < by for all Z feasible for (Pmax), and hence
the latter is bounded.



Consequences of Weak Duality

Theorem _ .
(i) (Pmax) is unbounded —»
Let (Pmax) and (Ppj,) represent (P, . ) infeasible
the above table. If Z and g are min
feasible for the two LPs, then (ii) (Pmin) is unbounded —
P infeasible
T <175 (Pmax)

(ii) (Pmax) and (Pyip) feasible
If "z = by, then Z is optimal for — both must have optimal
(Pmax). and ¢ is optimal for solutions

(Pmin)'

Proof: (i) Suppose, for a contradiction, that 7 is feasible for (P ;p,)-
By weak duality — Tz < by for all Z feasible for (Pmax), and hence
the latter is bounded.

(if) Similar to (i)



Consequences of Weak Duality

Theorem

(i) (Pmax) is unbounded —
Let (Pmax) and (Ppj,) represent (Ppin) infeasible

the above table. If Z and g are

feasible for the two LPs, then (ii) (Pmin) is unbounded —

P infeasible
Tz <bvly (Pmax)
(ii) (Pmax) and (Pyip) feasible

— both must have optimal
solutions

If "z = by, then Z is optimal for
(Pmax), and y is optimal for
(Pmin)'

Proof: (i) Suppose, for a contradiction, that 7 is feasible for (P ;p,)-

By weak duality — Tz < by for all Z feasible for (Pmax), and hence
the latter is bounded.

(i) Similar to (i)
(i) weak duality — both (Pmax) and (Pyi,,) bounded



Consequences of Weak Duality

Theorem _ .

(i) (Pmax) is unbounded —»
Let (Pmax) and (Ppj,) represent (P, ) infeasible
the above table. If Z and g are min
feasible for the two LPs, then (i) (Pmin) is ]lcmbounded —

P infeasible
Tz <bvly (Pmax)

(ii) (Pmax) and (Pyip) feasible
If "z = by, then Z is optimal for — both must have optimal
(Pmax). and ¢ is optimal for solutions
(Pmin)-

Proof: (i) Suppose, for a contradiction, that 7 is feasible for (P ;p,)-
By weak duality — Tz < by for all Z feasible for (Pmax), and hence
the latter is bounded.

(i) Similar to (i)
(i) weak duality — both (Pmax) and (Pyi,,) bounded

Fundamental Theorem of LP — Both LPs must have an optimal
solution! O
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(P max) (P min)

< constraint | > 0 variable
max ¢'x = constraint | free variable min by
subject to > constraint | < 0 variable subject to
Ax?b | >0variable | > constraint ATy?¢c
x?0 free variable | = constraint y?0
< 0 variable | < constraint

Recap

e We can use the above table to compute duals of general LPs

e \Weak duality theorem: if Z and § are feasible for (Pmax) and
(Pmin). then:
Az <vy

Both are optimal if equality holds!



