Module 6: Nonlinear Programs (Convexity)

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

A Nonlinear Program (NLP) is a problem of the form:

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

where

$$f: \Re^n \to \Re$$
, and

A Nonlinear Program (NLP) is a problem of the form:

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

where

$$f: \Re^n \to \Re$$
, and
 $g_i: \Re^n \to \Re$ for $i = 1, \dots, k$.

A Nonlinear Program (NLP) is a problem of the form:

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

where

 $f: \Re^n \to \Re$, and $g_i: \Re^n \to \Re$ for $i = 1, \dots, k$.

Remark

There aren't any restrictions regarding the type of functions.

A Nonlinear Program (NLP) is a problem of the form:

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

where

 $f: \Re^n \to \Re$, and $g_i: \Re^n \to \Re$ for $i = 1, \dots, k$.

Remark

There aren't any restrictions regarding the type of functions.

This is a very general model, but NLPs can be very hard to solve!

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

\min	x_2		
s.t.			
	$-x_1^2 - x_2 + 2$	\leq	0
	$x_2 - \frac{3}{2}$	\leq	0
	$x_1 - \frac{3}{2}$	\leq	0
	$-x_1 - 2$	\leq	0

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

x_2		
$\underbrace{-x_1^2 - x_2 + 2}_{g_1(x)}$	\leq	0
$x_2 - \frac{3}{2}$	\leq	0
$x_1 - \frac{3}{2}$	\leq	0
$-x_1 - 2$	\leq	0
	x_{2} $\underbrace{-x_{1}^{2} - x_{2} + 2}_{g_{1}(x)}$ $x_{2} - \frac{3}{2}$ $x_{1} - \frac{3}{2}$ $-x_{1} - 2$	$\begin{array}{rcl} x_2 \\ \underbrace{-x_1^2 - x_2 + 2}_{g_1(x)} &\leq \\ & x_2 - \frac{3}{2} &\leq \\ & x_1 - \frac{3}{2} &\leq \\ & -x_1 - 2 &\leq \end{array}$

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

x_2		
$-x_1^2 - x_2 + 2$	\leq	0
$\underbrace{\frac{x_2-\frac{3}{2}}{g_2(x)}}$	\leq	0
$x_1 - \frac{3}{2}$	\leq	0
$-x_1 - 2$	\leq	0
	x_{2} $-x_{1}^{2} - x_{2} + 2$ $\underbrace{x_{2} - \frac{3}{2}}_{g_{2}(x)}$ $x_{1} - \frac{3}{2}$ $-x_{1} - 2$	$\begin{array}{rcl} x_2 \\ & -x_1^2 - x_2 + 2 & \leq \\ & \underbrace{x_2 - \frac{3}{2}}_{g_2(x)} & \leq \\ & x_1 - \frac{3}{2} & \leq \\ & -x_1 - 2 & \leq \end{array}$

min
$$f(x)$$

s.t.
 $g_i(x) \le 0$ $(i = 1, \dots, k)$

\min	x_2		
s.t.			
	$-x_1^2 - x_2 + 2$	\leq	0
	$x_2 - \frac{3}{2}$	\leq	0
	$\underbrace{x_1 - \frac{3}{2}}_{q_3(x)}$	\leq	0
	$-x_1 - 2$	\leq	0

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

\min	x_2		
s.t.			
	$-x_1^2 - x_2 + 2$	\leq	0
	$x_2 - \frac{3}{2}$	\leq	0
	$x_1 - \frac{3}{2}$	\leq	0
	$\underbrace{-x_1-2}$	\leq	0
	$g_4(x)$		

$$\begin{array}{|c|c|c|c|c|} \min & x_2 \\ \text{s.t.} \\ & -x_1^2 - x_2 + 2 & \leq & 0 \\ & & x_2 - 3/2 & \leq & 0 \\ & & & x_1 - 3/2 & \leq & 0 \\ & & & -x_1 - 2 & \leq & 0 \end{array}$$

(1)
$$x_2 \ge 2 - x_1^2$$
.

(1)
$$x_2 \ge 2 - x_1^2$$
.
(2) $x_2 \le \frac{3}{2}$.

(1)
$$x_2 \ge 2 - x_1^2$$
.
(2) $x_2 \le \frac{3}{2}$.
(3) $x_1 \le \frac{3}{2}$.

(1)
$$x_2 \ge 2 - x_1^2$$
.
(2) $x_2 \le \frac{3}{2}$.
(3) $x_1 \le \frac{3}{2}$.
(4) $x_1 \ge -2$.

FEASIBLE REGION

A Nonlinear Program (NLP) is a problem of the form:

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

(P)

A Nonlinear Program (NLP) is a problem of the form:

$$\begin{array}{ll} \min & f(x) \\ {\rm s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

(P)

Remark

We may assume f(x) is a linear function, i.e., $f(x) = c^{\top}x$.

A Nonlinear Program (NLP) is a problem of the form:

$$\begin{array}{ll} \min & f(x) \\ {\rm s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

Remark

We may assume f(x) is a linear function, i.e., $f(x) = c^{\top}x$.

We can rewrite (P) as

 $\begin{array}{ll} \min & \lambda \\ \text{s.t.} & \\ & \lambda \geq f(x) \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$

(Q)

(P)

A Nonlinear Program (NLP) is a problem of the form:

$$\begin{array}{ll} \min & f(x) \\ {\rm s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

Remark

We may assume f(x) is a linear function, i.e., $f(x) = c^{\top}x$.

We can rewrite (P) as

 $\begin{array}{ll} \min & \lambda \\ \text{s.t.} & \\ & \lambda \geq f(x) \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$

The optimal solution to (Q) will have $\lambda = f(x)$.

