
CO 250: Introduction to Optimization
Module 4: Duality Theory (Geometry of Duality)



Recap: Strong Duality

max cTx (P)

s.t. Ax ≤ b
min bT y (D)

s.t. AT y = c

y ≥ 0

Strong Duality Theorem

For the above primal-dual pair of LPs, (P) and (D), if (P)
has an optimal solution, then (D) has one and their
objective values equal.



Recap: The Geometry of an LP

In Module 2, we saw that
• The feasible region of an LP is

a polyhedron.

• Basic solutions correspond to
extreme points of this
polyhedron.

Question

When is an extreme point optimal?

Module 2 and strong duality told us
that Simplex computes

• a basic solution (if it exists),
and

• a certificate of optimality.

v

Today we will investigate these
certificates using geometry.
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Complementary Slackness –
Special Case

Let x̄ and ȳ be feasible for (P) and (D).

Then x̄ and ȳ are optimal if and only if

(i) ȳi = 0, or

(ii) the ith constraint of (P) is tight for x̄,

for every row index i.

max cTx (P)

s.t. Ax ≤ b

max cTx (P’)

s.t. Ax+ s = b

s ≥ 0

min bT y (D)

s.t. AT y = c

y ≥ 0



Complementary Slackness Conditions – Example

Consider the following LP:

max (5, 3, 5)x (P)

s.t.




1 2 −1
3 1 2
−1 1 1


x ≤




2
4
−1




Its dual is:

min (2, 4,−1)y (D)

s.t.




1 3 −1
2 1 1
−1 2 1


 y =




5
3
5




y ≥ 0

Claim

x̄ = (1,−1, 1)T and ȳ = (0, 2, 1)T

are optimal!

Complementary Slackness

Feasible solutions x̄ and ȳ for (P)
and (D) are optimal if and only if

ȳi = 0 or the ith primal constraint is
tight for x̄, for all row indices i.

It is easy to check if x̄ and ȳ are
feasible.

(i) ȳ1 = 0 or (1, 2,−1)x̄ = 2

(ii) ȳ2 = 0 or (3, 1, 2)x̄ = 4

(iii) ȳ3 = 0 or (−1, 1, 1)x̄ = −1

−→ x̄ and ȳ are optimal!



Complementary Slackness Conditions – Example

Consider the following LP:

max (5, 3, 5)x (P)

s.t.




1 2 −1
3 1 2
−1 1 1


x ≤




2
4
−1




Its dual is:

min (2, 4,−1)y (D)

s.t.




1 3 −1
2 1 1
−1 2 1


 y =




5
3
5




y ≥ 0

Claim

x̄ = (1,−1, 1)T and ȳ = (0, 2, 1)T
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−→ x̄ and ȳ are optimal!



General Complementary Slackness

Suppose: (Pmax) and (Pmin) are a pair of primal and dual LPs
according to the above table



General Complementary Slackness

Suppose: (Pmax) and (Pmin) are a pair of primal and dual LPs
according to the above table, with feasible solutions x̄, and ȳ
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for all variables yi of (Pmin):
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Complementary Slackness Theorem

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let x̄ and ȳ
be feasible solutions. Then these solutions are optimal if and only if the
CS conditions hold.

Will now see a geometric interpretation of this theorem!

But some basics first!
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Let a(1), . . . , a(k) be vectors in Rn.
The cone generated by these vectors
is given by

C = {λ1a
(1)+λ2a
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(k) :

λ ≥ 0}

Example: The cone generated by
a(1), a(2) and a(3) is the blue-shaded
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Geometry – Cone of Tight Constraints

Consider the following polyhedron:

P = {x ∈ R2 :



1 0
1 1
0 1




︸ ︷︷ ︸
A

x ≤




2
3
2




︸ ︷︷ ︸
b

}

Consider: x̄ = (2, 1)T
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Consider: x̄ = (2, 1)T

(i) x̄ ∈ P −→ Check!
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Cone of tight constraints:

Cone generated by rows of tight con-
straints

Tight constraints:

(1, 0)x̄ = 2 (1)

(1, 1)x̄ = 3 (2)

Cone of tight constraints:

{λ1(1, 0)T + λ2(1, 1)T : λ1, λ2 ≥ 0}

Consider an LP of the form

max{cTx : Ax ≤ b}

and a feasible solution x̄.
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The cone of tight constraints at
x̄ is the cone generated by the
rows of A corresponding to tight
constraints at x̄.
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Theorem

Let x̄ be a feasible solution to
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(ii) showing that x̄ and ȳ satisfy
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Example: Consider the LP
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Tight constraints at x̄ = (2, 1)T :

(1, 0)x̄ = 2 (1)
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Note: (3/2, 1/2)T is in cone of tight
constraints as
(

3/2
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= 1 ·
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1
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)

Therefore: x̄ is an optimal solution!

