
CO 250: Introduction to Optimization
Module 6: Nonlinear Programs (Convexity)



Definition

A Nonlinear Program (NLP) is a problem of the form:

min f(x)

s.t.

gi(x) ≤ (i = , . . . , k)

where

f : ℜn ℜ, and

gi : ℜ
n ℜ for i = , . . . , k.

Remark

There aren’t any restrictions regarding the type of functions.

This is a very general model, but NLPs can be very hard to solve!
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s.t.

gi(x) ≤ 0 (i = 1, . . . , k)
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Remark

We may assume f(x) is a linear function, i.e., f(x) = c⊤x.

We can rewrite (P) as

min λ

s.t.

λ ≥ f(x)

gi(x) ≤ (i = , . . . , k)

(Q)

The optimal solution to (Q) will have λ = f(x).
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Quadratic NLP

Remark

, IPs are hard to solve; thus, quadratic NLPs are also hard to solve.
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• Starting with x, find a “better” feasible solution.



Question

What makes solving an NLP hard?

Meta strategy for solving an optimization problem

• Find a feasible solution x.

• If x is optimal, stop.

• Starting with x, find a “better” feasible solution.



Question

What makes solving an NLP hard?

Meta strategy for solving an optimization problem

• Find a feasible solution x.

• If x is optimal, stop.

• Starting with x, find a “better” feasible solution.



Question

What makes solving an NLP hard?

Meta strategy for solving an optimization problem

• Find a feasible solution x.

• If x is optimal, stop.

• Starting with x, find a “better” feasible solution.



Question

What makes solving an NLP hard?

Meta strategy for solving an optimization problem

• Find a feasible solution x.

• If x is optimal, stop.

• Starting with x, find a “better” feasible solution.



Question

What makes solving an NLP hard?

Meta strategy for solving an optimization problem

• Find a feasible solution x.

• If x is optimal, stop.

• Starting with x, find a “better” feasible solution.



Meta strategy for solving an optimization problem

• Find a feasible solution x.

• If x is optimal, stop.

• Starting with x, find a “better” feasible solution.

min x2

s.t.

−x2

1 − x2 + 2 ≤ 0

x2 − 3/2 ≤ 0

x1 − 3/2 ≤ 0

−x1 − 2 ≤ 0



Meta strategy for solving an optimization problem

• Find a feasible solution x.

• If x is optimal, stop.

• Starting with x, find a “better” feasible solution.

min x2

s.t.

−x2

1 − x2 + 2 ≤ 0

x2 − 3/2 ≤ 0

x1 − 3/2 ≤ 0

−x1 − 2 ≤ 0



Meta strategy for solving an optimization problem

• Find a feasible solution x.

• If x is optimal, stop.

• Starting with x, find a “better” feasible solution.

min x2

s.t.

−x2

1 − x2 + 2 ≤ 0

x2 − 3/2 ≤ 0

x1 − 3/2 ≤ 0

−x1 − 2 ≤ 0

x1

x2

2
b

a



Meta strategy for solving an optimization problem

• Find a feasible solution x.

• If x is optimal, stop.

• Starting with x, find a “better” feasible solution.

a is an optimal solution

x1

x2

2
b

a



Meta strategy for solving an optimization problem

• Find a feasible solution x.

• If x is optimal, stop.

• Starting with x, find a “better” feasible solution.

a is an optimal solution

no better solution around b

x1

x2

2
b

a



Meta strategy for solving an optimization problem

• Find a feasible solution x.

• If x is optimal, stop.

