Module 4: Duality Theory (Geometry of Duality)

Recap: Strong Duality

$$\max c^T x \qquad \qquad \text{(P)} \qquad \qquad \min b^T y \qquad \qquad \text{(D)}$$
 s.t. $Ax \leq b$ s.t. $A^T y = c$ $y \geq 0$

Strong Duality Theorem

For the above primal-dual pair of LPs, (P) and (D), if (P) has an optimal solution, then (D) has one and their objective values equal.

In Module 2, we saw that

- The feasible region of an LP is a polyhedron.
- Basic solutions correspond to extreme points of this polyhedron.

In Module 2, we saw that

- The feasible region of an LP is a polyhedron.
- Basic solutions correspond to extreme points of this polyhedron.

Question

When is an extreme point optimal?

In Module 2, we saw that

- The feasible region of an LP is a polyhedron.
- Basic solutions correspond to extreme points of this polyhedron.

Question

When is an extreme point optimal?

Module 2 and strong duality told us that Simplex computes

- a basic solution (if it exists), and
- a certificate of optimality.

In Module 2, we saw that

- The feasible region of an LP is a polyhedron.
- Basic solutions correspond to extreme points of this polyhedron.

Today we will investigate these certificates using geometry.

Question

When is an extreme point optimal?

Module 2 and strong duality told us that Simplex computes

- a basic solution (if it exists), and
- a certificate of optimality.

We can rewrite (P) using slack variables
$$s$$
:
$$\max c^T x \qquad \qquad \text{(P)}$$

$$\text{s.t. } Ax + s = b$$

$$s \geq 0$$

$$\min b^T y \qquad \qquad \text{(D)}$$

$$\text{s.t. } A^T y = c$$

$$y \geq 0$$

We can rewrite (P) using slack variables s:

$$\max c^T x \tag{P'}$$
 s.t. $Ax + s = b$
$$s > 0$$

Note:

• (x,s) feasible for $(P') \longrightarrow x$ feasible for (P)

$$\max c^T x \qquad \qquad (\mathsf{P})$$

s.t.
$$Ax \leq b$$

$$\min b^T y \qquad \qquad \text{(D)}$$
s.t. $A^T y = c$

$$y \ge 0$$

We can rewrite (P) using slack variables s:

$$\begin{aligned} \max \, c^T x & \text{(P')} \\ \text{s.t. } Ax + s &= b \\ s &\geq \mathbb{0} \end{aligned}$$

Note:

- (x, s) feasible for $(P') \longrightarrow x$ feasible for (P)
- x feasible for (P) \longrightarrow (x, b Ax) feasible for (P')

 $\max c^T x \qquad \qquad (\mathsf{P})$ s.t. Ax < b

 $\min b^T y \tag{D}$

s.t. $A^T y = c$ $y \ge 0$

Suppose \bar{x} is feasible for (P), and \bar{y} is feasible for (D)

$$\max c^T x \qquad \qquad (\mathsf{P})$$
 s.t. $Ax \le b$

$$\max c^T x \qquad \qquad \text{(P')}$$
 s.t. $Ax + s = b$
$$s \ge 0$$

$$\min b^T y$$
 (D)
$$\text{s.t. } A^T y = c$$

$$y \ge 0$$

Suppose \bar{x} is feasible for (P), and \bar{y} is feasible for (D)

$$\longrightarrow$$
 $(\bar{x}, b - A\bar{x})$ feasible for (P')

$$\max c^T x$$
 (P) s.t. $Ax \le b$

$$\max c^T x \qquad \qquad \text{(P')}$$
 s.t. $Ax + s = b$
$$s \ge 0$$

$$\begin{aligned} & \min \, b^T y & & \text{(D)} \\ & \text{s.t.} \, \, A^T y = c & & \\ & y &> \mathbb{0} & & \end{aligned}$$

Suppose \bar{x} is feasible for (P), and \bar{y} is feasible for (D)

$$\longrightarrow \ (\bar{x},\underbrace{b-A\bar{x}}_{\bar{s}}) \text{ feasible for (P')}$$

$$\max c^T x \qquad \qquad (\mathsf{P})$$
 s.t. $Ax \le b$

$$\max c^T x$$
 (P')
$$\text{s.t. } Ax + s = b$$

$$s \ge 0$$

$$\begin{aligned} & \min \, b^T y & & \text{(D)} \\ & \text{s.t.} \, \, A^T y = c & & \\ & y \geq \mathbb{0} & & & \end{aligned}$$

Suppose \bar{x} is feasible for (P), and \bar{y} is feasible for (D)

$$\longrightarrow (\bar{x}, \underbrace{b-A\bar{x}}_{\bar{s}})$$
 feasible for (P')

Recall the Weak Duality proof:

$$\bar{y}^T b = \bar{y}^T (A\bar{x} + \bar{s})$$

= $(\bar{y}^T A)\bar{x} + \bar{y}^T \bar{s}$

$$\max c^T x$$
 (P) s.t. $Ax < b$

$$\label{eq:constraints} \begin{aligned} \max \, c^T x & \text{(P')} \\ \text{s.t. } Ax + s &= b \\ s &\geq 0 \end{aligned}$$

$$\begin{aligned} & \min \, b^T y & & \text{(D)} \\ & \text{s.t.} \, \, A^T y = c & & \\ & y &> \mathbb{0} & & \end{aligned}$$

Suppose \bar{x} is feasible for (P), and \bar{y} is feasible for (D)

$$\longrightarrow (\bar{x}, \underbrace{b-A\bar{x}}_{\bar{s}})$$
 feasible for (P')

Recall the Weak Duality proof:

$$\bar{y}^T b = \bar{y}^T (A \bar{x} + \bar{s})$$

$$= (\bar{y}^T A) \bar{x} + \bar{y}^T \bar{s}$$

$$= c^T \bar{x} + \bar{y}^T \bar{s}$$

$$\max c^T x \qquad \qquad (\mathsf{P})$$
 s.t. $Ax < b$

$$\max c^T x \qquad \qquad \text{(P')}$$
 s.t. $Ax + s = b$
$$s \ge 0$$

$$\begin{aligned} & \min \, b^T y & & \text{(D)} \\ & \text{s.t.} \, \, A^T y = c & & \\ & y \geq \mathbb{0} & & & \end{aligned}$$

Suppose \bar{x} is feasible for (P), and \bar{y} is feasible for (D)

$$\longrightarrow (\bar{x}, \underbrace{b-A\bar{x}}_{\bar{s}})$$
 feasible for (P')

