Module 5: Integer Programs (Cutting Planes)

In this lecture, we will:

Investigate a class of algorithms known as cutting planes.

In this lecture, we will:

Investigate a class of algorithms known as cutting planes.

Remark

We restrict ourselves to pure Integer Programs.

In this lecture, we will:

Investigate a class of algorithms known as cutting planes.

Remark

We restrict ourselves to pure Integer Programs.

In this lecture, we will:

Investigate a class of algorithms known as cutting planes.

Remark

We restrict ourselves to pure Integer Programs.

$$\max \begin{pmatrix} 2 & 5 \end{pmatrix} x$$

s. t.
$$\begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix} x \leq \begin{pmatrix} 8 \\ 4 \end{pmatrix} \qquad (1)$$

$$x \ge \mathbf{0}, \ x \text{ integer}$$

In this lecture, we will:

Investigate a class of algorithms known as cutting planes.

Remark

We restrict ourselves to pure Integer Programs.

In this lecture, we will:

Investigate a class of algorithms known as cutting planes.

Remark

We restrict ourselves to pure Integer Programs.

In this lecture, we will:

Investigate a class of algorithms known as cutting planes.

Remark

We restrict ourselves to pure Integer Programs.

In this lecture, we will:

Investigate a class of algorithms known as cutting planes.

Remark

We restrict ourselves to pure Integer Programs.

In this lecture, we will:

Investigate a class of algorithms known as cutting planes.

Remark

We restrict ourselves to pure Integer Programs.

Idea

Solve the LP relaxation instead of the original IP.

Idea

Solve the LP relaxation instead of the original IP.

Using Simplex, we find that $\bar{x} = \left(\frac{8}{3}, \frac{4}{3}\right)^{\top}$ is optimal.

Using Simplex, we find that $\bar{x} = \left(\frac{8}{3}, \frac{4}{3}\right)^{\top}$ is optimal. Not integer!

Using Simplex, we find that $\bar{x} = \left(\frac{8}{3}, \frac{4}{3}\right)^{\top}$ is optimal. NOT INTEGER! We now search for a constraint $\alpha^{\top} x \leq \beta$ that

Using Simplex, we find that $\bar{x} = \left(\frac{8}{3}, \frac{4}{3}\right)^{\top}$ is optimal. NOT INTEGER! We now search for a constraint $\alpha^{\top} x \leq \beta$ that

• is satisfied for all feasible solutions to the IP, and

Using Simplex, we find that $\bar{x} = \left(\frac{8}{3}, \frac{4}{3}\right)^{\top}$ is optimal. NOT INTEGER! We now search for a constraint $\alpha^{\top} x \leq \beta$ that

- is satisfied for all feasible solutions to the IP, and
- is not satisfied for \bar{x} .

Using Simplex, we find that $\bar{x} = \left(\frac{8}{3}, \frac{4}{3}\right)^{\top}$ is optimal. NOT INTEGER! We now search for a constraint $\alpha^{\top}x \leq \beta$ that

- is satisfied for all feasible solutions to the IP, and
- is not satisfied for \bar{x} .

We will call this constraint a cutting plane for \bar{x} .

Using Simplex, we find that $\bar{x} = \left(\frac{8}{3}, \frac{4}{3}\right)^{\top}$ is optimal. NOT INTEGER! We now search for a constraint $\alpha^{\top}x \leq \beta$ that

- is satisfied for all feasible solutions to the IP, and
- is not satisfied for \bar{x} .

We will call this constraint a cutting plane for \bar{x} .

Example:

$$x_1 + 3x_2 \le 6. \tag{(\star)}$$

Using Simplex, we get: $x' = (3, 1)^{\top}$ is optimal.

Using Simplex, we get: $x' = (3, 1)^{\top}$ is optimal. INTEGER!

Using Simplex, we get: $x' = (3, 1)^{\top}$ is optimal. INTEGER!

Since x' is optimal for the IP relaxation, x' is also optimal for the IP!

Using Simplex, we get: $x' = (3, 1)^{\top}$ is optimal. INTEGER!

Since x' is optimal for the IP relaxation, x' is also optimal for the IP!