(Q)

(P)

$$\begin{array}{rll} \max & x_{1}+x_{2} \\ \text{s.t.} \\ & & \\$$

$$\begin{array}{rll} \max & x_{1}+x_{2} \\ {\rm s.t.} \\ & & \\ & & \frac{2x_{1}-x_{2}}{x_{1}-x_{2}} & \geq & 3 \\ & & & x_{1}-x_{2} & = & 4 \\ & & & x_{1}, x_{2} \geq 0 \end{array}$$

$$\begin{array}{|c|c|c|c|c|} \min & -x_1 - x_2 \\ \text{s.t.} \\ & -2x_1 + x_2 + 3 & \leq & 0 \\ & x_1 - x_2 - 4 & \leq & 0 \\ & -x_1 + x_2 + 4 & \leq & 0 \\ & -x_1 & \leq & 0 \\ & -x_2 & \leq & 0 \end{array}$$

Nonlinear Programs can also generalize INTEGER PROGRAMS!

 $\begin{array}{ll} \max & c^{\top}x\\ \text{s.t.} & \\ & Ax \leq b\\ & x_j \in \{0,1\} \quad (j=1,\ldots,n) \end{array}$

 $0,1 \; \mathsf{IP}$

 $\begin{array}{ll} \max & c^\top x \\ \text{s.t.} & \\ & Ax \leq b \\ & x_j \in \{0,1\} \quad (j=1,\ldots,n) \end{array}$

 $0,1 \; \mathsf{IP}$

Idea

 $x_j \in \{0,1\}$

 $\begin{array}{ll} \max & c^\top x \\ \text{s.t.} & \\ & Ax \leq b \\ & x_j \in \{0,1\} \quad (j=1,\ldots,n) \end{array}$

0,1 IP

Idea

$$x_j \in \{0,1\} \qquad \Longleftrightarrow \qquad x_j(1-x_j) = 0$$

 $\begin{array}{ll} \max & c^\top x \\ \text{s.t.} & \\ & Ax \leq b \\ & x_j \in \{0,1\} \quad (j=1,\ldots,n) \end{array}$

 $0, 1 \, \mathsf{IP}$

Idea

$$x_j \in \{0,1\} \qquad \Longleftrightarrow \qquad x_j(1-x_j) = 0$$

$$\begin{array}{lll} \min & -c^{\top}x \\ \text{s.t.} & & \\ & & Ax & \leq & b \\ & & x_{j}(1-x_{j}) & \leq & 0 & (j=1,\ldots,n) \\ & & -x_{j}(1-x_{j}) & \leq & 0 & (j=1,\ldots,n) \end{array}$$

Quadratic NLP

 $\begin{array}{ll} \max & c^\top x \\ \text{s.t.} & \\ & Ax \leq b \\ & x_j \in \{0,1\} \quad (j=1,\ldots,n) \end{array}$

Idea

$$x_j \in \{0, 1\} \qquad \Longleftrightarrow \qquad x_j(1 - x_j) = 0$$

Quadratic NLP

 $0, 1 \, \text{IP}$

Remark

0,1 IPs are hard to solve; thus, quadratic NLPs are also hard to solve.

 $\max \quad c^{\top}x$ s.t. $Ax \le b$ $x_j \text{ integer } (j = 1, \dots, n)$

pure IP

 $\begin{array}{ll} \max & c^\top x \\ \text{s.t.} & \\ & Ax \leq b \\ & x_j \text{ integer } (j=1,\ldots,n) \end{array}$

pure IP

Idea

 x_j integer

 $\begin{array}{ll} \max & c^\top x \\ \text{s.t.} & \\ & Ax \leq b \\ & x_j \text{ integer } (j=1,\ldots,n) \end{array}$

pure IP

Idea

 x_j integer $\iff \sin(\pi x_j) = 0.$

 $\begin{array}{ll} \max & c^\top x \\ \text{s.t.} & \\ & Ax \leq b \\ & x_j \text{ integer } (j=1,\ldots,n) \end{array}$

pure IP

Idea

 x_j integer $\iff \sin(\pi x_j) = 0.$

$$\begin{array}{rcl} \min & -c^{\top}x \\ \text{s.t.} & \\ & & Ax & \leq & b \\ & & \sin(\pi x_j) & = & 0 & (j=1,\ldots,n) \end{array}$$

 $\begin{array}{ll} \max & c^\top x \\ \text{s.t.} & \\ & Ax \leq b \\ & x_j \text{ integer } (j=1,\ldots,n) \end{array}$

pure IP

Idea

 x_j integer $\iff \sin(\pi x_j) = 0.$

$$\begin{array}{lll} \min & -c^{\top}x\\ \text{s.t.} & & \\ & & Ax & \leq & b\\ & & \sin(\pi x_j) & = & 0 \quad (j=1,\ldots,n) \end{array}$$

Remark

IPs are hard to solve; thus, NLPs are also hard to solve.

Question

What makes solving an NLP hard?
What makes solving an NLP hard?

What makes solving an NLP hard?

META STRATEGY FOR SOLVING AN OPTIMIZATION PROBLEM

• Find a feasible solution x.

What makes solving an NLP hard?

- Find a feasible solution x.
- If x is optimal, STOP.

What makes solving an NLP hard?

- Find a feasible solution x.
- If x is optimal, STOP.
- Starting with x, find a "better" feasible solution.

What makes solving an NLP hard?

- Find a feasible solution x.
- If x is optimal, STOP.
- Starting with x, find a "better" feasible solution.