Recall the Weak Duality proof:

$$\begin{split} \bar{y}^T b &= \bar{y}^T (A \bar{x} + \bar{s}) \\ &= (\bar{y}^T A) \bar{x} + \bar{y}^T \bar{s} \\ &= c^T \bar{x} + \bar{y}^T \bar{s} \end{split}$$

Strong Duality tells us that:

$$\bar{x}, \; \bar{y} \; \text{both optimal} \; \iff c^T \bar{x} = \bar{y}^T b$$

$$\max c^T x$$
 (P) s.t. $Ax < b$

$$\max c^T x \qquad \qquad \text{(P')}$$
 s.t. $Ax + s = b$
$$s \ge 0$$

$$\begin{aligned} & \min \, b^T y & & \text{(D)} \\ & \text{s.t.} \, \, A^T y = c & & \\ & y \geq \mathbb{0} & & & \end{aligned}$$

Suppose \bar{x} is feasible for (P), and \bar{y} is feasible for (D)

$$\longrightarrow (\bar{x}, \underbrace{b-A\bar{x}}_{\bar{s}})$$
 feasible for (P')

Recall the Weak Duality proof:

$$\begin{split} \bar{y}^T b &= \bar{y}^T (A \bar{x} + \bar{s}) \\ &= (\bar{y}^T A) \bar{x} + \bar{y}^T \bar{s} \\ &= c^T \bar{x} + \bar{y}^T \bar{s} \end{split}$$

Strong Duality tells us that:

$$\begin{array}{ll} \bar{x}, \ \bar{y} \ \text{both optimal} & \Longleftrightarrow \ c^T \bar{x} = \bar{y}^T b \\ & \Longleftrightarrow \ \bar{y}^T \bar{s} = 0 \end{array}$$

$$\max c^T x$$
 (P) s.t. $Ax \le b$

$$\max c^T x \qquad \qquad \text{(P')}$$
 s.t. $Ax + s = b$
$$s \ge 0$$

$$\min b^T y$$
 (D)
$$\text{s.t. } A^T y = c$$

$$y \ge 0$$

Recall the Weak Duality proof:

$$\bar{y}^T b = \bar{y}^T (A\bar{x} + \bar{s})$$

$$= (\bar{y}^T A)\bar{x} + \bar{y}^T \bar{s}$$

$$= c^T \bar{x} + \bar{y}^T \bar{s}$$

$$0 = \bar{y}^T \bar{s} = \sum_{i=1}^m \bar{y}_i \bar{s}_i \qquad (\star)$$

$$\max c^T x \qquad \qquad (\mathsf{P})$$
 s.t. $Ax < b$

$$\max c^T x \qquad (P')$$
s.t. $Ax + s = b$

s > 0

$$\min b^T y$$
 (D) s.t. $A^T y = c$ $y > 0$

Recall the Weak Duality proof:

$$\begin{split} \bar{y}^T b &= \bar{y}^T (A \bar{x} + \bar{s}) \\ &= (\bar{y}^T A) \bar{x} + \bar{y}^T \bar{s} \\ &= c^T \bar{x} + \bar{y}^T \bar{s} \end{split}$$

$$0 = \bar{y}^T \bar{s} = \sum_{i=1}^m \bar{y}_i \bar{s}_i \qquad (\star)$$

By feasibility, $\bar{y} \geq 0$ and $\bar{s} \geq 0$

$$\max c^T x \qquad \qquad (\mathsf{P})$$
 s.t. $Ax < b$

$$\max c^T x \qquad (P')$$
s.t. $Ax + s = b$

s > 0

$$\min b^T y$$
s.t. $A^T y = c$

$$y > 0$$

Recall the Weak Duality proof:

$$\begin{split} \bar{y}^T b &= \bar{y}^T (A \bar{x} + \bar{s}) \\ &= (\bar{y}^T A) \bar{x} + \bar{y}^T \bar{s} \\ &= c^T \bar{x} + \bar{y}^T \bar{s} \end{split}$$

$$0 = \bar{y}^T \bar{s} = \sum_{i=1}^m \bar{y}_i \bar{s}_i \qquad (\star)$$

By feasibility, $\bar{y} \geq 0$ and $\bar{s} \geq 0$ and hence

(*) holds if and only if $\bar{y}_i = 0$ or $\bar{s}_i = 0$,

for every $1 \le i \le m$.

$$\max c^T x \qquad (P)$$
s.t. $Ax \le b$

$$\max c^T x$$
 (P') s.t. $Ax + s = b$ $s \ge 0$

$$\min b^T y \qquad \qquad \text{(D)}$$
 s.t. $A^T y = c$
$$y \ge 0$$

Given: \bar{x} and \bar{y} feasible solutions for (P) and (D)

$$\max c^T x \qquad \qquad (\mathsf{P})$$
 s.t. $Ax \le b$

$$\max c^T x \qquad \qquad \text{(P')}$$
 s.t. $Ax + s = b$
$$s \ge 0$$

$$\begin{aligned} & \min \, b^T y & & \text{(D)} \\ & \text{s.t.} \, \, A^T y = c & & \\ & y \geq \mathbb{0} & & & \end{aligned}$$

Given: \bar{x} and \bar{y} feasible solutions for (P) and (D)

Define: $\bar{s} = b - A\bar{x}$

$$\max c^T x \qquad \qquad \text{(P)}$$
 s.t. $Ax \le b$

$$\label{eq:continuous_problem} \begin{aligned} \max \, c^T x & \text{(P')} \\ \text{s.t. } Ax + s &= b \\ s &> \mathbb{0} \end{aligned}$$

$$\begin{aligned} & \min \, b^T y & & \text{(D)} \\ & \text{s.t.} \, \, A^T y = c & & \\ & y &> \mathbb{0} & & \end{aligned}$$

Given: \bar{x} and \bar{y} feasible solutions for (P) and (D)

Define:
$$\bar{s} = b - A\bar{x}$$

Then:

 $ar{x}$ and $ar{y}$ optimal \iff $ar{y}_i = 0$ or $ar{s}_i = 0$

for all $1 \le i \le m$.

$$\max c^T x \qquad \qquad \text{(P)}$$
 s.t. $Ax \le b$

$$\max c^T x$$
 (P') s.t. $Ax + s = b$ $s \ge 0$

$$\begin{aligned} & \min \, b^T y & & \text{(D)} \\ & \text{s.t.} \, \, A^T y = c & & \\ & y &> \mathbb{0} & & \end{aligned}$$

Given: \bar{x} and \bar{y} feasible solutions for (P) and (D)