We have now solved our first IP.

$$\max\left\{c^{\top}x: Ax \le b, x \text{ integer}\right\}$$

(IP)

• Let (P) denote $\max\{c^{\top}x : Ax \leq b\}.$

- Let (P) denote $\max\{c^{\top}x : Ax \leq b\}.$
- If (P) is infeasible, then STOP. (IP) is also infeasible.

- Let (P) denote $\max\{c^{\top}x : Ax \leq b\}.$
- If (P) is infeasible, then STOP. (IP) is also infeasible.
- Let \bar{x} be the optimal solution to (P).

- Let (P) denote $\max\{c^{\top}x : Ax \leq b\}.$
- If (P) is infeasible, then STOP. (IP) is also infeasible.
- Let \bar{x} be the optimal solution to (P).
- If \bar{x} is integral, then STOP. \bar{x} is also optimal for (IP).

- Let (P) denote $\max\{c^{\top}x : Ax \leq b\}.$
- If (P) is infeasible, then STOP. (IP) is also infeasible.
- Let \bar{x} be the optimal solution to (P).
- If \bar{x} is integral, then STOP. \bar{x} is also optimal for (IP).
- Find a cutting plane $a^{\top}x \leq \beta$ for \bar{x} .

- Let (P) denote $\max\{c^{\top}x : Ax \leq b\}.$
- If (P) is infeasible, then STOP. (IP) is also infeasible.
- Let \bar{x} be the optimal solution to (P).
- If \bar{x} is integral, then STOP. \bar{x} is also optimal for (IP).
- Find a cutting plane $a^{\top}x \leq \beta$ for \bar{x} .
- Add constraint $a^{\top}x \leq \beta$ to the system $Ax \leq b$.

Question

How can we find cutting planes?

How can we find cutting planes?

SIMPLEX DOES THIS FOR US!

SIMPLEX DOES THIS FOR US!

Definition

Let $a \in \Re$, then the floor of a, denoted $\lfloor a \rfloor$, is the largest integer $\leq a$.

SIMPLEX DOES THIS FOR US!

Definition

Let $a \in \Re$, then the floor of a, denoted $\lfloor a \rfloor$, is the largest integer $\leq a$.

SIMPLEX DOES THIS FOR US!

Definition

Let $a \in \Re$, then the floor of a, denoted $\lfloor a \rfloor$, is the largest integer $\leq a$.

Example $\lfloor 3.7 \rfloor = 3$

SIMPLEX DOES THIS FOR US!

Definition

Let $a \in \Re$, then the floor of a, denoted $\lfloor a \rfloor$, is the largest integer $\leq a$.

Question

How can we find cutting planes?

SIMPLEX DOES THIS FOR US!

Definition

Let $a \in \Re$, then the floor of a, denoted $\lfloor a \rfloor$, is the largest integer $\leq a$.

Examp	le	
$\lfloor 3.7 \rfloor$	=	3
$\lfloor 62 \rfloor$	=	62
$\lfloor -2.1 \rfloor$	=	-3

$$\begin{array}{ll} \max \begin{array}{cc} \left(2 & 5\right) x \\ \text{s. t.} \\ & \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix} x \leq \begin{pmatrix} 8 \\ 4 \end{pmatrix} & (1) \\ & (2) \\ & x \geq \mathbf{0}, \ x \text{ integer} \end{array}$$

$$\begin{array}{ll} \max & \begin{pmatrix} 2 & 5 \end{pmatrix} x \\ \text{s. t.} & \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix} x \leq \begin{pmatrix} 8 \\ 4 \end{pmatrix} & \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\ x \geq \mathbf{0}, \ x \text{ integer} \end{array}$$

 $x_1 + 4x_2 + x_3 = 8.$

$$\begin{array}{ll} \max & \begin{pmatrix} 2 & 5 \end{pmatrix} x \\ \text{s. t.} & \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix} x \leq \begin{pmatrix} 8 \\ 4 \end{pmatrix} & (2) \\ x \geq \mathbf{0}, \ x \text{ integer} \end{array}$$

$$x_1 + 4x_2 + x_3 = 8.$$

Add another slack variable, $x_4 \ge 0$, and rewrite (2) as

$$x_1 + x_2 + x_4 = 4.$$

$$\begin{array}{ll} \max & \begin{pmatrix} 2 & 5 \end{pmatrix} x \\ \text{s. t.} & \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix} x \leq \begin{pmatrix} 8 \\ 4 \end{pmatrix} & (2) \\ x \geq \mathbf{0}, \ x \text{ integer} \end{array}$$