- Find a feasible solution x.
- If x is optimal, STOP.
- Starting with *x*, find a "better" feasible solution.

- Find a feasible solution x.
- If x is optimal, STOP.
- Starting with *x*, find a "better" feasible solution.

\min	x_2		
s.t.			
	$-x_1^2 - x_2 + 2$	\leq	0
	$x_2 - 3/2$	\leq	0
	$x_1 - 3/2$	\leq	0
	$-x_1 - 2$	\leq	0

- Find a feasible solution x.
- If x is optimal, STOP.
- Starting with x, find a "better" feasible solution.

Meta strategy for solving an optimization problem

- Find a feasible solution x.
- If x is optimal, STOP.
- Starting with x, find a "better" feasible solution.

a is an optimal solution

- Find a feasible solution x.
- If x is optimal, STOP.
- Starting with x, find a "better" feasible solution.

 $\wedge x_2$ a is an optimal solution no better solution around b \tilde{x}_1 $\overline{2}$ a

- Find a feasible solution x.
- If x is optimal, STOP.
- Starting with x, find a "better" feasible solution.

 $\wedge x_2$

a is an optimal solution no better solution around b \tilde{x}_1 2 b is a local optimum a

Consider

$$\min\left\{f(x): x \in S\right\}.$$
 (P)

Consider

$$\min\left\{f(x):x\in S\right\}.$$

(P)

 $x\in S$ is a local optimum

Consider

$$\min\left\{f(x): x \in S\right\}.$$
 (P)

 $x\in S$ is a local optimum if there exists $\delta>0$ such that

Consider

$$\min\left\{f(x): x \in S\right\}.$$
 (P)

 $x\in S$ is a local optimum if there exists $\delta>0$ such that

$$\forall x' \in S \quad \text{where} \quad ||x' - x|| \leq \delta \quad \text{we have} \quad f(x) \leq f(x').$$

Consider

$$\min\left\{f(x): x \in S\right\}.$$
 (P)

 $x\in S$ is a local optimum if there exists $\delta>0$ such that

 $\forall x' \in S \quad \text{where} \quad ||x' - x|| \leq \delta \quad \text{we have} \quad f(x) \leq f(x').$

Consider

$$\min\left\{f(x): x \in S\right\}.$$
 (P)

 $x\in S$ is a local optimum if there exists $\delta>0$ such that

 $\forall x' \in S \quad \text{where} \quad ||x' - x|| \leq \delta \quad \text{we have} \quad f(x) \leq f(x').$

Convexity Helps

Definition Consider $\min \{f(x) : x \in S\}$. (P) $x \in S$ is a local optimum if there exists $\delta > 0$ such that $\forall x' \in S$ where $||x' - x|| \le \delta$ we have $f(x) \le f(x')$.

Convexity Helps

Definition Consider $\min \{f(x) : x \in S\}$. (P) $x \in S$ is a local optimum if there exists $\delta > 0$ such that $\forall x' \in S$ where $||x' - x|| \le \delta$ we have $f(x) \le f(x')$.

Proposition

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.$$
 (P)

Convexity Helps

Definition

Consider

$$\min\left\{f(x):x\in S\right\}.$$
(P)

 $x \in S$ is a local optimum if there exists $\delta > 0$ such that

 $\forall x' \in S \quad \text{where} \quad ||x' - x|| \leq \delta \quad \text{we have} \quad f(x) \leq f(x').$

Proposition

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.$$
 (P)

If S is convex and x is a local optimum, then x is optimal.

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.$$
 (P)

If S is convex and x is a local optimum, then x is optimal.

Proof

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.$$
 (P)

If S is convex and x is a local optimum, then x is optimal.

Proof

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.$$
 (P)

If S is convex and x is a local optimum, then x is optimal.

Proof Suppose $\exists x' \in S$ with $c^{\top}x' < c^{\top}x$.

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.$$
 (P)

If S is convex and x is a local optimum, then x is optimal.

Proof Suppose $\exists x' \in S$ with $c^{\top}x' < c^{\top}x$. Let $y = \lambda x' + (1 - \lambda)x$ for $\lambda > 0$ small.

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.$$
 (P)

If S is convex and x is a local optimum, then x is optimal.

Proof Suppose $\exists x' \in S$ with $c^{\top}x' < c^{\top}x$. Let $y = \lambda x' + (1 - \lambda)x$ for $\lambda > 0$ small. As λ small $||y - x|| \le \delta$.

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.$$
 (P)

If S is convex and x is a local optimum, then x is optimal.

Proof Suppose $\exists x' \in S$ with $c^{\top}x' < c^{\top}x$. Let $y = \lambda x' + (1 - \lambda)x$ for $\lambda > 0$ small. As λ small $||y - x|| \leq \delta$. Since S is convex, $y \in S$.

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.$$
 (P)

If S is convex and x is a local optimum, then x is optimal.

Proof Suppose $\exists x' \in S$ with $c^{\top}x' < c^{\top}x$. Let $y = \lambda x' + (1 - \lambda)x$ for $\lambda > 0$ small. As λ small $||y - x|| \le \delta$. Since S is convex, $y \in S$. $c^{\top}y$

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.$$
 (P)

If S is convex and x is a local optimum, then x is optimal.

Proof Suppose $\exists x' \in S$ with $c^{\top}x' < c^{\top}x$. Let $y = \lambda x' + (1 - \lambda)x$ for $\lambda > 0$ small. As λ small $||y - x|| \le \delta$. Since S is convex, $y \in S$. $c^{\top}y = c^{\top}(\lambda x' + (1 - \lambda)x)$

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.$$
 (P)

If S is convex and x is a local optimum, then x is optimal.