Define:
$$\bar{s} = b - A\bar{x}$$

Then:

$$\bar{x} \text{ and } \bar{y} \text{ optimal} \quad \Longleftrightarrow \quad \underbrace{\bar{y}_i = 0 \text{ or } \bar{s}_i = 0}_{(\star)}$$

for all
$$1 \le i \le m$$
.

$$\max c^T x$$
 (P) s.t. $Ax \le b$

$$\max c^T x$$
 s.t. $Ax + s = b$
$$s \ge 0$$

$$\min b^T y \qquad \qquad \text{(D)}$$
 s.t. $A^T y = c$
$$y \ge 0$$

Given: \bar{x} and \bar{y} feasible solutions for (P) and (D)

Define:
$$\bar{s} = b - A\bar{x}$$

Then:

$$\bar{x} \text{ and } \bar{y} \text{ optimal} \quad \Longleftrightarrow \quad \underbrace{\bar{y}_i = 0 \text{ or } \bar{s}_i = 0}_{(\star)}$$

for all $1 \le i \le m$. We can rephrase (\star) equivalently as

 $\bar{y}_i = 0$ or *i*th constraint of (P) holds with equality .

$$\max c^T x$$
 (P) s.t. $Ax \le b$

$$\max c^T x$$
 s.t. $Ax + s = b$
$$s \ge 0$$

$$\begin{aligned} & \min \, b^T y & & \text{(D)} \\ & \text{s.t.} \, \, A^T y = c & & \\ & y \geq \mathbb{0} & & & \end{aligned}$$

Given: \bar{x} and \bar{y} feasible solutions for (P) and (D)

Define:
$$\bar{s} = b - A\bar{x}$$

Then:

$$\bar{x} \text{ and } \bar{y} \text{ optimal} \quad \Longleftrightarrow \quad \underbrace{\bar{y}_i = 0 \text{ or } \bar{s}_i = 0}_{(\star)}$$

for all $1 \le i \le m$. We can rephrase (\star) equivalently as

 $\bar{y}_i = 0$ or *i*th constraint of (P) holds with equality (is tight).

$$\max c^T x$$
 (P) s.t. $Ax \le b$

$$\max c^T x$$
 (P') s.t. $Ax + s = b$ $s \ge 0$

$$\begin{aligned} & \min \, b^T y & & \text{(D)} \\ & \text{s.t.} \, \, A^T y = c & & \\ & y \geq 0 & & & \end{aligned}$$

Complementary Slackness – Special Case

Let \bar{x} and \bar{y} be feasible for (P) and (D).

Then \bar{x} and \bar{y} are optimal if and only if

(i) $\bar{y}_i=0$, or (ii) the ith constraint of (P) is tight for \bar{x} ,

for every row index i.

 $\max c^T x \qquad \qquad (\mathsf{P})$ s.t. Ax < b

s.t. $Ax \leq b$

 $\max c^T x$ (P') s.t. Ax + s = b s > 0

 $\min b^T y$ (D) s.t. $A^T y = c$

 $y \ge 0$

Consider the following LP:

$$\max (5,3,5)x \qquad (P)$$
s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Consider the following LP:

$$\max (5,3,5)x \qquad (P$$
s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Its dual is:

$$\min (2, 4, -1)y \qquad \qquad (\mathbb{D})$$
s.t.
$$\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$$

$$y \ge 0$$

Consider the following LP:

$$\max (5,3,5)x \qquad (P)$$
s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Its dual is:

min
$$(2,4,-1)y$$
 (D)

s.t. $\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$
 $y \ge 0$

Claim

 $\bar{x} = (1, -1, 1)^T$ and $\bar{y} = (0, 2, 1)^T$ are optimal!

Consider the following LP:

$$\max (5,3,5)x \qquad (P)$$
s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Its dual is:

min
$$(2, 4, -1)y$$
 (D)
s.t. $\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$
 $y \ge 0$

Claim

$$\bar{x} = (1, -1, 1)^T$$
 and $\bar{y} = (0, 2, 1)^T$ are optimal!

Complementary Slackness

Feasible solutions \bar{x} and \bar{y} for (P) and (D) are optimal if and only if $\bar{y}_i=0$ or the ith primal constraint is

tight for \bar{x} , for all row indices i.

Consider the following LP:

$$\max (5,3,5)x \tag{P}$$
s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Its dual is:

min
$$(2, 4, -1)y$$
 (D)
s.t. $\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$
 $y \ge 0$

Claim

$$\bar{x} = (1, -1, 1)^T$$
 and $\bar{y} = (0, 2, 1)^T$ are optimal!

Complementary Slackness

Feasible solutions \bar{x} and \bar{y} for (P) and (D) are optimal if and only if $\bar{y}_i = 0$ or the ith primal constraint is tight for \bar{x} , for all row indices i.

Consider the following LP:

$$\max (5,3,5)x \qquad (P)$$
s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Its dual is:

min
$$(2, 4, -1)y$$
 (D)
s.t. $\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$
 $y \ge 0$

Claim

$$\bar{x} = (1, -1, 1)^T$$
 and $\bar{y} = (0, 2, 1)^T$ are optimal!

Complementary Slackness

Feasible solutions \bar{x} and \bar{y} for (P) and (D) are optimal if and only if $\bar{y}_i=0$ or the ith primal constraint is tight for \bar{x} , for all row indices i.

(i)
$$\bar{y}_1 = 0$$
 or $(1, 2, -1)\bar{x} = 2$

Consider the following LP:

$$\max (5,3,5)x \qquad (P)$$
s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Its dual is:

min
$$(2, 4, -1)y$$
 (D)
s.t. $\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$
 $y \ge 0$

Claim

$$\bar{x} = (1, -1, 1)^T$$
 and $\bar{y} = (0, 2, 1)^T$ are optimal!

Complementary Slackness

Feasible solutions \bar{x} and \bar{y} for (P) and (D) are optimal if and only if $\bar{y}_i=0$ or the ith primal constraint is tight for \bar{x} , for all row indices i.

(i)
$$\bar{y}_1 = 0$$
 or $(1, 2, -1)\bar{x} = 2$

(ii)
$$\bar{y}_2=0$$
 or $(3,1,2)\bar{x}=4$

Consider the following LP:

$$\max (5,3,5)x \qquad (P)$$
s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Its dual is:

min
$$(2, 4, -1)y$$
 (D)
s.t. $\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$
 $y \ge 0$

Claim

$$\bar{x} = (1, -1, 1)^T$$
 and $\bar{y} = (0, 2, 1)^T$ are optimal!