 $x_1 + 4x_2 + x_3 = 8.$

Add another slack variable, $x_4 \ge 0$, and rewrite (2) as

 $x_1 + x_2 + x_4 = 4.$

Since x_1, x_2 are integers, $x_3 = 8 - x_1 - 4x_2$ and $x_4 = 4 - x_1 - x_2$ are integers.

$$\begin{array}{ll} \max & \left(2 & 5 \right) x \\ \text{s. t.} & \\ & \left(\begin{matrix} 1 & 4 \\ 1 & 1 \end{matrix} \right) x \leq \begin{pmatrix} 8 \\ 4 \end{matrix} & (2) \\ & x \geq \mathbf{0}, \ x \text{ integer} \end{array}$$

 $x_1 + 4x_2 + x_3 = 8.$

Add another slack variable, $x_4 \ge 0$, and rewrite (2) as

$$x_1 + x_2 + x_4 = 4$$

Since x_1, x_2 are integers, $x_3 = 8 - x_1 - 4x_2$ and $x_4 = 4 - x_1 - x_2$ are integers.

Thus, we can rewrite the IP as

$\max (2$	5	0	0) x			
s. t.						
(1	4	1	$\left(0\right) = \left(8\right)$			
(1	1	0	$\begin{pmatrix} 0\\1 \end{pmatrix} x = \begin{pmatrix} 8\\4 \end{pmatrix}$			
$x \ge 0, \ x \text{ integer}$						

$$\max \begin{pmatrix} 2 & 5 & 0 & 0 \end{pmatrix} x$$

s. t.
$$\begin{pmatrix} 1 & 4 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$$

 $x \ge \mathbf{0}, \ x \text{ integer}$

$$\max \begin{pmatrix} 2 & 5 & 0 & 0 \end{pmatrix} x$$

s. t.
$$\begin{pmatrix} 1 & 4 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$$
$$x \ge \mathbf{0}, \ x \text{ integer}$$

We will now relax the integer program.

$$\max \begin{pmatrix} 2 & 5 & 0 & 0 \end{pmatrix} x$$

s. t.
$$\begin{pmatrix} 1 & 4 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

$$\max \begin{pmatrix} 2 & 5 & 0 & 0 \end{pmatrix} x$$

s. t.
$$\begin{pmatrix} 1 & 4 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

We will use the Simplex algorithm to solve this.

$$\max \begin{pmatrix} 2 & 5 & 0 & 0 \end{pmatrix} x$$

s. t.
$$\begin{pmatrix} 1 & 4 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

We will use the Simplex algorithm to solve this.

Get an optimal basis $B=\{1,2\}$ and rewrite in canonical form for B:

$$\max \begin{pmatrix} 2 & 5 & 0 & 0 \end{pmatrix} x$$

s. t.
$$\begin{pmatrix} 1 & 4 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

We will use the Simplex algorithm to solve this.

Get an optimal basis $B = \{1, 2\}$ and rewrite in canonical form for B:

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 \\ 0 & 1 & 1/3 & -1/3 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

$$\max \begin{pmatrix} 2 & 5 & 0 & 0 \end{pmatrix} x$$

s. t.
$$\begin{pmatrix} 1 & 4 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

We will use the Simplex algorithm to solve this.

Get an optimal basis $B = \{1, 2\}$ and rewrite in canonical form for B:

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 \\ 0 & 1 & 1/3 & -1/3 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

The basic solution is $\bar{x} = (8/3, 4/3, 0, 0)^{\top}$.

$$\max \begin{pmatrix} 2 & 5 & 0 & 0 \end{pmatrix} x$$

s. t.
$$\begin{pmatrix} 1 & 4 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

We will use the Simplex algorithm to solve this.

Get an optimal basis $B = \{1, 2\}$ and rewrite in canonical form for B:

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 \\ 0 & 1 & 1/3 & -1/3 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

The basic solution is $\bar{x} = (8/3, 4/3, 0, 0)^{\top}$. Not integer

$$\max \begin{pmatrix} 2 & 5 & 0 & 0 \end{pmatrix} x$$

s. t.
$$\begin{pmatrix} 1 & 4 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

We will use the Simplex algorithm to solve this.