Proof Suppose $\exists x' \in S$ with $c^{\top}x' < c^{\top}x$. Let $y = \lambda x' + (1 - \lambda)x$ for $\lambda > 0$ small. As λ small $||y - x|| \leq \delta$. Since S is convex, $y \in S$. $c^{\top}y = c^{\top}(\lambda x' + (1 - \lambda)x)$ $= \underbrace{\lambda}_{>0} \underbrace{c^{\top}x'}_{< c^{\top}x} + (1 - \lambda)c^{\top}x$

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.$$
 (P)

If S is convex and x is a local optimum, then x is optimal.

Proof Suppose $\exists x' \in S$ with $c^{\top}x' < c^{\top}x$. Let $y = \lambda x' + (1 - \lambda)x$ for $\lambda > 0$ small. As λ small $||y - x|| < \delta$. Since S is convex, $y \in S$. $c^{\top}y = c^{\top}(\lambda x' + (1-\lambda)x)$ $= \underbrace{\lambda}_{\geq 0} \underbrace{c^{\top} x'}_{< c^{\top} x} + (1 - \lambda) c^{\top} x$ $>0 < c^{\top}x$ $< \lambda c^{\top} x + (1 - \lambda) c^{\top} x$

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.$$
 (P)

If S is convex and x is a local optimum, then x is optimal.

Proof Suppose $\exists x' \in S$ with $c^{\top}x' < c^{\top}x$. Let $y = \lambda x' + (1 - \lambda)x$ for $\lambda > 0$ small. As λ small $||y - x|| < \delta$. Since S is convex, $y \in S$. $c^{\top}y = c^{\top}(\lambda x' + (1-\lambda)x)$ $= \underbrace{\lambda}_{>0} \underbrace{c^{\top} x'}_{< c^{\top} x} + (1 - \lambda) c^{\top} x$ $<\lambda c^{\top}x + (1-\lambda)c^{\top}x$ $= c^{\top} r$

Consider

$$\min\left\{c^{\top}x:x\in S\right\}.$$
 (P)

If S is convex and x is a local optimum, then x is optimal.

Proof Suppose $\exists x' \in S$ with $c^{\top}x' < c^{\top}x$. Let $y = \lambda x' + (1 - \lambda)x$ for $\lambda > 0$ small. As λ small $||y - x|| < \delta$. Since S is convex, $y \in S$. $c^{\top}y = c^{\top}(\lambda x' + (1-\lambda)x)$ $= \underbrace{\lambda}_{\geq 0} \underbrace{c^{\top} x'}_{c^{\top} = -\lambda} + (1 - \lambda) c^{\top} x$ $>0 < c^{\top}x$ $< \lambda c^{\top} x + (1 - \lambda) c^{\top} x$ $= c^{\top} r$

A contradiction.

$$\begin{array}{ll} \min & c^\top x \\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

$$\begin{array}{ll} \min & c^\top x \\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

(P)

Goal: Study a case where the feasible region of (P) is convex.

$$\begin{array}{ll} \min & c^\top x\\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

(P)

Goal: Study a case where the feasible region of (P) is convex.

• We will define convex functions

$$\begin{array}{ll} \min & c^\top x\\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

(P)

Goal: Study a case where the feasible region of (P) is convex.

- We will define convex functions
- We will prove

Proposition

If g_1, \ldots, g_k are all convex, then the feasible region of (P) is convex.
Function $f: \Re^n \to \Re$ is convex

Function $f: \Re^n \to \Re$ is convex if for all $a, b \in \Re^n$,

Function $f: \Re^n \to \Re$ is convex if for all $a, b \in \Re^n$,

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b)$$

Function $f: \Re^n \to \Re$ is convex if for all $a, b \in \Re^n$,

 $f\big(\lambda a + (1-\lambda)b\big) \leq \lambda f(a) + (1-\lambda)f(b) \quad \text{for all} \quad 0 \leq \lambda \leq 1.$

Function $f: \Re^n \to \Re$ is convex if for all $a, b \in \Re^n$,

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b)$$
 for all $0 \le \lambda \le 1$.

CONVEX FUNCTION!

Function $f: \Re^n \to \Re$ is convex if for all $a, b \in \Re^n$,

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b)$$
 for all $0 \le \lambda \le 1$.

Function $f: \Re^n \to \Re$ is convex if for all $a, b \in \Re^n$,

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b)$$
 for all $0 \le \lambda \le 1$.

CONVEX FUNCTION!

Function $f: \Re^n \to \Re$ is convex if for all $a, b \in \Re^n$,

 $f\big(\lambda a + (1-\lambda)b\big) \leq \lambda f(a) + (1-\lambda)f(b) \quad \text{for all} \quad 0 \leq \lambda \leq 1.$

Function $f: \Re^n \to \Re$ is convex if for all $a, b \in \Re^n$,

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b)$$
 for all $0 \le \lambda \le 1$.

Function $f: \Re^n \to \Re$ is convex if for all $a, b \in \Re^n$,

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b)$$
 for all $0 \le \lambda \le 1$.

NOT A CONVEX FUNCTION!

Function $f: \Re^n \to \Re$ is convex if for all $a, b \in \Re^n$,

 $f\big(\lambda a + (1-\lambda)b\big) \leq \lambda f(a) + (1-\lambda)f(b) \quad \text{for all} \quad 0 \leq \lambda \leq 1.$

Function $f: \Re^n \to \Re$ is convex if for all $a, b \in \Re^n$,

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b)$$
 for all $0 \le \lambda \le 1$.