Complementary Slackness

Feasible solutions \bar{x} and \bar{y} for (P) and (D) are optimal if and only if $\bar{y}_i=0$ or the ith primal constraint is tight for \bar{x} , for all row indices i.

(i)
$$\bar{y}_1 = 0$$
 or $(1, 2, -1)\bar{x} = 2$

(ii)
$$\bar{y}_2 = 0$$
 or $(3, 1, 2)\bar{x} = 4$

(iii)
$$\bar{y}_3 = 0$$
 or $(-1, 1, 1)\bar{x} = -1$

Consider the following LP:

$$\max (5,3,5)x \qquad (P)$$
s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Its dual is:

min
$$(2, 4, -1)y$$
 (D)
s.t. $\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$
 $y \ge 0$

Claim

$$\bar{x} = (1, -1, 1)^T$$
 and $\bar{y} = (0, 2, 1)^T$ are optimal!

Complementary Slackness

Feasible solutions \bar{x} and \bar{y} for (P) and (D) are optimal if and only if $\bar{y}_i=0$ or the ith primal constraint is tight for \bar{x} , for all row indices i.

It is easy to check if \bar{x} and \bar{y} are feasible.

(i)
$$\bar{y}_1 = 0$$
 or $(1, 2, -1)\bar{x} = 2$

(ii)
$$\bar{y}_2 = 0$$
 or $(3, 1, 2)\bar{x} = 4$

(iii)
$$\bar{y}_3 = 0$$
 or $(-1, 1, 1)\bar{x} = -1$

 \longrightarrow \bar{x} and \bar{y} are optimal!

General Complementary Slackness

	(P _{max})			(P _{min})	
max subject to	$c^{\top}x$ $Ax ? b$ $x ? 0$	= constraint ≥ constraint ≥ 0 variable free variable	\geq 0 variable free variable \leq 0 variable \geq constraint = constraint \leq constraint	min subject to	$b^{\top}y$ $A^{\top}y ? c$ $y ? 0$

Suppose: (P_{max}) and (P_{min}) are a pair of primal and dual LPs according to the above table

(P _{max})			(P _{min})		
max subject to	$c^{\top}x$ $Ax ? b$ $x ? 0$	= constraint ≥ constraint ≥ 0 variable free variable	\geq 0 variable free variable \leq 0 variable \geq constraint = constraint \leq constraint	min subject to	$b^{\top}y$ $A^{\top}y ? c$ $y ? 0$

Suppose: (P_{max}) and (P_{min}) are a pair of primal and dual LPs according to the above table, with feasible solutions \bar{x} , and \bar{y}

(P _{max})			(P _{min})		
max subject to	$c^{\top}x$ $Ax?b$ $x?0$	= constraint ≥ constraint ≥ 0 variable free variable	\geq 0 variable free variable \leq 0 variable \geq constraint = constraint \leq constraint	min subject to	$b^{\top}y$ $A^{\top}y$? c y ? 0

Suppose: (P_{max}) and (P_{min}) are a pair of primal and dual LPs according to the above table, with feasible solutions \bar{x} , and \bar{y}

 $ar{x}$ and $ar{y}$ satisfy the complementary slackness conditions if ...

for all variables x_j of (P_{max}):

- (i) $\bar{x}_i = 0$, or
- (ii) jth constraint of (P_{min}) is satisfied with equality for \bar{y}

	(P _{max})			(P _{min})	
max subject to	$c^{\top}x$ $Ax ? b$ $x ? 0$	= constraint ≥ constraint ≥ 0 variable free variable	≥ 0 variable free variable ≤ 0 variable ≥ constraint = constraint ≤ constraint	min subject to	$b^{\top}y$ $A^{\top}y$? c y ? 0

Suppose: (P_{max}) and (P_{min}) are a pair of primal and dual LPs according to the above table, with feasible solutions \bar{x} , and \bar{y}

 $ar{x}$ and $ar{y}$ satisfy the complementary slackness conditions if ...

for all variables x_j of (P_{max}):

- (i) $\bar{x}_i = 0$, or
- (ii) jth constraint of (P_{min}) is satisfied with equality for \bar{y}

for all variables y_i of (P_{min}) :

- (i) $\bar{y}_i = 0$, or
- (ii) *i*th constraint of (P_{max}) is satisfied with equality for \bar{x}

 $ar{x}$ and $ar{y}$ satisfy the CS conditions if ...

for all variables x_j of (P_{max}):

- (i) $\bar{x}_j = 0$, or
- (ii) jth constraint of (P_{min}) is satisfied with equality for \bar{y}

for all variables y_i of (P_{min}) :

- (i) $\bar{y}_i = 0$, or
- (ii) *i*th constraint of (P_{max}) is satisfied with equality for \bar{x}

 $ar{x}$ and $ar{y}$ satisfy the CS conditions if ...

for all variables x_j of (P_{max}):

- (i) $\bar{x}_j = 0$, or
- (ii) jth constraint of (P_{min}) is satisfied with equality for \bar{y}

for all variables y_i of (P_{min}) :

- (i) $\bar{y}_i = 0$, or
- (ii) *i*th constraint of (P_{max}) is satisfied with equality for \bar{x}

Note: The two or's above are inclusive!

$ar{x}$ and $ar{y}$ satisfy the CS conditions if ...

for all variables x_j of (P_{max}):

- (i) $\bar{x}_{j} = 0$, or
- (ii) jth constraint of (P_{min}) is satisfied with equality for \bar{y}

for all variables y_i of (P_{min}) :

- (i) $\bar{y}_i = 0$, or
- (ii) *i*th constraint of (P_{max}) is satisfied with equality for \bar{x}

Note: The two or's above are inclusive!

Complementary Slackness Theorem

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let \bar{x} and \bar{y} be feasible solutions. Then these solutions are optimal if and only if the CS conditions hold.

