Module 4: Duality Theory (Geometry of Duality)



Recap: Strong Duality

max ¢’z (P) min by

s.t. Az <b s.t. ATy =c
y=>0

Strong Duality Theorem

For the above primal-dual pair of LPs, (P) and (D), if (P)
has an optimal solution, then (D) has one and their
objective values equal.
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In Module 2, we saw that
o The feasible region of an LP is

a polyhedron.

e Basic solutions correspond to
extreme points of this
polyhedron.
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Recap: The Geometry of an LP

In Module 2, we saw that
o The feasible region of an LP is

a polyhedron.

e Basic solutions correspond to
extreme points of this
polyhedron.

Question . .
Today we will investigate these

When is an extreme point optimal? certificates using geometry.

Module 2 and strong duality told us
that Simplex computes

e a basic solution (if it exists),
and

e a certificate of optimality.
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st. Ax+s=10
s>0

Note:
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Suppose Z is feasible for (P), and § is
feasible for (D) max Tz (P)
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Revisiting Weak Duality

Suppose Z is feasible for (P), and § is

feasible for (D) o T (P)
sit. Ax <b
— (Z, b— AZ) feasible for (P')
Y
T )
P
Recall the Weak Duality proof: max ¢ (P")
st. Az +s=0»
77b = yT(AZ + 3) s>0
= W Az+y"s
= cTz+9y"s
min by (D)
T, _
Strong Duality tells us that: st. Aty=c
y=>0

%, 7 both optimal < 'z =470

=Yy
— 775=0



Revisiting Weak Duality

Recall the Weak Duality proof:
70 = g7 (Az +3)
G Az +7"s

= cz+y's
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Revisiting Weak Duality

Recall the Weak Duality proof:
70 = g7 (Az +3)
G Az +7"s

= Tz4+4"s

By feasibility, ¥ > 0 and § >0

max ¢’ x
st. Az <b

max CTZ'

st. Az +s=0»
s>0

min by
st. ATy =c¢
y=>0



Revisiting Weak Duality

Recall the Weak Duality proof:
70 = g7 (Az +3)
G Az +7"s

= Tz4+4"s

m
0=19"s =) s (*)

By feasibility, 4 > 0 and § > 0 and hence
(%) holds if and only if ; =0 or 5; =0,

for every 1 <i < m.

max ¢’ x
st. Az <b

max CTZ'

st. Az +s=0»
s>0

min b7y
st. ATy =c¢
y=>0
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Revisiting Weak Duality — Recap

Given: T and g feasible solutions for (P)
and (D)

Define: s =0— AZ

Then:

Z and y optimal <= ¢y;=0o0r5 =0
~—_————

()
for all 1 <4 < m. We can rephrase (x)
equivalently as

¥; = 0 or ith constraint of (P) holds with
equality (is tight).

max ¢!z (P

st. Az +s=0»
s>0

min by (D)
st. ATy =c¢
y=0



Complementary Slackness —
Special Case

Let Z and g be feasible for (P) and (D).

Then Z and § are optimal if and only if
(i) 7: =0, or
(i) the ith constraint of (P) is tight for Z,

for every row index 1.

max CT.’L‘

st. Ax < b

max CTJ?

st. Az +s=10
s>0

min b7y
st. ATy=c¢
y=0

(P")
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Complementary Slackness Conditions — Example

Consider the following LP:

max (5,3,5)z (P)
2 -1 2
s.t 3 1 2 ]Jz< | 4
-1 1 1 -1
Its dual is
min (2,4, —1)y (D)
1 3 -1 5
st. |2 1 1 |y=13
-1 2 1 5
y=>0
Claim
z=(1,-1,1)T and g = (0,2, )T

are optimall!

Complementary Slackness

Feasible solutions Z and g for (P)
and (D) are optimal if and only if

y; = 0 or the ¢th primal constraint is
tight for z, for all row indices 3.

It is easy to check if Z and § are
feasible.