• Starting with x, find a “better” feasible solution.

a is an optimal solution

no better solution around b

b is a local optimum
x1

x2

2
b

a



Definition

Consider
min {f(x) : x ∈ S} . (P)

x ∈ S is a local optimum if there exists δ > such that

∀x′ ∈ S where ||x′ − x|| ≤ δ we have f(x) ≤ f(x′).

min x2 : x ∈ S

b is a local optimum



Definition

Consider
min {f(x) : x ∈ S} . (P)

x ∈ S is a local optimum

if there exists δ > such that

∀x′ ∈ S where ||x′ − x|| ≤ δ we have f(x) ≤ f(x′).

min x2 : x ∈ S

b is a local optimum



Definition

Consider
min {f(x) : x ∈ S} . (P)

x ∈ S is a local optimum if there exists δ > 0 such that

∀x′ ∈ S where ||x′ − x|| ≤ δ we have f(x) ≤ f(x′).

min x2 : x ∈ S

b is a local optimum



Definition

Consider
min {f(x) : x ∈ S} . (P)

x ∈ S is a local optimum if there exists δ > 0 such that

∀x′ ∈ S where ||x′ − x|| ≤ δ we have f(x) ≤ f(x′).

min x2 : x ∈ S

b is a local optimum



Definition

Consider
min {f(x) : x ∈ S} . (P)

x ∈ S is a local optimum if there exists δ > 0 such that

∀x′ ∈ S where ||x′ − x|| ≤ δ we have f(x) ≤ f(x′).

min{x2 : x ∈ S}

b is a local optimum

x1

x2

b

S



Definition

Consider
min {f(x) : x ∈ S} . (P)

x ∈ S is a local optimum if there exists δ > 0 such that

∀x′ ∈ S where ||x′ − x|| ≤ δ we have f(x) ≤ f(x′).

min{x2 : x ∈ S}

b is a local optimum

x1

x2

b δ

S



Convexity Helps

Definition

Consider
min {f(x) : x ∈ S} . (P)

x ∈ S is a local optimum if there exists δ > 0 such that

∀x′ ∈ S where ||x′ − x|| ≤ δ we have f(x) ≤ f(x′).

Proposition

Consider
min

{
c⊤x : x ∈ S

}
. (P)
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Consider

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

(P)

Goal: Study a case where the feasible region of (P) is convex.

• We will define convex functions

• We will prove

Proposition

If g1, . . . , gk are all convex, then the feasible region f (P) is convex.
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Definition

Function f : ℜn → ℜ is convex

if for all a, b ∈ ℜn,

f
(
λa+ (1− λ)b

)
≤ λf(a) + (1− λ)f(b) for all ≤ λ ≤ .

Convex function!
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Example

We claim that f(x) = x2 is convex.

Pick a, b ∈ ℜ and pick λ where ≤ λ ≤ .

T check:

[λa+ (1− λ)b]
2 ?
≤ λa2 + (1− λ)b2.

We may assume that λ = , .

After simplifying

λ(1− λ)2ab
?
≤ λ(1− λ)(a2 + b2),

r, equivalently, as λ, (1− λ) > ,

a2 + b2 − ab
?
≥ ,

which is the case as a2 + b2 − ab = (a− b)2 ≥ .
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Why Do We Care About Convex Functions?

Proposition

Let g : ℜn → ℜ be a convex function and β ∈ ℜ.

Then S = {x ∈ ℜn : g(x) ≤ β} is a convex set.
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Proof

Pick a, b ∈ S.

Pick λ where ≤ λ ≤ .

Let x = λa+ (1− λ)b.

Our goal is to show that x ∈ S, i.e., that g(x) ≤ β.

g(x) = g (λa+ (1− λ)b)

≤ λg(a) + (1− λ)g(b) (convexity of g)
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Proposition

min c⊤x

s.t.

gi(x) ≤ 0 (i = 1, . . . , k)

(P)

If all functions gi are convex, then the feasible region of (P) is convex.

Proof

Let Si = x : gi(x) ≤ .

By the previous result, Si is convex.

The feasible region of (P) is S1 ∩ S2 ∩ . . . ∩ Sk.

Since the intersection of convex sets is convex, the result follows.
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Convex Functions Versus Convex Sets

Definition

Let f : ℜn → ℜ be a function.