Get an optimal basis $B = \{1, 2\}$ and rewrite in canonical form for B:

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 \\ 0 & 1 & 1/3 & -1/3 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

The basic solution is $\bar{x} = (8/3, 4/3, 0, 0)^{\top}$. Not integer

Let us use the canonical form to get a cutting plane for \bar{x} .

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 \\ 0 & 1 & 1/3 & -1/3 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 \\ 0 & 1 & 1/3 & -1/3 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

$$x_1 - \frac{1}{3}x_3 + \frac{4}{3}x_4 = \frac{8}{3}$$

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 \\ 0 & 1 & 1/3 & -1/3 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

$$x_1 - \frac{1}{3}x_3 + \frac{4}{3}x_4 \le \frac{8}{3}$$

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 \\ 0 & 1 & 1/3 & -1/3 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

$$x_1 - \frac{1}{3}x_3 + \frac{4}{3}x_4 \le \frac{8}{3}$$
$$x_1 + \left\lfloor -\frac{1}{3} \right\rfloor x_3 + \left\lfloor \frac{4}{3} \right\rfloor x_4 \le \frac{8}{3}$$

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 \\ 0 & 1 & 1/3 & -1/3 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

$$x_{1} - \frac{1}{3}x_{3} + \frac{4}{3}x_{4} \le \frac{8}{3}$$
$$x_{1} + \left\lfloor -\frac{1}{3} \right\rfloor x_{3} + \left\lfloor \frac{4}{3} \right\rfloor x_{4} \le \frac{8}{3}$$
$$x_{1} - x_{3} + x_{4} \le \frac{8}{3}$$

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 \\ 0 & 1 & 1/3 & -1/3 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

Every feasible solution to the LP relaxation satisfies,

$$x_{1} - \frac{1}{3}x_{3} + \frac{4}{3}x_{4} \le \frac{8}{3}$$
$$x_{1} + \left\lfloor -\frac{1}{3} \right\rfloor x_{3} + \left\lfloor \frac{4}{3} \right\rfloor x_{4} \le \frac{8}{3}$$
$$x_{1} - x_{3} + x_{4} \le \frac{8}{3}$$

For every feasible solution to the IP, $x_1 - x_3 + x_4$ is integer.

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 \\ 0 & 1 & 1/3 & -1/3 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

Every feasible solution to the LP relaxation satisfies,

$$x_{1} - \frac{1}{3}x_{3} + \frac{4}{3}x_{4} \le \frac{8}{3}$$
$$x_{1} + \left\lfloor -\frac{1}{3} \right\rfloor x_{3} + \left\lfloor \frac{4}{3} \right\rfloor x_{4} \le \frac{8}{3}$$
$$x_{1} - x_{3} + x_{4} \le \frac{8}{3}$$

For every feasible solution to the IP, $x_1 - x_3 + x_4$ is integer.

Hence, every feasible solution to the IP satisfies

$$x_1 - x_3 + x_4 \le \left\lfloor \frac{8}{3} \right\rfloor = 2$$

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 \\ 0 & 1 & 1/3 & -1/3 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

Every feasible solution to the IP satisfies

$$x_1 - x_3 + x_4 \le 2 \tag{(\star)}$$

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 \\ 0 & 1 & 1/3 & -1/3 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

Every feasible solution to the IP satisfies

$$x_1 - x_3 + x_4 \le 2 \tag{(*)}$$

However, \bar{x} does not satisfy (*) as

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 \\ 0 & 1 & 1/3 & -1/3 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

Every feasible solution to the IP satisfies

$$x_1 - x_3 + x_4 \le 2 \tag{(*)}$$

However, \bar{x} does not satisfy (*) as

$$\underbrace{x_1}_{8/3} - \underbrace{x_3}_{0} + \underbrace{x_4}_{0} = \frac{8}{3} > 2$$

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 \\ 0 & 1 & 1/3 & -1/3 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

Every feasible solution to the IP satisfies

$$x_1 - x_3 + x_4 \le 2 \tag{(*)}$$

However, \bar{x} does not satisfy (*) as

 _
_ >

(*) is a cutting plane for \bar{x} .

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 \\ 0 & 1 & 1/3 & -1/3 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

Every feasible solution to the IP satisfies

$$x_1 - x_3 + x_4 \le 2 \tag{(*)}$$

However, \bar{x} does not satisfy (*) as

$$\underbrace{x_1}_{8/3} - \underbrace{x_3}_{0} + \underbrace{x_4}_{0} = \frac{8}{3} > 2$$

 _
>
 ~

(*) is a cutting plane for \bar{x} .

