
CO 250: Introduction to Optimization
Module 5: Integer Programs (Cutting Planes)



Overview

In this lecture, we will:

Investigate a class of algorithms known as cutting planes.

Remark

We restrict ourselves to pure Integer Programs.

Our First Integer Program:

max
(
2 5

)
x

s. t.
(
1 4
1 1

)

x ≤

(
8
4

)
(1)
(2)

x ≥ 0, x integer
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max
{
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}
(IP)

Let (P) denote max c⊤x : Ax ≤ b .

If (P) is infeasible, then STOP. (IP) is also infeasible.

Let x be the optimal solution to (P).

If x is integral, then STOP. x is also optimal for (IP).

Find a cutting plane a⊤x ≤ β for x.

Add constraint a⊤x ≤ β to the system Ax ≤ b.
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We can rewrite (⋆) as

x1 − x3 + x4 + x5 = 2 where x5 ≥ 0.

We now add this to the relaxation.
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Solve this using the Simplex algorithm.

Get optimal basis B = {1, 2, 3} and rewrite in canonical form for B:
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1
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The basic optimal solution is x′ = (3, 1, 1, 0, 0)⊤. Integer!

Since x′ is optimal for the IP relaxation, x′ is also optimal for the IP!
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Since x′ is optimal for the IP relaxation, x′ is also optimal for the IP!
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Getting Cutting Planes in General

Solve the relaxation and get the LP in a canonical form for B.

max c̄⊤x+ ¯
s. t.

xB +ANxN = b
x ≥ 0

N = j : j ∈ B

x basic (xN = , xB = b)

r(i) index of ith basic variable

Suppose x is not integer. Then, bi is fractional for some value i.

We know that every feasible solution to the LP relaxation satisfies

xr(i) +
∑

j∈N

ijxj = bi.
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The Good and the Bad

The Good News:

• The Simplex based cutting plane algorithm eventually will terminate.

The Bad News

• If implemented in this way, it will be terribly slow.

Ways we can Improve the Algorithm

• Do not use the 2-phase Simplex to reoptimize; w rk with the dual.

• Add more than one cutting plane at at time.

• Combine it with a divide and conquer strategy (branch and bound).
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Recap

• We solve the LP relaxation of an integer program and get a solution;

• If the solution is integer, it is optimal for the integer program;

• Otherwise, we add a cutting plane.

• Cutting planes can be obtained from the final canonical form.

• Careful implementation is key to success.
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