The epigraph of f is then given by,

epi(f) =

{(
y

x

)

: x ∈ ℜn, y ∈ ℜ, y ≥ f(x) ⊆ ℜn+1.

f is convex

epi(f) is convex



Convex Functions Versus Convex Sets

Definition

Let f : ℜn → ℜ be a function. The epigraph of f is then given by,

epi(f) =

{(
y

x

)

: x ∈ ℜn, y ∈ ℜ, y ≥ f(x)

}

⊆ ℜn+1.

f is convex

epi(f) is convex



Convex Functions Versus Convex Sets

Definition

Let f : ℜn → ℜ be a function. The epigraph of f is then given by,

epi(f) =

{(
y

x

)

: x ∈ ℜn, y ∈ ℜ, y ≥ f(x)

}

⊆ ℜn+1.

f

y > f(x)

y = f(x)

epi(f)

x

x ∈ R
n

y ∈ R

f is convex

epi(f) is convex



Convex Functions Versus Convex Sets

Definition

Let f : ℜn → ℜ be a function. The epigraph of f is then given by,

epi(f) =

{(
y

x

)

: x ∈ ℜn, y ∈ ℜ, y ≥ f(x)

}

⊆ ℜn+1.

f

y > f(x)

y = f(x)

epi(f)

x

x ∈ R
n

y ∈ R

f is convex

epi(f) is convex



Convex Functions Versus Convex Sets

Definition

Let f : ℜn → ℜ be a function. The epigraph of f is then given by,

epi(f) =

{(
y

x

)

: x ∈ ℜn, y ∈ ℜ, y ≥ f(x)

}

⊆ ℜn+1.

f

y > f(x)

y = f(x)

epi(f)

x

x ∈ R
n

y ∈ R

f is convex

epi(f) is convex



Convex Functions Versus Convex Sets

Definition

Let f : ℜn → ℜ be a function. The epigraph of f is then given by,

epi(f) =

{(
y

x

)

: x ∈ ℜn, y ∈ ℜ, y ≥ f(x)

}

⊆ ℜn+1.

f is NOT convex

epi(f) is NOT convex



Convex Functions Versus Convex Sets

Definition

Let f : ℜn → ℜ be a function. The epigraph of f is then given by,

epi(f) =

{(
y

x

)

: x ∈ ℜn, y ∈ ℜ, y ≥ f(x)

}

⊆ ℜn+1.

f

x ∈ R
n

y ∈ R

epi(f)

f is NOT convex

epi(f) is NOT convex



Convex Functions Versus Convex Sets

Definition

Let f : ℜn → ℜ be a function. The epigraph of f is then given by,

epi(f) =

{(
y

x

)

: x ∈ ℜn, y ∈ ℜ, y ≥ f(x)

}

⊆ ℜn+1.

f

x ∈ R
n

y ∈ R

epi(f)
f is NOT convex

epi(f) is NOT convex



Convex Functions Versus Convex Sets

Definition

Let f : ℜn → ℜ be a function. The epigraph of f is then given by,

epi(f) =

{(
y

x

)

: x ∈ ℜn, y ∈ ℜ, y ≥ f(x)

}

⊆ ℜn+1.

f

x ∈ R
n

y ∈ R

epi(f)
f is NOT convex

epi(f) is NOT convex



Convex Functions Versus Convex Sets

Definition

Let f : ℜn → ℜ be a function. The epigraph of f is then given by,

epi(f) =

{(
y

x

)

: x ∈ ℜn, y ∈ ℜ, y ≥ f(x)

}

⊆ ℜn+1.

Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex = epi(f) is convex.

2. epi(f) is convex = f is convex.



Convex Functions Versus Convex Sets

Definition

Let f : ℜn → ℜ be a function. The epigraph of f is then given by,

epi(f) =

{(
y

x

)

: x ∈ ℜn, y ∈ ℜ, y ≥ f(x)

}

⊆ ℜn+1.

Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex =⇒ epi(f) is convex.

2. epi(f) is convex =⇒ f is convex.



Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex =⇒ epi(f) is convex.

2. epi(f) is convex =⇒ f is convex.

Proof

Pick

(
α

a

)(
β

b

)

∈ epi(f). Pick λ where ≤ λ ≤ .

T show: epi(f) contains

λ

(
α

a

)

+ (1− λ)

(
β

b

)

=

(
λα+ (1− λ)β
λa+ (1− λ)b

)

( )

Consider

f (λa+ (1− λ)b) ≤ (convexity of f)

λf(a) + (1− λ)f(b)



Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex =⇒ epi(f) is convex.

2. epi(f) is convex =⇒ f is convex.

Proof

Pick

(
α

a

)(
β

b

)

∈ epi(f). Pick λ where ≤ λ ≤ .

T show: epi(f) contains

λ

(
α

a

)

+ (1− λ)

(
β

b

)

=

(
λα+ (1− λ)β
λa+ (1− λ)b

)

( )

Consider

f (λa+ (1− λ)b) ≤ (convexity of f)

λf(a) + (1− λ)f(b)



Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex =⇒ epi(f) is convex.

2. epi(f) is convex =⇒ f is convex.

Proof

Pick

(
α

a

)(
β

b

)

∈ epi(f).

Pick λ where ≤ λ ≤ .

T show: epi(f) contains

λ

(
α

a

)

+ (1− λ)

(
β

b

)

=

(
λα+ (1− λ)β
λa+ (1− λ)b

)

( )

Consider

f (λa+ (1− λ)b) ≤ (convexity of f)

λf(a) + (1− λ)f(b)



Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex =⇒ epi(f) is convex.

2. epi(f) is convex =⇒ f is convex.

Proof

Pick

(
α

a

)(
β

b

)

∈ epi(f). Pick λ where 0 ≤ λ ≤ 1.

T show: epi(f) contains

λ

(
α

a

)

+ (1− λ)

(
β

b

)

=

(
λα+ (1− λ)β
λa+ (1− λ)b

)

( )

Consider

f (λa+ (1− λ)b) ≤ (convexity of f)

λf(a) + (1− λ)f(b)



Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex =⇒ epi(f) is convex.

2. epi(f) is convex =⇒ f is convex.

Proof

Pick

(
α

a

)(
β

b

)

∈ epi(f). Pick λ where 0 ≤ λ ≤ 1.

To show: epi(f) contains

λ

(
α

a

)

+ (1− λ)

(
β

b

)

=

(
λα+ (1− λ)β
λa+ (1− λ)b

)

( )

Consider

f (λa+ (1− λ)b) ≤ (convexity of f)

λf(a) + (1− λ)f(b)



Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex =⇒ epi(f) is convex.

2. epi(f) is convex =⇒ f is convex.

Proof

Pick

(
α

a

)(
β

b

)

∈ epi(f). Pick λ where 0 ≤ λ ≤ 1.

To show: epi(f) contains

λ

(
α

a

)

+ (1− λ)

(
β

b

)

=

(
λα+ (1− λ)β
λa+ (1− λ)b

)

(⋆)

Consider

f (λa+ (1− λ)b) ≤ (convexity of f)

λf(a) + (1− λ)f(b)



Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex =⇒ epi(f) is convex.

2. epi(f) is convex =⇒ f is convex.

Proof

Pick

(
α

a

)(
β

b

)

∈ epi(f). Pick λ where 0 ≤ λ ≤ 1.

To show: epi(f) contains

λ

(
α

a

)

+ (1− λ)

(
β

b

)

=

(
λα+ (1− λ)β
λa+ (1− λ)b

)

(⋆)

Consider

f (λa+ (1− λ)b)

≤ (convexity of f)

λf(a) + (1− λ)f(b)



Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex =⇒ epi(f) is convex.