We can rewrite (\star) as

$$x_1 - x_3 + x_4 + x_5 = 2$$
 where $x_5 \ge 0$.

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 \\ 0 & 1 & 1/3 & -1/3 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

Every feasible solution to the IP satisfies

$$x_1 - x_3 + x_4 \le 2 \tag{(*)}$$

However, \bar{x} does not satisfy (*) as

$$\underbrace{x_1}_{8/3} - \underbrace{x_3}_{0} + \underbrace{x_4}_{0} = \frac{8}{3} > 2$$

	N
_	$\overline{}$

(\star) is a cutting plane for \bar{x} .

We can rewrite (\star) as

$$x_1 - x_3 + x_4 + x_5 = 2$$
 where $x_5 \ge 0$.

We now add this to the relaxation.

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 & 0 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 & 0 \\ 0 & 1 & 1/3 & -1/3 & 0 \\ 1 & 0 & -1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \\ 2 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 & 0 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 & 0 \\ 0 & 1 & 1/3 & -1/3 & 0 \\ 1 & 0 & -1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \\ 2 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

Solve this using the Simplex algorithm.

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 & 0 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 & 0 \\ 0 & 1 & 1/3 & -1/3 & 0 \\ 1 & 0 & -1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \\ 2 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

Solve this using the Simplex algorithm.

Get optimal basis $B = \{1, 2, 3\}$ and rewrite in canonical form for B:

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 & 0 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 & 0 \\ 0 & 1 & 1/3 & -1/3 & 0 \\ 1 & 0 & -1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \\ 2 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

Solve this using the Simplex algorithm.

Get optimal basis $B = \{1, 2, 3\}$ and rewrite in canonical form for B:

$$\max \begin{pmatrix} 0 & 0 & 0 & -\frac{1}{2} & -\frac{3}{2} \end{pmatrix} x + 11$$

s. t.
$$\begin{pmatrix} 1 & 0 & 0 & 3/2 & -1/2 \\ 0 & 1 & 0 & -1/2 & 1/2 \\ 0 & 0 & 1 & 1/2 & -3/2 \end{pmatrix} x = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 & 0 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 & 0 \\ 0 & 1 & 1/3 & -1/3 & 0 \\ 1 & 0 & -1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \\ 2 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

Solve this using the Simplex algorithm.

Get optimal basis $B = \{1, 2, 3\}$ and rewrite in canonical form for B:

$$\max \begin{pmatrix} 0 & 0 & 0 & -\frac{1}{2} & -\frac{3}{2} \end{pmatrix} x + 11$$

s. t.
$$\begin{pmatrix} 1 & 0 & 0 & 3/2 & -1/2 \\ 0 & 1 & 0 & -1/2 & 1/2 \\ 0 & 0 & 1 & 1/2 & -3/2 \end{pmatrix} x = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

The basic optimal solution is $x' = (3, 1, 1, 0, 0)^{\top}$.

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 & 0 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 & 0 \\ 0 & 1 & 1/3 & -1/3 & 0 \\ 1 & 0 & -1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \\ 2 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

Solve this using the Simplex algorithm.

Get optimal basis $B = \{1, 2, 3\}$ and rewrite in canonical form for B:

$$\max \begin{pmatrix} 0 & 0 & 0 & -\frac{1}{2} & -\frac{3}{2} \end{pmatrix} x + 11$$

s. t.
$$\begin{pmatrix} 1 & 0 & 0 & 3/2 & -1/2 \\ 0 & 1 & 0 & -1/2 & 1/2 \\ 0 & 0 & 1 & 1/2 & -3/2 \end{pmatrix} x = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

The basic optimal solution is $x' = (3, 1, 1, 0, 0)^{\top}$. INTEGER!

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 & 0 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 & 0 \\ 0 & 1 & 1/3 & -1/3 & 0 \\ 1 & 0 & -1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \\ 2 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

Solve this using the Simplex algorithm.