(P _{max})			(P _{min})		
max subject to	$c^{\top}x$ $Ax ? b$ $x ? 0$	= constraint ≥ constraint ≥ 0 variable free variable	\geq 0 variable free variable \leq 0 variable \geq constraint $=$ constraint \leq constraint	min subject to	$b^{\top}y$ $A^{\top}y ? c$ $y ? 0$

Consider the following LP...

$$\max (-2, -1, 0)x \qquad (\mathsf{P}$$

$$\mathsf{s.t.} \begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \overset{>}{\leq} \begin{pmatrix} 5 \\ 7 \end{pmatrix}$$

$$x_1 \leq 0, x_2 \geq 0$$

(P _{max})			(P _{min})		
max subject to	$c^{\top}x$ $Ax?b$ $x?0$	= constraint ≥ constraint ≥ 0 variable free variable	≥ 0 variable free variable ≤ 0 variable ≥ constraint = constraint ≤ constraint	min subject to	$b^{\top}y$ $A^{\top}y$? c y ? 0

Consider the following LP...

$$\max (-2, -1, 0)x \qquad (\mathbf{F}$$
s.t.
$$\begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \stackrel{\geq}{\leq} \begin{pmatrix} 5 \\ 7 \end{pmatrix}$$

$$x_1 \leq 0, x_2 \geq 0$$

... and its dual LP:

$$\min (5,7)y \qquad \qquad \text{(D)}$$

$$\text{s.t. } \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \overset{\leq}{\geq} \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$$

$$y_1 \leq 0, y_2 \geq 0$$

$$\max (-2, -1, 0)x \qquad (P) \qquad \min (5, 7)y \qquad (D)$$
s.t. $\begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \stackrel{>}{\leq} \begin{pmatrix} 5 \\ 7 \end{pmatrix} \qquad \text{s.t. } \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \stackrel{\leq}{=} \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$

$$y_1 \leq 0, y_2 \geq 0$$

Check: $\bar{x}=(-1,0,3)^T$ and $\bar{y}=(-1,1)^T$ are feasible for (P) and (D).

$$\max (-2, -1, 0)x \qquad (P) \qquad \min (5, 7)y \qquad (D)$$

$$\text{s.t. } \begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \overset{>}{\leq} \begin{pmatrix} 5 \\ 7 \end{pmatrix} \qquad \text{s.t. } \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \overset{\leq}{\geq} \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$$

$$y_1 \leq 0, y_2 \geq 0$$

Check: $\bar{x} = (-1,0,3)^T$ and $\bar{y} = (-1,1)^T$ are feasible for (P) and (D). Are they also optimal?

$$\max (-2, -1, 0)x \qquad (P) \qquad \min (5, 7)y \qquad (D)$$
s.t. $\begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \stackrel{>}{\leq} \begin{pmatrix} 5 \\ 7 \end{pmatrix} \qquad \text{s.t. } \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \stackrel{\leq}{\geq} \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$

$$y_1 \leq 0, y_2 \geq 0$$

Check: $\bar{x} = (-1,0,3)^T$ and $\bar{y} = (-1,1)^T$ are feasible for (P) and (D). Are they also optimal?

Complementary Slackness Theorem

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let \bar{x} and \bar{y} be feasible solutions. Then these solutions are optimal if and only if the CS conditions hold.

$$\max (-2, -1, 0)x \qquad (P) \qquad \min (5, 7)y \qquad (D)$$
s.t. $\begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \leq \begin{pmatrix} 5 \\ 7 \end{pmatrix} \qquad \text{s.t. } \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$

$$y_1 \leq 0, y_2 \geq 0$$

Claim

$$\bar{x} = (-1,0,3)^T$$
 and $\bar{y} = (-1,1)^T$ are optimal

Primal conditions:

- (i) $\bar{x}_1 = 0$ or the first (D) constraint is tight for \bar{y} .
- (ii) $\bar{x}_2 = 0$ or the second (D) constraint is tight for \bar{y} .
- (iii) $\bar{x}_3 = 0$ or the third (D) constraint is tight for \bar{y} .

$$\max (-2, -1, 0)x \qquad \qquad \text{(F}$$
 s.t.
$$\begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \stackrel{\geq}{\leq} \begin{pmatrix} 5 \\ 7 \end{pmatrix}$$

$$x_1 \leq 0, x_2 \geq 0$$

$$\min (5,7)y \qquad (D)$$
s.t.
$$\begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \stackrel{\leq}{\geq} \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$$

$$y_1 \leq 0, y_2 \geq 0$$

Claim

$$\bar{x} = (-1,0,3)^T$$
 and $\bar{y} = (-1,1)^T$ are optimal

Primal conditions:

- (i) $\bar{x}_1 = 0$ or the first (D) constraint is tight for \bar{y} .
- (ii) $\bar{x}_2 = 0$ or the second (D) constraint is tight for \bar{y} .
- (iii) $\bar{x}_3 = 0$ or the third (D) constraint is tight for \bar{y} .

Dual conditions:

- (i) $\bar{y}_1 = 0$ or the first (P) constraint is tight for \bar{x} .
- (ii) $\bar{y}_2 = 0$ or the second (P) constraint is tight for \bar{x} .

Complementary Slackness – Geometry

Complementary Slackness Theorem

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let \bar{x} and \bar{y} be feasible solutions. Then these solutions are optimal if and only if the CS conditions hold.

Will now see a geometric interpretation of this theorem!

Complementary Slackness – Geometry

Complementary Slackness Theorem

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let \bar{x} and \bar{y} be feasible solutions. Then these solutions are optimal if and only if the CS conditions hold.

Will now see a geometric interpretation of this theorem!

But some basics first!

Geometry – Cones of Vectors

Definition

Let $a^{(1)}, \ldots, a^{(k)}$ be vectors in \mathbb{R}^n . The cone generated by these vectors is given by

$$C = \{\lambda_1 a^{(1)} + \lambda_2 a^{(2)} + \dots + \lambda_k a^{(k)} : \lambda \ge 0\}$$

Geometry – Cones of Vectors

Definition

Let $a^{(1)}, \ldots, a^{(k)}$ be vectors in \mathbb{R}^n . The cone generated by these vectors is given by

$$C = \{\lambda_1 a^{(1)} + \lambda_2 a^{(2)} + \dots + \lambda_k a^{(k)} : \lambda \ge 0\}$$

Example: The cone generated by $a^{(1)}, a^{(2)}$ and $a^{(3)}$ is the blue-shaded area.