2. epi(f) is convex =⇒ f is convex.

Proof

Pick

(
α

a

)(
β

b

)

∈ epi(f). Pick λ where 0 ≤ λ ≤ 1.

To show: epi(f) contains

λ

(
α

a

)

+ (1− λ)

(
β

b

)

=

(
λα+ (1− λ)β
λa+ (1− λ)b

)

(⋆)

Consider

f (λa+ (1− λ)b) ≤ (convexity of f)

λf(a) + (1− λ)f(b)



Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex =⇒ epi(f) is convex.

2. epi(f) is convex =⇒ f is convex.

Proof

Pick

(
α

a

)(
β

b

)

∈ epi(f). Pick λ where 0 ≤ λ ≤ 1.

To show: epi(f) contains

λ

(
α

a

)

+ (1− λ)

(
β

b

)

=

(
λα+ (1− λ)β
λa+ (1− λ)b

)

(⋆)

Consider

f (λa+ (1− λ)b) ≤ (convexity of f)

λ
︸︷︷︸

≥0

f(a) + (1− λ)
︸ ︷︷ ︸

≥0

f(b)



Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex =⇒ epi(f) is convex.

2. epi(f) is convex =⇒ f is convex.

Proof

Pick

(
α

a

)(
β

b

)

∈ epi(f). Pick λ where 0 ≤ λ ≤ 1.

To show: epi(f) contains

λ

(
α

a

)

+ (1− λ)

(
β

b

)

=

(
λα+ (1− λ)β
λa+ (1− λ)b

)

(⋆)

Consider

f (λa+ (1− λ)b) ≤ (convexity of f)

λ
︸︷︷︸

≥0

f(a)
︸︷︷︸

≤α

+(1− λ)
︸ ︷︷ ︸

≥0

f(b)
︸︷︷︸

≤β

≤

λα+ (1− λ)β.

Thus ( ) is in epi(f).



Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex =⇒ epi(f) is convex.

2. epi(f) is convex =⇒ f is convex.

Proof

Pick

(
α

a

)(
β

b

)

∈ epi(f). Pick λ where 0 ≤ λ ≤ 1.

To show: epi(f) contains

λ

(
α

a

)

+ (1− λ)

(
β

b

)

=

(
λα+ (1− λ)β
λa+ (1− λ)b

)

(⋆)

Consider

f (λa+ (1− λ)b) ≤ (convexity of f)

λ
︸︷︷︸

≥0

f(a)
︸︷︷︸

≤α

+(1− λ)
︸ ︷︷ ︸

≥0

f(b)
︸︷︷︸

≤β

≤

λα+ (1− λ)β.

Thus ( ) is in epi(f).



Proposition

Let f : ℜn → ℜ be a function. Then

1. f is convex =⇒ epi(f) is convex.

2. epi(f) is convex =⇒ f is convex.

Proof

Pick

(
α

a

)(
β

b

)

∈ epi(f). Pick λ where 0 ≤ λ ≤ 1.

To show: epi(f) contains

λ

(
α

a

)

+ (1− λ)

(
β

b

)

=

(
λα+ (1− λ)β
λa+ (1− λ)b

)

(⋆)

Consider

f (λa+ (1− λ)b) ≤ (convexity of f)

λ
︸︷︷︸

≥0

f(a)
︸︷︷︸

≤α

+(1− λ)
︸ ︷︷ ︸

≥0

f(b)
︸︷︷︸

≤β

≤

λα+ (1− λ)β.

Thus (⋆) is in epi(f).



Recap

1. NLPs are hard in general.

2. We may assume the objective function of NLPs is linear.

3. Local optimum = optimal sol when the feasible region is convex.

4. We defined convex functions.

5. Convex functions yield a convex feasible region.

6. Convex functions and convex sets are related by epigraphs.
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