Get optimal basis $B = \{1, 2, 3\}$ and rewrite in canonical form for B:

$$\max \begin{pmatrix} 0 & 0 & 0 & -\frac{1}{2} & -\frac{3}{2} \end{pmatrix} x + 11$$

s. t.
$$\begin{pmatrix} 1 & 0 & 0 & 3/2 & -1/2 \\ 0 & 1 & 0 & -1/2 & 1/2 \\ 0 & 0 & 1 & 1/2 & -3/2 \end{pmatrix} x = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

The basic optimal solution is $x' = (3, 1, 1, 0, 0)^{\top}$. INTEGER!

Since x' is optimal for the IP relaxation, x' is also optimal for the IP!

 $(3,1,1,0,0)^\top$ is optimal for

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 & 0 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 & 0 \\ 0 & 1 & 1/3 & -1/3 & 0 \\ 1 & 0 & -1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \\ 2 \end{pmatrix}$$
$$x \ge \mathbf{0}, \ x \text{ integer}$$

 $(3,1,1,0,0)^\top$ is optimal for

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 & 0 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 & 0 \\ 0 & 1 & 1/3 & -1/3 & 0 \\ 1 & 0 & -1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \\ 2 \end{pmatrix}$$
$$x \ge \mathbf{0}, \ x \text{ integer}$$

$$(\mathbf{3},\mathbf{1})^{\top}$$
 is optimal for

$$\begin{array}{l} \max \begin{array}{cc} \left(2 & 5\right) x \\ \text{s. t.} \\ & \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix} x = \begin{pmatrix} 8 \\ 4 \end{pmatrix} \qquad \begin{array}{c} (1) \\ (2) \\ x \geq \mathbf{0}, \ x \text{ integer} \end{array}$$

 $(3,1,1,0,0)^\top$ is optimal for

$$\max \begin{pmatrix} 0 & 0 & -1 & -1 & 0 \end{pmatrix} x + 12$$

s. t.
$$\begin{pmatrix} 1 & 0 & -1/3 & 4/3 & 0 \\ 0 & 1 & 1/3 & -1/3 & 0 \\ 1 & 0 & -1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 8/3 \\ 4/3 \\ 2 \end{pmatrix}$$
$$x \ge \mathbf{0}, \ x \text{ integer}$$

 \longrightarrow

$$\begin{array}{l} \max \quad \bar{c}^\top x + \bar{z} \\ \text{s. t.} \\ \quad x_B + A_N x_N = b \\ \quad x \geq \mathbf{0} \end{array}$$

$$\max \quad \bar{c}^{\top}x + \bar{z}$$

s. t.
$$x_B + A_N x_N = b$$

$$x \ge \mathbf{0}$$

$$N = \{j : j \notin B\}$$

$$\max \quad \bar{c}^{\top}x + \bar{z}$$

s. t.
$$x_B + A_N x_N = b$$

$$x \ge \mathbf{0}$$

$$N = \{j : j \notin B\}$$

 \bar{x} basic $(\bar{x}_N = \mathbf{0}, \bar{x}_B = b)$

$$\begin{array}{l} \max \quad \bar{c}^\top x + \bar{z} \\ \text{s. t.} \\ \quad x_B + A_N x_N = b \\ \quad x \geq \mathbf{0} \end{array}$$

$$N = \{j : j \notin B\}$$

 \bar{x} basic $(\bar{x}_N = \mathbf{0}, \bar{x}_B = b)$
 $r(i)$ index of i^{th} basic variable

Solve the relaxation and get the LP in a canonical form for B.

$$\max \quad \bar{c}^{\top}x + \bar{z}$$

s. t.
$$x_B + A_N x_N = b$$
$$x \ge \mathbf{0}$$

$$N = \{j : j \notin B\}$$

 \bar{x} basic $(\bar{x}_N = \mathbf{0}, \bar{x}_B = b)$
 $r(i)$ index of i^{th} basic variable

Suppose \bar{x} is NOT INTEGER.

Solve the relaxation and get the LP in a canonical form for B.

$\max \ \bar{c}^{\top}x + \bar{z}$
s. t.
$x_B + A_N x_N = b$
$x \ge 0$

$$N = \{j : j \notin B\}$$

 \bar{x} basic $(\bar{x}_N = \mathbf{0}, \bar{x}_B = b)$
 $r(i)$ index of i^{th} basic variable

Suppose \bar{x} is NOT INTEGER. Then, b_i is fractional for some value i.