Function $f: \Re^n \to \Re$ is convex if for all $a, b \in \Re^n$,

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b)$$
 for all $0 \le \lambda \le 1$.

CONVEX FUNCTION!

We claim that $f(x) = x^2$ is convex.

We claim that $f(x) = x^2$ is convex.

Pick $a, b \in \Re$ and pick λ where $0 \le \lambda \le 1$.

We claim that $f(x) = x^2$ is convex.

Pick $a, b \in \Re$ and pick λ where $0 \le \lambda \le 1$.

To check:

$$\left[\lambda a + (1-\lambda)b\right]^2 \stackrel{?}{\leq} \lambda a^2 + (1-\lambda)b^2$$

We claim that $f(x) = x^2$ is convex.

Pick $a, b \in \Re$ and pick λ where $0 \le \lambda \le 1$.

To check:

$$\left[\lambda a + (1-\lambda)b\right]^2 \stackrel{?}{\leq} \lambda a^2 + (1-\lambda)b^2.$$

We may assume that $\lambda \neq 0, 1$.

We claim that $f(x) = x^2$ is convex.

Pick $a, b \in \Re$ and pick λ where $0 \le \lambda \le 1$.

To check:

$$\left[\lambda a + (1-\lambda)b\right]^2 \stackrel{?}{\leq} \lambda a^2 + (1-\lambda)b^2.$$

We may assume that $\lambda \neq 0, 1$.

After simplifying

$$\lambda(1-\lambda)2ab \stackrel{?}{\leq} \lambda(1-\lambda)(a^2+b^2),$$

We claim that $f(x) = x^2$ is convex.

Pick $a, b \in \Re$ and pick λ where $0 \le \lambda \le 1$.

To check:

$$\left[\lambda a + (1-\lambda)b\right]^2 \stackrel{?}{\leq} \lambda a^2 + (1-\lambda)b^2.$$

We may assume that $\lambda \neq 0, 1$.

After simplifying

$$\lambda(1-\lambda)2ab \stackrel{?}{\leq} \lambda(1-\lambda)(a^2+b^2),$$

or, equivalently, as $\lambda, (1-\lambda) > 0$,

$$a^2 + b^2 - 2ab \stackrel{?}{\ge} 0,$$

We claim that $f(x) = x^2$ is convex.

Pick $a, b \in \Re$ and pick λ where $0 \le \lambda \le 1$.

To check:

$$\left[\lambda a + (1-\lambda)b\right]^2 \stackrel{?}{\leq} \lambda a^2 + (1-\lambda)b^2.$$

We may assume that $\lambda \neq 0, 1$.

After simplifying

$$\lambda(1-\lambda)2ab \stackrel{?}{\leq} \lambda(1-\lambda)(a^2+b^2),$$

or, equivalently, as $\lambda, (1-\lambda)>0$,

$$a^2 + b^2 - 2ab \stackrel{?}{\ge} 0,$$

which is the case as $a^2 + b^2 - 2ab = (a - b)^2 \ge 0$.

Why Do We Care About Convex Functions?

Proposition

Let $g: \Re^n \to \Re$ be a convex <u>function</u> and $\beta \in \Re$.

Then $S = \{x \in \Re^n : g(x) \le \beta\}$ is a convex <u>set</u>.

Let $g: \Re^n \to \Re$ be a convex function and $\beta \in \Re$.

Then $S = \{x \in \Re^n : g(x) \le \beta\}$ is a convex <u>set</u>.

Let $g: \Re^n \to \Re$ be a convex function and $\beta \in \Re$.

Then $S = \{x \in \Re^n : g(x) \le \beta\}$ is a convex <u>set</u>.

Let $g: \Re^n \to \Re$ be a convex function and $\beta \in \Re$.

Then $S = \{x \in \Re^n : g(x) \le \beta\}$ is a convex set.

Let $g: \Re^n \to \Re$ be a convex function and $\beta \in \Re$.

Then $S = \{x \in \Re^n : g(x) \le \beta\}$ is a convex <u>set</u>.

Proof

Let $g: \Re^n \to \Re$ be a convex function and $\beta \in \Re$.

Then $S = \{x \in \Re^n : g(x) \le \beta\}$ is a convex <u>set</u>.

Proof Pick $a, b \in S$.

Let $g: \Re^n \to \Re$ be a convex function and $\beta \in \Re$.

Then $S = \{x \in \Re^n : g(x) \le \beta\}$ is a convex <u>set</u>.

Proof Pick $a, b \in S$.

Pick λ where $0 \le \lambda \le 1$.

Let $g: \Re^n \to \Re$ be a convex function and $\beta \in \Re$.

Then $S = \{x \in \Re^n : g(x) \le \beta\}$ is a convex <u>set</u>.

Proof Pick $a, b \in S$. Pick λ where $0 \le \lambda \le 1$. Let $x = \lambda a + (1 - \lambda)b$.

Let $g: \Re^n \to \Re$ be a convex function and $\beta \in \Re$.

Then $S = \{x \in \Re^n : g(x) \le \beta\}$ is a convex <u>set</u>.

Proof Pick $a, b \in S$. Pick λ where $0 \le \lambda \le 1$. Let $x = \lambda a + (1 - \lambda)b$.

Our goal is to show that $x \in S$, i.e., that $g(x) \leq \beta$.

Let $g: \Re^n \to \Re$ be a convex function and $\beta \in \Re$.

Then $S = \{x \in \Re^n : g(x) \le \beta\}$ is a convex <u>set</u>.

Proof Pick $a, b \in S$. Pick λ where $0 \le \lambda \le 1$. Let $x = \lambda a + (1 - \lambda)b$. Our goal is to show that $x \in S$, i.e., that $g(x) \le \beta$.