(i) 71=0 or (1,2,-1)z=2
(i) g2=0 or (3,1,2)z=4
(i) g3=0 or (—1,1,1)z=-1

— T and g are optimal!
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according to the above table
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for all variables z; of (Pmax): for all variables y; of (P,in):
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General Complementary Slackness

Z and ¥ satisfy the CS conditions if ...

for all variables z; of (Pmax): for all variables y; of (P,ipn):
(i) z; =0, or (i) 9. =0, or
(i) jth constraint of (P i) is (i) ith constraint of (Pmax) is
satisfied with equality for satisfied with equality for T

Note: The two or's above are inclusive!

Complementary Slackness Theorem

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let Z and g
be feasible solutions. Then these solutions are optimal if and only if the
CS conditions hold.
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‘ (Pmax) ‘ (P min)
< constraint | > 0 variable
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| subject to > constraint | < 0 variable subject to
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General CS Conditions — Example

‘ (Pmax) ‘ (P min)
< constraint | > 0 variable
max cTx = constraint | free variable min by
| subject to > constraint | < 0 variable subject to
| Ax?b | > 0variable | > constraint ATy?c
| x?0 free variable | = constraint y?0
| < (0 variable | < constraint
Consider the following LP... . and its dual LP:
max (—2,—1,0)x (P) min (5,7)y
ot 1 3 2\ > [5 1 -1 < -2
TA\A-1 4 2) < \7 st. |3 4 |y > -1
1 <0,22 20 2 2 - 0
Y1 < 07 Y2 > 0
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General CS Conditions — Example

max (—2,—1,0)x (P) min ( (D)
t 1 3 2\ > [5 1 < -2
st 4 2) < 7 st. |3 y > | -1
71 <0,22 20 2 - 0
1<0,y22>20

Check: 7 = (—1,0,3)T and j = (—1,1)7 are feasible for (P) and (D).
Are they also optimal?

Complementary Slackness Theorem

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let Z and g
be feasible solutions. Then these solutions are optimal if and only if the
CS conditions hold.



General CS Conditions — Example

max (—2,—1,0)x (P) min (5,7)y
c 1 3 2\ > [5 1 -1 <
St i 4 2) < \7 st. |3 4 |y >
71 <0,22 20 2 2 =
y1 < 0,52 20

z=(-1,0,3)T and y = (—1,1)T are optimal

Primal conditions:
(i) 1 = 0 or the first (D)
constraint is tight for .
(i) Z2 = 0 or the second (D)
constraint is tight for .
(iii) &3 = 0 or the third (D)
constraint is tight for .
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General CS Conditions — Example

max (—2,—1,0)x (P) min (5,7)y
c 1 3 2\ > [5 1 -1 < -2
St i 4 2) < \7 st. |3 4 ]y> (-1
71 <0,22 20 2 2 = 0
y1 < 0,52 20
Claim
7 =(-1,0,3)T and j = (—1,1)T are optimal
Primal conditions: Dual conditions:
(i) 1 = 0 or the first (D) (i) g1 = 0 or the first (P)
constraint is tight for . constraint is tight for z.
(i) Z2 = 0 or the second (D) (i) g2 = 0 or the second (P)
constraint is tight for . constraint is tight for .

(iii) &3 = 0 or the third (D)
constraint is tight for .
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Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let Z and g
be feasible solutions. Then these solutions are optimal if and only if the
CS conditions hold.

Will now see a geometric interpretation of this theorem!



Complementary Slackness — Geometry

Complementary Slackness Theorem

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let Z and g
be feasible solutions. Then these solutions are optimal if and only if the
CS conditions hold.

Will now see a geometric interpretation of this theorem!

But some basics first!



Geometry — Cones of Vectors

Definition

Let a™, ..., a®) be vectors in R™.
The cone generated by these vectors
is given by

C = {Ala(1)+)\2a(2)+. A pa®)

A >0}




Geometry — Cones of Vectors

Definition

Let a™, ..., a®) be vectors in R™.
The cone generated by these vectors
is given by

C = {MaWra@ 4. 20

A >0}

Example: The cone generated by
a®,a@ and a® is the blue-shaded
area.
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Geometry — Cone of Tight Constraints

Consider the following polyhedron:

P={zeR*: @
10 2 "
1 1]z< (3]}
0 1 2 e
——— ——’
A b ©)
0 &-
T v
Consider: 7 = (2,1)T T

(i) z € P — Check!