Solve the relaxation and get the LP in a canonical form for B.

$$\max \quad \bar{c}^{\top}x + \bar{z}$$

s. t.
$$x_B + A_N x_N = b$$

$$x \ge \mathbf{0}$$

$$N = \{j : j \notin B\}$$

 \bar{x} basic $(\bar{x}_N = \mathbf{0}, \bar{x}_B = b)$
 $r(i)$ index of i^{th} basic variable

Suppose \bar{x} is NOT INTEGER. Then, b_i is fractional for some value i.

We know that every feasible solution to the LP relaxation satisfies

$$x_{r(i)} + \sum_{j \in N} A_{ij} x_j = b_i.$$

Solve the relaxation and get the LP in a canonical form for B.

$$\max \quad \bar{c}^{\top}x + \bar{z}$$

s. t.
$$x_B + A_N x_N = b$$

$$x \ge \mathbf{0}$$

$$N = \{j : j \notin B\}$$

 \bar{x} basic $(\bar{x}_N = \mathbf{0}, \bar{x}_B = b)$
 $r(i)$ index of i^{th} basic variable

Suppose \bar{x} is NOT INTEGER. Then, b_i is fractional for some value i.

We know that every feasible solution to the LP relaxation satisfies

$$x_{r(i)} + \sum_{j \in N} A_{ij} x_j \le b_i.$$

Solve the relaxation and get the LP in a canonical form for B.

$$\max \quad \bar{c}^{\top}x + \bar{z}$$

s. t.
$$x_B + A_N x_N = b$$

$$x \ge \mathbf{0}$$

$$N = \{j : j \notin B\}$$

 \bar{x} basic $(\bar{x}_N = \mathbf{0}, \bar{x}_B = b)$
 $r(i)$ index of i^{th} basic variable

Suppose \bar{x} is NOT INTEGER. Then, b_i is fractional for some value i.

We know that every feasible solution to the LP relaxation satisfies

$$x_{r(i)} + \sum_{j \in N} A_{ij} x_j \le b_i. \implies x_{r(i)} + \sum_{j \in N} \lfloor A_{ij} \rfloor x_j \le b_i.$$

Solve the relaxation and get the LP in a canonical form for B.

$$\max \quad \bar{c}^{\top} x + \bar{z}$$

s. t.
$$x_B + A_N x_N = b$$

$$x \ge \mathbf{0}$$

$$N = \{j : j \notin B\}$$

 \bar{x} basic $(\bar{x}_N = \mathbf{0}, \bar{x}_B = b)$
 $r(i)$ index of i^{th} basic variable.

Suppose \bar{x} is NOT INTEGER. Then, b_i is fractional for some value i.

Every feasible solution to the LP relaxation satisfies

$$x_{r(i)} + \sum_{j \in N} A_{ij} x_j \le b_i. \implies \underbrace{x_{r(i)} + \sum_{j \in N} \lfloor A_{ij} \rfloor x_j}_{\text{integer for all } x \text{ integer}} \le b_i.$$

Solve the relaxation and get the LP in a canonical form for B.

$$N = \{j : j \notin B\}$$

 \bar{x} basic $(\bar{x}_N = \mathbf{0}, \bar{x}_B = b)$
 $r(i)$ index of i^{th} basic variable.

Suppose \bar{x} is NOT INTEGER. Then, b_i is fractional for some value i.

Every feasible solution to the LP relaxation satisfies

$$x_{r(i)} + \sum_{j \in N} A_{ij} x_j \le b_i. \implies \underbrace{x_{r(i)} + \sum_{j \in N} \lfloor A_{ij} \rfloor x_j}_{\text{integer for all } x \text{ integer}} \le b_i.$$

Hence, every feasible solution to IP satisfies

$$x_{r(i)} + \sum_{j \in N} \left\lfloor A_{ij} \right\rfloor x_j \le \left\lfloor b_i \right\rfloor$$

Suppose \bar{x} is NOT INTEGER. Then, b_i is fractional for some value i.

Every feasible solution to IP satisfies

$$x_{r(i)} + \sum_{j \in N} \lfloor A_{ij} \rfloor x_j \le \lfloor b \rfloor \tag{(\star)}$$

Suppose \bar{x} is NOT INTEGER. Then, b_i is fractional for some value i.