 $g(x) = g(\lambda a + (1 - \lambda)b)$

Let $g: \Re^n \to \Re$ be a convex function and $\beta \in \Re$.

Then $S = \{x \in \Re^n : g(x) \le \beta\}$ is a convex <u>set</u>.

Proof Pick $a, b \in S$. Pick λ where $0 \le \lambda \le 1$. Let $x = \lambda a + (1 - \lambda)b$. Our goal is to show that $x \in S$, i.e., that $g(x) \le \beta$.

$$egin{array}{rcl} g(x) &=& g\left(\lambda a+(1-\lambda)b
ight) \ &\leq& \lambda g(a)+(1-\lambda)g(b) \end{array} \ & (ext{convexity of }g) \end{array}$$

Let $g: \Re^n \to \Re$ be a convex function and $\beta \in \Re$.

Then $S = \{x \in \Re^n : g(x) \le \beta\}$ is a convex <u>set</u>.

Proof Pick $a, b \in S$. Pick λ where $0 \le \lambda \le 1$. Let $x = \lambda a + (1 - \lambda)b$.

Our goal is to show that $x \in S$, i.e., that $g(x) \leq \beta$.

$$\begin{array}{lll} g(x) & = & g\left(\lambda a + (1-\lambda)b\right) \\ & \leq & \underbrace{\lambda}_{\geq 0} \underbrace{g(a)}_{\leq \beta} + \underbrace{(1-\lambda)}_{\geq 0} \underbrace{g(b)}_{\leq \beta} & (\text{since } a, b \in S) \end{array}$$

Let $g: \Re^n \to \Re$ be a convex function and $\beta \in \Re$.

Then $S = \{x \in \Re^n : g(x) \le \beta\}$ is a convex <u>set</u>.

Proof Pick $a, b \in S$. Pick λ where $0 \le \lambda \le 1$. Let $x = \lambda a + (1 - \lambda)b$. Our goal is to show that $x \in S$, i.e., that $g(x) \le \beta$.

$$\begin{array}{lll} g(x) & = & g\left(\lambda a + (1-\lambda)b\right) \\ & \leq & \underbrace{\lambda}_{\geq 0} \underbrace{g(a)}_{\leq \beta} + \underbrace{(1-\lambda)}_{\geq 0} \underbrace{g(b)}_{\leq \beta} & (\text{since } a, b \in S) \\ & \leq & \lambda\beta + (1-\lambda)\beta = \beta. \end{array}$$

$$\begin{array}{ll} \min & c^{\top}x\\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

$$\begin{array}{ll} \min & c^\top x\\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

(P)

If all functions g_i are convex, then the feasible region of (P) is convex.

$$\begin{array}{ll} \min & c^{\top}x \\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

(P)

If all functions g_i are convex, then the feasible region of (P) is convex.

Proof
$$\begin{array}{ll} \min & c^{\top}x \\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

If all functions g_i are convex, then the feasible region of (P) is convex.

Proof Let $S_i = \{x : g_i(x) \le 0\}.$

$$\begin{array}{ll} \min & c^{\top}x \\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

(P)

If all functions g_i are convex, then the feasible region of (P) is convex.

Proof

Let $S_i = \{x : g_i(x) \le 0\}.$

By the previous result, S_i is convex.

$$\begin{array}{ll} \min & c^{\top}x \\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

If all functions g_i are convex, then the feasible region of (P) is convex.

Proof

Let $S_i = \{x : g_i(x) \le 0\}.$

By the previous result, S_i is convex.

The feasible region of (P) is $S_1 \cap S_2 \cap \ldots \cap S_k$.

$$\begin{array}{ll} \min & c^{\top}x \\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

(P)

If all functions g_i are convex, then the feasible region of (P) is convex.

Proof

Let $S_i = \{x : g_i(x) \le 0\}.$

By the previous result, S_i is convex.

The feasible region of (P) is $S_1 \cap S_2 \cap \ldots \cap S_k$.

Since the intersection of convex sets is convex, the result follows.

Definition

Let $f: \Re^n \to \Re$ be a function.

Definition

$$epi(f) = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : x \in \Re^n, y \in \Re, y \ge f(x) \right\} \subseteq \Re^{n+1}.$$

Definition

$$epi(f) = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : x \in \Re^n, y \in \Re, y \ge f(x) \right\} \subseteq \Re^{n+1}.$$

Definition

$$epi(f) = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : x \in \Re^n, y \in \Re, y \ge f(x) \right\} \subseteq \Re^{n+1}.$$

Definition

$$epi(f) = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : x \in \Re^n, y \in \Re, y \ge f(x) \right\} \subseteq \Re^{n+1}.$$

Definition

$$epi(f) = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : x \in \Re^n, y \in \Re, y \ge f(x) \right\} \subseteq \Re^{n+1}.$$

Definition

$$epi(f) = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : x \in \Re^n, y \in \Re, y \ge f(x) \right\} \subseteq \Re^{n+1}.$$

Definition

$$epi(f) = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : x \in \Re^n, y \in \Re, y \ge f(x) \right\} \subseteq \Re^{n+1}.$$

Definition

$$epi(f) = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : x \in \Re^n, y \in \Re, y \ge f(x) \right\} \subseteq \Re^{n+1}.$$

Definition

Let $f:\Re^n \to \Re$ be a function. The epigraph of f is then given by,

$$epi(f) = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : x \in \Re^n, y \in \Re, y \ge f(x) \right\} \subseteq \Re^{n+1}.$$

Proposition

Let $f:\Re^n\to\Re$ be a function. Then

Definition

Let $f:\Re^n \to \Re$ be a function. The epigraph of f is then given by,

$$epi(f) = \left\{ \begin{pmatrix} y \\ x \end{pmatrix} : x \in \Re^n, y \in \Re, y \ge f(x) \right\} \subseteq \Re^{n+1}.$$

Proposition

Let $f:\Re^n \to \Re$ be a function. Then

- 1. f is convex $\implies epi(f)$ is convex.
- 2. epi(f) is convex \implies f is convex.