Consider the following polyhedron:

$$P = \{x \in \mathbb{R}^2 : \underbrace{\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}}_{A} x \leq \underbrace{\begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}}_{b}$$

Consider the following polyhedron:

$$P = \{x \in \mathbb{R}^2 : \underbrace{\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}}_A x \le \underbrace{\begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}}_b \}$$

Consider: $\bar{x} = (2,1)^T$

Consider the following polyhedron:

$$P = \{x \in \mathbb{R}^2 : \underbrace{\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}}_A x \le \underbrace{\begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}}_b \}$$

Consider: $\bar{x} = (2,1)^T$

(i)
$$\bar{x} \in P \longrightarrow \mathsf{Check}!$$

Consider the following polyhedron:

$$P = \{x \in \mathbb{R}^2 : \underbrace{\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}}_{A} x \leq \underbrace{\begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}}_{b} \}$$

Consider: $\bar{x} = (2,1)^T$

- (i) $\bar{x} \in P \longrightarrow \mathsf{Check}!$
- (ii) Tight constraints:

$$\mathsf{row}_1(A)\bar{x} = b_1$$

 $\mathsf{row}_2(A)\bar{x} = b_2$

Consider the following polyhedron:

$$P = \{x \in \mathbb{R}^2 : \underbrace{\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}}_A x \le \underbrace{\begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}}_b \}$$

Consider: $\bar{x} = (2,1)^T$

- (i) $\bar{x} \in P \longrightarrow \mathsf{Check}!$
- (ii) Tight constraints:

$$\begin{aligned} \operatorname{row}_1(A)\bar{x} &= b_1 &\longrightarrow (1,0)\bar{x} &= 2 \\ \operatorname{row}_2(A)\bar{x} &= b_2 &\longrightarrow (1,1)\bar{x} &= 3 \end{aligned}$$

Cone of tight constraints:

Cone generated by rows of tight constraints

Cone of tight constraints:

Cone generated by rows of tight constraints

Tight constraints:

$$(1,0)\bar{x} = 2$$
 (1)

$$(1,1)\bar{x} = 3$$
 (2)

Cone of tight constraints:

Cone generated by rows of tight constraints

Tight constraints:

$$(1,0)\bar{x} = 2$$
 (1)

$$(1,1)\bar{x} = 3$$
 (2)

Cone of tight constraints:

$$\{\lambda_1(1,0)^T + \lambda_2(1,1)^T : \lambda_1, \lambda_2 \ge 0\}$$

Cone of tight constraints:

Cone generated by rows of tight constraints

Tight constraints:

$$(1,0)\bar{x} = 2 \tag{1}$$

$$(1,1)\bar{x} = 3 \tag{2}$$

Cone of tight constraints:

$$\{\lambda_1(1,0)^T + \lambda_2(1,1)^T : \lambda_1, \lambda_2 \ge 0\}$$

Consider an LP of the form

$$\max\{c^T x : Ax \le b\}$$

and a feasible solution \bar{x} .

Cone of tight constraints:

Cone generated by rows of tight constraints

Tight constraints:

$$(1,0)\bar{x} = 2 \tag{1}$$

$$(1,1)\bar{x} = 3$$
 (2)

Cone of tight constraints:

$$\{\lambda_1(1,0)^T + \lambda_2(1,1)^T : \lambda_1, \lambda_2 \ge 0\}$$

Consider an LP of the form

$$\max\{c^T x : Ax \le b\}$$

and a feasible solution \bar{x} .

The cone of tight constraints at \bar{x} is the cone generated by the rows of A corresponding to tight constraints at \bar{x} .

Theorem

Let \bar{x} be a feasible solution to

$$\max\{c^T x : Ax \le b\}$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

$$P = \left\{ x \in \mathbb{R}^2 : \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix} \right\}$$

Theorem

Let \bar{x} be a feasible solution to

$$\max\{c^T x : Ax \le b\}$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Example: Consider the LP

$$\max\{(3/2, 1/2)x : x \in P\}$$

$$P=\{x\in\mathbb{R}^2\ : \\ \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}x\leq \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}\}$$

Theorem

Let \bar{x} be a feasible solution to

$$\max\{c^T x : Ax \le b\}$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Example: Consider the LP

$$\max\{(3/2, 1/2)x : x \in P\}$$

Tight constraints at $\bar{x} = (2,1)^T$:

$$(1,0)\bar{x} = 2 \tag{1}$$

$$(1,1)\bar{x} = 3$$
 (2)

$$P = \{x \in \mathbb{R}^2 : \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix} \}$$

Example: Consider the LP

$$\max\{(3/2, 1/2)x : x \in P\} \quad (\star)$$

Tight constraints at $\bar{x} = (2,1)^T$:

$$(1,0)\bar{x} = 2$$
 (1)

$$(1,1)\bar{x} = 3$$
 (2)

Note: $(3/2,1/2)^T$ in cone of tight constraints as

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$

$$P = \{x \in \mathbb{R}^2 : \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix} \}$$

Example: Consider the LP

$$\max\{(3/2, 1/2)x : x \in P\} \quad (\star)$$

Tight constraints at $\bar{x} = (2,1)^T$:

$$(1,0)\bar{x} = 2 \tag{1}$$

$$(1,1)\bar{x} = 3$$
 (2)

Note: $(3/2,1/2)^T$ is in cone of tight constraints as

$$\begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 1/2 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Therefore: \bar{x} is an optimal solution!

Theorem

Let \bar{x} be a feasible solution to

$$\max\{c^T x : Ax \le b\}$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Example: Consider the LP

$$\max\{(3/2, 1/2)x : x \in P\} \quad (\star)$$

Tight constraints at $\bar{x} = (2,1)^T$:

$$(1,0)\bar{x} = 2$$
 (1)

$$(1,1)\bar{x} = 3$$
 (2)

Note: $(3/2,1/2)^T$ is in cone of tight constraints as

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$

Therefore: \bar{x} is an optimal solution!

Theorem

Let \bar{x} be a feasible solution to

$$\max\{c^T x : Ax \le b\}$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Proving the "if" direction of the above theorem amounts to

- (i) finding a feasible solution \bar{y} to the dual of (\star) , and
- (ii) showing that \bar{x} and \bar{y} satisfy the CS conditions!

Example: Consider the LP

$$\max\{(3/2, 1/2)x : x \in P\} \quad (\star)$$

Tight constraints at $\bar{x} = (2,1)^T$:

$$(1,0)\bar{x} = 2$$
 (1)

$$(1,1)\bar{x} = 3$$
 (2)

Note: $(3/2,1/2)^T$ is in cone of tight constraints as

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$

Therefore: \bar{x} is an optimal solution!

Theorem

Let \bar{x} be a feasible solution to

$$\max\{c^T x \,:\, Ax \le b\}$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Proving the "if" direction of the above theorem amounts to

- (i) finding a feasible solution \bar{y} to the dual of (\star) , and
- (ii) showing that \bar{x} and \bar{y} satisfy the CS conditions!

The above theorem follows from CS Theorem!