Every feasible solution to IP satisfies

$$x_{r(i)} + \sum_{j \in N} \lfloor A_{ij} \rfloor x_j \le \lfloor b \rfloor \tag{(\star)}$$

Suppose \bar{x} is NOT INTEGER. Then, b_i is fractional for some value i.

Every feasible solution to IP satisfies

$$x_{r(i)} + \sum_{j \in N} \lfloor A_{ij} \rfloor x_j \le \lfloor b \rfloor \tag{(\star)}$$

$$\underbrace{x_{r(i)}}_{b_i} + \sum_{j \in N} \lfloor A_{ij} \rfloor \underbrace{x_j}_{=0}$$

Suppose \bar{x} is NOT INTEGER. Then, b_i is fractional for some value i.

Every feasible solution to IP satisfies

$$x_{r(i)} + \sum_{j \in N} \lfloor A_{ij} \rfloor x_j \le \lfloor b \rfloor \tag{(\star)}$$

$$\underbrace{x_{r(i)}}_{b_i} + \sum_{j \in N} \lfloor A_{ij} \rfloor \underbrace{x_j}_{=0} = b_i$$

Suppose \bar{x} is NOT INTEGER. Then, b_i is fractional for some value i.

Every feasible solution to IP satisfies

$$x_{r(i)} + \sum_{j \in N} \lfloor A_{ij} \rfloor x_j \le \lfloor b \rfloor \tag{(\star)}$$

$$\underbrace{x_{r(i)}}_{b_i} + \sum_{j \in N} \lfloor A_{ij} \rfloor \underbrace{x_j}_{=0} = b_i > \lfloor b_i \rfloor.$$

Suppose \bar{x} is NOT INTEGER. Then, b_i is fractional for some value i.

Every feasible solution to IP satisfies

$$x_{r(i)} + \sum_{j \in N} \lfloor A_{ij} \rfloor x_j \le \lfloor b \rfloor \tag{(\star)}$$

However, \bar{x} does not satisfy (*) as

$$\underbrace{x_{r(i)}}_{b_i} + \sum_{j \in N} \lfloor A_{ij} \rfloor \underbrace{x_j}_{=0} = b_i > \lfloor b_i \rfloor.$$

(*) is a cutting plane for \bar{x} .

The Good News:

• The Simplex based cutting plane algorithm eventually will terminate.

The Good News:

• The Simplex based cutting plane algorithm eventually will terminate.

The Bad News

• If implemented in this way, it will be terribly slow.

The Good News:

• The Simplex based cutting plane algorithm eventually will terminate.

The Bad News

• If implemented in this way, it will be terribly slow.

WAYS WE CAN IMPROVE THE ALGORITHM

The Good News:

• The Simplex based cutting plane algorithm eventually will terminate.

The Bad News

• If implemented in this way, it will be terribly slow.

WAYS WE CAN IMPROVE THE ALGORITHM

• Do not use the 2-phase Simplex to reoptimize; work with the dual.

The Good News:

• The Simplex based cutting plane algorithm eventually will terminate.

The Bad News

• If implemented in this way, it will be terribly slow.

WAYS WE CAN IMPROVE THE ALGORITHM

- Do not use the 2-phase Simplex to reoptimize; work with the dual.
- Add more than one cutting plane at at time.

The Good News:

• The Simplex based cutting plane algorithm eventually will terminate.

The Bad News

• If implemented in this way, it will be terribly slow.

WAYS WE CAN IMPROVE THE ALGORITHM

- Do not use the 2-phase Simplex to reoptimize; work with the dual.
- Add more than one cutting plane at at time.
- Combine it with a divide and conquer strategy (branch and bound).

• We solve the LP relaxation of an integer program and get a solution;

- We solve the LP relaxation of an integer program and get a solution;
- If the solution is integer, it is optimal for the integer program;

- We solve the LP relaxation of an integer program and get a solution;
- If the solution is integer, it is optimal for the integer program;
- Otherwise, we add a cutting plane.

- We solve the LP relaxation of an integer program and get a solution;
- If the solution is integer, it is optimal for the integer program;
- Otherwise, we add a cutting plane.
- Cutting planes can be obtained from the final canonical form.

- We solve the LP relaxation of an integer program and get a solution;
- If the solution is integer, it is optimal for the integer program;
- Otherwise, we add a cutting plane.
- Cutting planes can be obtained from the final canonical form.
- Careful implementation is key to success.