Geometry — Cone of Tight Constraints

Consider the following polyhedron:

P={zreR?: @
10 2 "
1 1|z< (3]}
0 1 2 l® T
——— ——’
A b @
0 &-
T T T
Consider: 7 = (2,1)T

(i) z € P — Check!
(i) Tight constraints:

row (A)

T =b
rowz(A):f = b2



Geometry — Cone of Tight Constraints

Consider the following polyhedron:

P={zeR*: @

10 2
1 1|lz< (3]}
0 1 2 )

A b 2

—~@
g

Consider: 7 = (2,1)T

(i) z € P — Check!

(i) Tight constraints: Cone of tight constraints:
rows (A)E = by — (1,07 =2 Cone ggnerated by rows of tight
constraints
rOWQ(A){f =b, —> s 1)1? =



Geometry — Cone of Tight Constraints

Cone of tight constraints: o

Cone generated by rows of tight con-
straints

Tight constraints:

(1,0)
(1,1)

le® )

8l
Il

8l

I

w N
N

=

y

—~@
g



Geometry — Cone of Tight Constraints

Cone of tight constraints: o

Cone generated by rows of tight con-
straints

Tight constraints:

(1,0)
(1,1)
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A(L,0)T + 201, DT 2 Ay, A >0}



Geometry — Cone of Tight Constraints

Cone of tight constraints:

Cone generated by rows of tight con-
straints

Tight constraints:

(1,0)
(1,1)

l® @3

ST
I
w N
N

= J

Cone of tight constraints:

A(L,0)T + 201, DT 2 Ay, A >0}

Consider an LP of the form
max{c’z : Az < b}

and a feasible solution Z.



Geometry — Cone of Tight Constraints

Cone of tight constraints:

Cone generated by rows of tight con-
straints

Tight constraints:

(1,0)
(1,1)

8l
Il

8l
I
w N
N

Cone of tight constraints:

A(L,0)T + 201, DT 2 Ay, A >0}

Consider an LP of the form
max{c’z : Az < b}

and a feasible solution Z.

l® @3

= J

The cone of tight constraints at
T is the cone generated by the
rows of A corresponding to tight
constraints at .



Geometry — Cone of Tight Constraints

Theorem
Let Z be a feasible solution to

3)

max{c’z : Az < b}

Then Z is optimal if and only if ¢ is "
in the cone of tight constraints for Z. .

= J
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Geometry — Cone of Tight Constraints

Theorem

Let Z be a feasible solution to

max{c’z : Az < b}

Then Z is optimal if and only if ¢ is "
in the cone of tight constraints for Z. .

= J

Example: Consider the LP

max{(3/2,1/2)x : z € P}
P={zecR?:
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8
IN
N W N
—



Geometry — Cone of Tight Constraints

Theorem

Let Z be a feasible solution to 2 @

max{c’z : Az < b}

Then Z is optimal if and only if ¢ is
in the cone of tight constraints for Z.

= J

Example: Consider the LP

max{(3/2,1/2)x : z € P}
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Geometry — Cone of Tight Constraints

Example: Consider the LP
max{(3/2,1/2)x : x € P} (%)
Tight constraints at 7 = (2,1)7":

(1,0)z = 2 (1)
(1,1)z =3 (2)
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Example: Consider the LP
max{(3/2,1/2)z : x € P} (%)
Tight constraints at z = (2,1)7:
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Note: (3/2,1/2)T is in cone of tight
constraints as

(1) =1 () ()

Therefore: Z is an optimal solution!

Theorem

Let  be a feasible solution to
Az < b}

max{c’z :

Then Z is optimal if and only if ¢ is
in the cone of tight constraints for Z.
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Example: Consider the LP
max{(3/2,1/2)z : x € P} (%)
Tight constraints at z = (2,1)7:
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Note: (3/2,1/2)T is in cone of tight
constraints as

(1) =1 () ()

Therefore: Z is an optimal solution!