Theorem

Let x̄ be a feasible solution to

max{cTx : Ax ≤ b}

Then x̄ is optimal if and only if c is
in the cone of tight constraints for x̄.

Proving the “if” direction of the
above theorem amounts to

(i) finding a feasible solution ȳ to
the dual of (?), and

(ii) showing that x̄ and ȳ satisfy
the CS conditions!

The above theorem follows from CS
Theorem!
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Also: ȳi > 0 only if the constraint i
is tight at x̄.



Geometric Optimality – Towards a Proof

If we write out the LP:

max (3/2, 1/2)x (?)

s.t.




1 0
1 1
0 1


x ≤




2
3
2




We can write the dual of (?) as:

min (2, 3, 2)y (♦)

s.t.

(
1 1 0
0 1 1

)
y =

(
3/2
1/2

)

y ≥ 0

We know that:
(

3/2
1/2

)
= 1 ·

(
1
0

)
+ 1/2 ·

(
1
1

)
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−→ they always hold as all
constraints in the dual are equality
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)
+ 1/2 ·

(
1
1

)

Hence: ȳ = (1, 1/2, 0)T is feasible
for (♦).

Also: ȳi > 0 only if the constraint i
is tight at x̄.
−→ Dual CS Conditions hold!

How about primal CS conditions?
−→ they always hold as all
constraints in the dual are equality
constraints!

CS Theorem −→ (x̄, ȳ) optimal!



Suppose x̄ is a solution to (P), and
let J(x̄) be the indices of tight
constraints for x̄.

max cTx (P)

s.t. Ax ≤ b

min bT y (D)

s.t. AT y = c

y ≥ 0

(x, y) satisfy CS Conditions if for all
variables yi of (D):

yi = 0 or rowi(A)x = bi (?)



Suppose x̄ is a solution to (P), and
let J(x̄) be the indices of tight
constraints for x̄. i.e.,

rowi(A)x̄ = bi

for i ∈ J(x̄) and

rowi(A)x̄ < bi

for i 6∈ J(x̄).

max cTx (P)

s.t. Ax ≤ b

min bT y (D)

s.t. AT y = c

y ≥ 0

(x, y) satisfy CS Conditions if for all
variables yi of (D):

yi = 0 or rowi(A)x = bi (?)



Suppose x̄ is a solution to (P), and
let J(x̄) be the indices of tight
constraints for x̄. i.e.,

rowi(A)x̄ = bi

for i ∈ J(x̄) and

rowi(A)x̄ < bi

for i 6∈ J(x̄).

Suppose c is in the cone of tight
constraints at x̄

max cTx (P)

s.t. Ax ≤ b

min bT y (D)

s.t. AT y = c

y ≥ 0

(x, y) satisfy CS Conditions if for all
variables yi of (D):

yi = 0 or rowi(A)x = bi (?)



Suppose x̄ is a solution to (P), and
let J(x̄) be the indices of tight
constraints for x̄. i.e.,

rowi(A)x̄ = bi
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ȳi =

{
λi : i ∈ J(x̄)

0 : otherwise

max cTx (P)

s.t. Ax ≤ b

min bT y (D)

s.t. AT y = c

y ≥ 0

(x, y) satisfy CS Conditions if for all
variables yi of (D):

yi = 0 or rowi(A)x = bi (?)



Suppose c is in the cone of tight
constraints at x̄, and thus for some
λ ≥ 0:

c =
∑

i∈J(x̄)

λirowi(A)T

= AT ȳ
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λ ≥ 0:

c =
∑
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λirowi(A)T

= AT ȳ

Where we define:

ȳi =

{
λi : i ∈ J(x̄)

0 : otherwise

Since λ ≥ 0: ȳ is feasible for (D)!

Also note: ȳi > 0 only if
rowi(A)x̄ = bi
−→ CS conditions (?) hold!

max cTx (P)

s.t. Ax ≤ b

min bT y (D)

s.t. AT y = c

y ≥ 0

(x, y) satisfy CS Conditions if for all
variables yi of (D):

yi = 0 or rowi(A)x = bi (?)

Hence: (x̄, ȳ) are optimal!
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Wrapping up...

We almost proved:

Theorem

Let x̄ be a feasible solution to

max{cTx : Ax ≤ b}

Then x̄ is optimal if and only if c is in the cone of tight constraints for x̄.

Missing: x̄ is optimal −→ c is in the cone of tight constraints

CS Theorem −→ there is a feasible dual solution ȳ that, together with x̄,
satisfies CS conditions.

We can use CS conditions and ȳ to show that c lies in cone of tight
constraints for x̄. This is an exercise!



Recap

Given a feasible solution x̄ to

max{cTx : Ax ≤ b}

x̄ is optimal if and only if c is in the
cone of tight constraints for x̄.
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Recap

Given a feasible solution x̄ to

max{cTx : Ax ≤ b}

x̄ is optimal if and only if c is in the
cone of tight constraints for x̄.

This provides a nice geometric view
of optimality certificates
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