Let $f: \Re^n \to \Re$ be a function. Then

- 1. f is convex $\implies epi(f)$ is convex.
- 2. epi(f) is convex \implies f is convex.

Let $f:\Re^n \to \Re$ be a function. Then

- 1. f is convex $\implies epi(f)$ is convex.
- 2. epi(f) is convex \implies f is convex.

Proof

Let $f: \Re^n \to \Re$ be a function. Then

- 1. f is convex $\implies epi(f)$ is convex.
- 2. epi(f) is convex \implies f is convex.

$\begin{array}{l} {\rm Proof} \\ {\rm Pick} \, \begin{pmatrix} \alpha \\ a \end{pmatrix} \begin{pmatrix} \beta \\ b \end{pmatrix} \in epi(f). \end{array}$

Let $f: \Re^n \to \Re$ be a function. Then

- 1. f is convex $\implies epi(f)$ is convex.
- 2. epi(f) is convex \implies f is convex.

$\begin{array}{l} \mathbf{Proof}\\ \mathrm{Pick} \, \begin{pmatrix} \alpha \\ a \end{pmatrix} \begin{pmatrix} \beta \\ b \end{pmatrix} \in epi(f). \ \mathrm{Pick} \ \lambda \ \mathrm{where} \ 0 \leq \lambda \leq 1. \end{array}$

Let $f: \Re^n \to \Re$ be a function. Then

- 1. f is convex $\implies epi(f)$ is convex.
- 2. epi(f) is convex \implies f is convex.

 $\begin{array}{l} {\rm Proof} \\ {\rm Pick} \, \begin{pmatrix} \alpha \\ a \end{pmatrix} \begin{pmatrix} \beta \\ b \end{pmatrix} \in epi(f). \ {\rm Pick} \ \lambda \ {\rm where} \ 0 \leq \lambda \leq 1. \end{array}$

<u>To show:</u> epi(f) contains

$$\lambda \begin{pmatrix} \boldsymbol{\alpha} \\ a \end{pmatrix} + (1 - \lambda) \begin{pmatrix} \boldsymbol{\beta} \\ b \end{pmatrix}$$

Let $f: \Re^n \to \Re$ be a function. Then

- 1. f is convex $\implies epi(f)$ is convex.
- 2. epi(f) is convex \implies f is convex.

 $\begin{array}{l} \textbf{Proof} \\ \textbf{Pick} \begin{pmatrix} \alpha \\ a \end{pmatrix} \begin{pmatrix} \beta \\ b \end{pmatrix} \in epi(f). \ \textbf{Pick} \ \lambda \ \textbf{where} \ 0 \leq \lambda \leq 1. \end{array} \end{array}$

<u>To show:</u> epi(f) contains

$$\lambda \begin{pmatrix} \alpha \\ a \end{pmatrix} + (1 - \lambda) \begin{pmatrix} \beta \\ b \end{pmatrix} = \begin{pmatrix} \lambda \alpha + (1 - \lambda)\beta \\ \lambda a + (1 - \lambda)b \end{pmatrix} \tag{*}$$

Let
$$f: \Re^n \to \Re$$
 be a function. Then

- 1. f is convex $\implies epi(f)$ is convex. 2. epi(f) is convex $\implies f$ is convex.

Proof Pick $\begin{pmatrix} \alpha \\ a \end{pmatrix} \begin{pmatrix} \beta \\ b \end{pmatrix} \in epi(f)$. Pick λ where $0 \le \lambda \le 1$.

To show: epi(f) contains

$$\lambda \begin{pmatrix} \alpha \\ a \end{pmatrix} + (1 - \lambda) \begin{pmatrix} \beta \\ b \end{pmatrix} = \begin{pmatrix} \lambda \alpha + (1 - \lambda)\beta \\ \lambda a + (1 - \lambda)b \end{pmatrix} \tag{*}$$

$$f\left(\lambda a + (1-\lambda)b\right)$$

Let
$$f: \Re^n \to \Re$$
 be a function. Then

- 1. f is convex $\implies epi(f)$ is convex. 2. epi(f) is convex $\implies f$ is convex.

Proof Pick $\begin{pmatrix} \alpha \\ a \end{pmatrix} \begin{pmatrix} \beta \\ b \end{pmatrix} \in epi(f)$. Pick λ where $0 \le \lambda \le 1$.

To show: epi(f) contains

$$\lambda \begin{pmatrix} \alpha \\ a \end{pmatrix} + (1 - \lambda) \begin{pmatrix} \beta \\ b \end{pmatrix} = \begin{pmatrix} \lambda \alpha + (1 - \lambda)\beta \\ \lambda a + (1 - \lambda)b \end{pmatrix} \tag{*}$$

$$f(\lambda a + (1 - \lambda)b) \leq \text{(convexity of } f\text{)}$$

$$\lambda f(a) + (1 - \lambda)f(b)$$

Let
$$f: \Re^n \to \Re$$
 be a function. Then

- 1. f is convex $\implies epi(f)$ is convex. 2. epi(f) is convex $\implies f$ is convex.