Geometric Optimality - Towards a Proof

If we write out the LP:

$$\max (3/2, 1/2)x \qquad \qquad (\star)$$
 s.t.
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$$

Geometric Optimality - Towards a Proof

If we write out the LP:

$$\max (3/2, 1/2)x \qquad \qquad (\star)$$
 s.t.
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$$

We can write the dual of (*) as:

min
$$(2,3,2)y$$
 (\lozenge)
s.t. $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$
 $y \ge 0$

Geometric Optimality - Towards a Proof

If we write out the LP:

$$\max (3/2, 1/2)x \qquad \qquad (\star)$$
 s.t.
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$$

We know that:

$$\begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 1/2 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

We can write the dual of (*) as:

$$\min (2,3,2)y \qquad (\diamondsuit)$$
s.t.
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$$

$$y \ge 0$$

If we write out the LP:

$$\max (3/2, 1/2)x \qquad (\star)$$
s.t.
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$$

We can write the dual of (*) as:

min
$$(2,3,2)y$$
 (\lozenge)
s.t. $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$
 $y \ge 0$

We know that:

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$

Hence: $\bar{y} = (1, 1/2, 0)^T$ is feasible for (\lozenge) .

If we write out the LP:

$$\max (3/2, 1/2)x \qquad \qquad (\star)$$
 s.t.
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$$

We can write the dual of (\star) as:

min
$$(2,3,2)y$$
 (\lozenge)
s.t. $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$
 $y \ge \emptyset$

We know that:

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$

Hence: $\bar{y} = (1, 1/2, 0)^T$ is feasible for (\lozenge) .

Also: $\bar{y}_i > 0$ only if the constraint i is tight at \bar{x} .

If we write out the LP:

$$\max \left(3/2, 1/2 \right) x \qquad \qquad (\star)$$
 s.t.
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$$

We can write the dual of (*) as:

$$\min (2,3,2)y \qquad (\diamondsuit)$$
s.t.
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$$

$$y \ge 0$$

We know that:

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$

Hence: $\bar{y} = (1, 1/2, 0)^T$ is feasible for (\lozenge) .

Also: $\bar{y}_i > 0$ only if the constraint i is tight at \bar{x} .

→ Dual CS Conditions hold!

If we write out the LP:

$$\max \left(3/2, 1/2 \right) x \qquad \qquad (\star)$$
 s.t.
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$$

We can write the dual of (*) as:

$$\min (2,3,2)y \qquad (\diamondsuit$$
s.t.
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$$

$$y \ge 0$$

We know that:

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$

Hence: $\bar{y} = (1, 1/2, 0)^T$ is feasible for (\lozenge) .

Also: $\bar{y}_i > 0$ only if the constraint i is tight at \bar{x} .

→ Dual CS Conditions hold!

How about primal CS conditions?

If we write out the LP:

$$\max (3/2, 1/2)x \qquad \qquad (\star)$$
 s.t.
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$$

We can write the dual of (*) as:

min
$$(2,3,2)y$$
 (\diamondsuit)
s.t. $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$
 $y \ge 0$

We know that:

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$

Hence: $\bar{y} = (1, 1/2, 0)^T$ is feasible for (\lozenge) .

Also: $\bar{y}_i > 0$ only if the constraint i is tight at \bar{x} .

→ Dual CS Conditions hold!

How about primal CS conditions?

—> they always hold as all constraints in the dual are equality constraints!

If we write out the LP:

$$\max (3/2, 1/2)x \qquad (\star)$$
s.t.
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$$

We can write the dual of (*) as:

min
$$(2,3,2)y$$
 (\diamondsuit)
s.t. $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$
 $y \ge 0$

We know that:

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$

Hence: $\bar{y} = (1, 1/2, 0)^T$ is feasible for (\lozenge) .

Also: $\bar{y}_i > 0$ only if the constraint i is tight at \bar{x} .

→ Dual CS Conditions hold!

How about primal CS conditions? —> they always hold as all constraints in the dual are equality constraints!

CS Theorem \longrightarrow (\bar{x}, \bar{y}) optimal!

Suppose \bar{x} is a solution to (P), and let $J(\bar{x})$ be the indices of tight constraints for \bar{x} .

$$\max c^T x \tag{P}$$
 s.t. $Ax \le b$

$$\begin{aligned} & \min \, b^T y & & \text{(D)} \\ & \text{s.t.} \, \, A^T y = c & & \\ & y \geq \mathbb{0} & & & \end{aligned}$$

$$y_i = 0$$
 or $row_i(A)x = b_i$ (*)

Suppose \bar{x} is a solution to (P), and let $J(\bar{x})$ be the indices of tight constraints for \bar{x} . i.e.,

$$\mathsf{row}_i(A)\bar{x} = b_i$$

for $i \in J(\bar{x})$ and

$$\mathsf{row}_i(A)\bar{x} < b_i$$

for $i \notin J(\bar{x})$.

$$\max c^T x \tag{P}$$
s.t. $Ax \le b$

$$\min b^T y \qquad (D)$$
s.t. $A^T y = c$

$$y \ge 0$$

$$y_i = 0$$
 or $row_i(A)x = b_i$ (*)

Suppose \bar{x} is a solution to (P), and let $J(\bar{x})$ be the indices of tight constraints for \bar{x} . i.e.,

$$\mathsf{row}_i(A)\bar{x} = b_i$$

for $i\in J(\bar x)$ and

$$\mathsf{row}_i(A)\bar{x} < b_i$$

 $\text{ for } i\not\in J(\bar{x}).$

Suppose c is in the cone of tight constraints at \bar{x}

$$\max c^T x$$
 (P) s.t. $Ax < b$

$$\min b^T y$$
 (D) s.t. $A^T y = c$ $y \ge 0$

$$y_i = 0$$
 or $row_i(A)x = b_i$ (*)

Suppose \bar{x} is a solution to (P), and let $J(\bar{x})$ be the indices of tight constraints for \bar{x} . i.e.,

$$\mathsf{row}_i(A)\bar{x} = b_i$$

for $i\in J(\bar x)$ and

$$\mathsf{row}_i(A)\bar{x} < b_i$$

for $i \not\in J(\bar{x})$.