Theorem

Let  be a feasible solution to

max{c’z : Az < b}

Then Z is optimal if and only if ¢ is
in the cone of tight constraints for Z.

Proving the “if" direction of the
above theorem amounts to
(i) finding a feasible solution § to
the dual of (%), and
(i) showing that Z and ¥ satisfy
the CS conditions!



Geometry — Cone of Tight Constraints

Example: Consider the LP
max{(3/2,1/2)z : x € P} (%)
Tight constraints at z = (2,1)7:

2 (1)
=3 (2)
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(1,1)

I

Note: (3/2,1/2)T is in cone of tight
constraints as

(1) =1 () ()

Therefore: Z is an optimal solution!

Theorem

Let  be a feasible solution to

max{c’z : Az < b}

Then Z is optimal if and only if ¢ is
in the cone of tight constraints for Z.

Proving the “if" direction of the
above theorem amounts to
(i) finding a feasible solution § to
the dual of (%), and
(i) showing that Z and ¥ satisfy
the CS conditions!

The above theorem follows from CS
Theorem!
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Geometric Optimality — Towards a Proof

We know that:
If we write out the LP:

max (3/2,1/2)z (%) (i@ - <é> T2 G)

Lo 2 Hence: § = (1,1/2,0)T is feasible
st. |1 1]12z<13
for (0).
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Geometric Optimality — Towards a Proof

We know that:
If we write out the LP:

3/2\ (1 (1
max (3/2,1/2)x (%) (1/2) =1 (0> +1/2 (1)
1 0 2 o . .
st. |1 1]lz< |3 i:‘i”(i;-y =(1,1/2,0)T is feasible
0 1 2

Also: g; > 0 only if the constraint ¢
is tight at .

We can write the dual of (x) as: . Dual CS Conditions hold!

min (2, 3,2 O
( i ©) How about primal CS conditions?
s.t. (1 1 O) Y= <3/2> — they always hold as all
0 11 1/2 constraints in the dual are equality
y=>0 constraints!

CS Theorem — (Z,%) optimal!
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for i € J(Z) and

row; (A)Z < b;
for i & J(T).

Suppose c¢ is in the cone of tight
constraints at Z, and thus

for some A > 0.
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y=>0

(z,y) satisfy CS Conditions if for all
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Suppose ¢ is in the cone of tight
constraints at Z, and thus for some
A>0:

Where we define:

_ N T 1E J(SE‘)
vi= 0 : otherwise

Since A > 0: g is feasible for (D)!

Also note: g; > 0 only if
row;(A)T = b;
— CS conditions (x) hold!

max ¢’ (P)
st. Az < b
min by (D)
st. ATy =c¢
y=>0

(z,y) satisfy CS Conditions if for all
variables y; of (D):

y; =0 or row;(A)z="5b; (%)



Suppose ¢ is in the cone of tight
constraints at Z, and thus for some
A>0:

Where we define:

_ N T 1E J(SE‘)
vi= 0 : otherwise

Since A > 0: g is feasible for (D)!

Also note: g; > 0 only if
row;(A)T = b;
— CS conditions (x) hold!

max ¢’ (P)
st. Az < b
min by (D)
st. ATy =c¢
y=>0

(z,y) satisfy CS Conditions if for all
variables y; of (D):

y; =0 or row;(A)z="5b; (%)

Hence: (z,7) are optimal!
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Wrapping up...

We almost proved:

Theorem

Let z be a feasible solution to
max{c’z : Az < b}

Then Z is optimal if and only if ¢ is in the cone of tight constraints for Z.

Missing: T is optimal —— ¢ is in the cone of tight constraints

CS Theorem — there is a feasible dual solution g that, together with Z,
satisfies CS conditions.

We can use CS conditions and ¢ to show that c lies in cone of tight
constraints for . This is an exercise!



Recap

Given a feasible solution Z to
max{c’z : Az < b}

Z is optimal if and only if ¢ is in the
cone of tight constraints for Z.
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Recap

Given a feasible solution Z to
max{c’z : Az < b}

Z is optimal if and only if ¢ is in the
cone of tight constraints for Z.

This provides a nice geometric view
of optimality certificates
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