Proof Pick $\begin{pmatrix} \alpha \\ a \end{pmatrix} \begin{pmatrix} \beta \\ b \end{pmatrix} \in epi(f)$. Pick λ where $0 \le \lambda \le 1$.

<u>To show:</u> epi(f) contains

$$\lambda \begin{pmatrix} \alpha \\ a \end{pmatrix} + (1 - \lambda) \begin{pmatrix} \beta \\ b \end{pmatrix} = \begin{pmatrix} \lambda \alpha + (1 - \lambda)\beta \\ \lambda a + (1 - \lambda)b \end{pmatrix} \tag{(*)}$$

$$\begin{array}{ll} f\left(\lambda a+(1-\lambda)b\right) &\leq & (\mbox{convexity of } f\right) \\ \underbrace{\lambda}_{\geq 0} f(a) + \underbrace{(1-\lambda)}_{\geq 0} f(b) \end{array}$$

Let $f: \Re^n \to \Re$ be a function. Then

- 1. f is convex $\implies epi(f)$ is convex.
- 2. epi(f) is convex \implies f is convex.

Proof

Pick
$$\begin{pmatrix} \alpha \\ a \end{pmatrix} \begin{pmatrix} \beta \\ b \end{pmatrix} \in epi(f)$$
. Pick λ where $0 \le \lambda \le 1$.

<u>To show:</u> epi(f) contains

$$\lambda \begin{pmatrix} \alpha \\ a \end{pmatrix} + (1 - \lambda) \begin{pmatrix} \beta \\ b \end{pmatrix} = \begin{pmatrix} \lambda \alpha + (1 - \lambda)\beta \\ \lambda a + (1 - \lambda)b \end{pmatrix} \tag{(\star)}$$

$$\begin{array}{ll} f\left(\lambda a+(1-\lambda)b\right) &\leq & (\mbox{convexity of }f)\\ \underbrace{\lambda}_{\geq 0}\underbrace{f(a)}_{<\alpha}+\underbrace{(1-\lambda)}_{>0}\underbrace{f(b)}_{<\beta} \\ \end{array}$$

Let $f: \Re^n \to \Re$ be a function. Then

- 1. f is convex $\implies epi(f)$ is convex.
- 2. epi(f) is convex \implies f is convex.

Proof

Pick
$$\begin{pmatrix} \alpha \\ a \end{pmatrix} \begin{pmatrix} \beta \\ b \end{pmatrix} \in epi(f)$$
. Pick λ where $0 \le \lambda \le 1$.

<u>To show:</u> epi(f) contains

$$\lambda \begin{pmatrix} \alpha \\ a \end{pmatrix} + (1 - \lambda) \begin{pmatrix} \beta \\ b \end{pmatrix} = \begin{pmatrix} \lambda \alpha + (1 - \lambda)\beta \\ \lambda a + (1 - \lambda)b \end{pmatrix}$$
(*)

$$\begin{array}{ll} f\left(\lambda a+(1-\lambda)b\right) &\leq & (\mbox{convexity of } f\right) \\ \underbrace{\lambda}_{\geq 0} \underbrace{f(a)}_{\leq \alpha} + \underbrace{(1-\lambda)}_{\geq 0} \underbrace{f(b)}_{\leq \beta} &\leq \\ \lambda \alpha + (1-\lambda)\beta. \end{array}$$

Let $f: \Re^n \to \Re$ be a function. Then

- 1. f is convex $\implies epi(f)$ is convex.
- 2. epi(f) is convex \implies f is convex.

Proof

Pick
$$\begin{pmatrix} \alpha \\ a \end{pmatrix} \begin{pmatrix} \beta \\ b \end{pmatrix} \in epi(f)$$
. Pick λ where $0 \le \lambda \le 1$.

<u>To show:</u> epi(f) contains

$$\lambda \begin{pmatrix} \alpha \\ a \end{pmatrix} + (1 - \lambda) \begin{pmatrix} \beta \\ b \end{pmatrix} = \begin{pmatrix} \lambda \alpha + (1 - \lambda)\beta \\ \lambda a + (1 - \lambda)b \end{pmatrix} \tag{(\star)}$$

Consider

$$\begin{array}{ll} f\left(\lambda a+(1-\lambda)b\right) &\leq & (\text{convexity of } f)\\ \underbrace{\lambda}_{\geq 0} \underbrace{f(a)}_{\leq \alpha} + \underbrace{(1-\lambda)}_{\geq 0} \underbrace{f(b)}_{\leq \beta} &\leq \\ \lambda \alpha + (1-\lambda)\beta. \end{array}$$

Thus (\star) is in epi(f).

1. NLPs are hard in general.

- 1. NLPs are hard in general.
- 2. We may assume the objective function of NLPs is linear.

- 1. NLPs are hard in general.
- 2. We may assume the objective function of NLPs is linear.
- 3. Local optimum = optimal sol when the feasible region is convex.

- 1. NLPs are hard in general.
- 2. We may assume the objective function of NLPs is linear.
- 3. Local optimum = optimal sol when the feasible region is convex.
- 4. We defined convex functions.

- 1. NLPs are hard in general.
- 2. We may assume the objective function of NLPs is linear.
- 3. Local optimum = optimal sol when the feasible region is convex.
- 4. We defined convex functions.
- 5. Convex functions yield a convex feasible region.

- 1. NLPs are hard in general.
- 2. We may assume the objective function of NLPs is linear.
- 3. Local optimum = optimal sol when the feasible region is convex.
- 4. We defined convex functions.
- 5. Convex functions yield a convex feasible region.
- 6. Convex functions and convex sets are related by epigraphs.