Suppose c is in the cone of tight constraints at \bar{x} , and thus

$$c = \sum_{i \in J(\bar{x})} \lambda_i \mathsf{row}_i(A)^T$$

for some $\lambda \geq 0$.

$$\max c^T x$$
 (P) s.t. $Ax < b$

$$\min b^T y$$
s.t. $A^T y = c$

$$y > 0$$

$$y_i = 0$$
 or $row_i(A)x = b_i$ (*)

Suppose c is in the cone of tight constraints at \bar{x} , and thus for some $\lambda \geq 0$:

$$c = \sum_{i \in J(\bar{x})} \lambda_i \mathsf{row}_i(A)^T$$

$$\max c^T x \tag{P}$$
 s.t. $Ax \le b$

$$\begin{aligned} & \min \, b^T y & & \text{(D)} \\ & \text{s.t.} \, \, A^T y = c & & \\ & y \geq \mathbb{0} & & & \end{aligned}$$

$$y_i = 0$$
 or $row_i(A)x = b_i$ (*)

Suppose c is in the cone of tight constraints at \bar{x} , and thus for some $\lambda \geq 0$:

$$c = \sum_{i \in J(\bar{x})} \lambda_i \mathsf{row}_i(A)^T$$
$$= A^T \bar{y}$$

Where we define:

$$\bar{y}_i = \begin{cases} \lambda_i : i \in J(\bar{x}) \\ 0 : \text{ otherwise} \end{cases}$$

 $\max c^T x \tag{P}$ s.t. Ax < b

 $\mathbf{3.t.} \ \mathbf{11} \mathbf{1} \mathbf{1} \leq \mathbf{0}$

 $\min b^T y \qquad (D)$ s.t. $A^T y = c$

y > 0

$$y_i = 0$$
 or $row_i(A)x = b_i$ (*)

Suppose c is in the cone of tight constraints at \bar{x} , and thus for some $\lambda \geq 0$:

$$c = \sum_{i \in J(\bar{x})} \lambda_i \mathsf{row}_i(A)^T$$
$$= A^T \bar{y}$$

Where we define:

$$\bar{y}_i = \begin{cases} \lambda_i : i \in J(\bar{x}) \\ 0 : \text{ otherwise} \end{cases}$$

Since $\lambda \geq \mathbb{0}$: \bar{y} is feasible for (D)!

$$\max c^T x \tag{P}$$
s.t. $Ax \le b$

$$\min b^T y$$
s.t. $A^T y = c$

y > 0

$$y_i = 0$$
 or $row_i(A)x = b_i$ (*)

Suppose c is in the cone of tight constraints at \bar{x} , and thus for some $\lambda > 0$:

$$c = \sum_{i \in J(\bar{x})} \lambda_i \mathsf{row}_i(A)^T$$
$$= A^T \bar{y}$$

Where we define:

$$\bar{y}_i = \begin{cases} \lambda_i : i \in J(\bar{x}) \\ 0 : \text{ otherwise} \end{cases}$$

Since $\lambda \geq \mathbb{0}$: \bar{y} is feasible for (D)!

Also note: $\bar{y}_i > 0$ only if $\operatorname{row}_i(A)\bar{x} = b_i$

$$\max c^T x \tag{P}$$
s.t. $Ax \le b$

$$\min b^T y$$
 (D) s.t. $A^T y = c$ $y > 0$

$$y_i = 0$$
 or $row_i(A)x = b_i$ (*)

Suppose c is in the cone of tight constraints at \bar{x} , and thus for some $\lambda > 0$:

$$c = \sum_{i \in J(\bar{x})} \lambda_i \mathsf{row}_i(A)^T$$
$$= A^T \bar{y}$$

Where we define:

$$\bar{y}_i = \begin{cases} \lambda_i : i \in J(\bar{x}) \\ 0 : \text{ otherwise} \end{cases}$$

Since $\lambda \geq \mathbb{0}$: \bar{y} is feasible for (D)!

Also note:
$$\bar{y}_i > 0$$
 only if $\operatorname{row}_i(A)\bar{x} = b_i$ \longrightarrow CS conditions (\star) hold!

 $\max c^T x \tag{P}$ s.t. $Ax \le b$

$$\min b^T y$$
 (D) s.t. $A^T y = c$ $y > 0$

$$y_i = 0$$
 or $row_i(A)x = b_i$ (*)

Suppose c is in the cone of tight constraints at \bar{x} , and thus for some $\lambda > 0$:

$$c = \sum_{i \in J(\bar{x})} \lambda_i \mathsf{row}_i(A)^T$$
$$= A^T \bar{y}$$

Where we define:

$$\bar{y}_i = \begin{cases} \lambda_i : i \in J(\bar{x}) \\ 0 : \text{ otherwise} \end{cases}$$

Since $\lambda \geq 0$: \bar{y} is feasible for (D)!

Also note: $\bar{y}_i > 0$ only if $\operatorname{row}_i(A)\bar{x} = b_i \longrightarrow \operatorname{CS}$ conditions (\star) hold!

$$\max c^T x \tag{P}$$
s.t. $Ax < b$

$$\min b^T y$$
s.t. $A^T y = c$

$$y \ge 0$$

(x,y) satisfy CS Conditions if for all variables y_i of (D):

$$y_i = 0$$
 or $row_i(A)x = b_i$ (*)

Hence: (\bar{x}, \bar{y}) are optimal!

We almost proved:

Theorem

Let \bar{x} be a feasible solution to

$$\max\{c^T x : Ax \le b\}$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

We almost proved:

Theorem

Let \bar{x} be a feasible solution to

$$\max\{c^T x : Ax \le b\}$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Missing: \bar{x} is optimal \longrightarrow c is in the cone of tight constraints

We almost proved:

Theorem

Let \bar{x} be a feasible solution to

$$\max\{c^T x : Ax \le b\}$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Missing: \bar{x} is optimal \longrightarrow c is in the cone of tight constraints

CS Theorem \longrightarrow there is a feasible dual solution \bar{y} that, together with \bar{x} , satisfies CS conditions.

We almost proved:

Theorem

Let \bar{x} be a feasible solution to

$$\max\{c^T x : Ax \le b\}$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Missing: \bar{x} is optimal \longrightarrow c is in the cone of tight constraints

CS Theorem \longrightarrow there is a feasible dual solution \bar{y} that, together with \bar{x} , satisfies CS conditions.

We can use CS conditions and \bar{y} to show that c lies in cone of tight constraints for \bar{x} . This is an exercise!

Recap

Given a feasible solution \bar{x} to

$$\max\{c^T x : Ax \le b\}$$

 \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

$$\max (3/2, 1/2)x \qquad (P)$$
s.t.
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$$

Recap

Given a feasible solution \bar{x} to

$$\max\{c^T x : Ax \le b\}$$

 \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

This provides a nice geometric view of optimality certificates

$$\max (3/2, 1/2)x \tag{P}$$
s.t.
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$$