Module 6: Nonlinear Programs (the KKT theorem)

min
$$
-x_1 - x_2
$$

\ns.t.
\n $-x_2 + x_1^2 \le 0$ (1)
\n $-x_1 + x_2^2 \le 0$ (2)
\n $-x_1 + \frac{1}{2} \le 0$ (3)

$$
\begin{array}{|lcll} \hline \min & -x_1 - x_2 \\ \text{s.t.} \\ & -x_2 + x_1^2 & \leq & 0 & (1) \\ & -x_1 + x_2^2 & \leq & 0 & (2) \\ & & -x_1 + \frac{1}{2} & \leq & 0 & (3) \end{array}
$$

(1) $x_2 \geq x_1^2$;

$$
\begin{array}{|lcll} \hline \min & -x_1 - x_2 \\ \text{s.t.} \\ & -x_2 + x_1^2 & \leq & 0 & (1) \\ & -x_1 + x_2^2 & \leq & 0 & (2) \\ & & -x_1 + \frac{1}{2} & \leq & 0 & (3) \end{array}
$$

(1) $x_2 \ge x_1^2$;
(2) $x_1 \ge x_2^2$;

$$
\begin{array}{|lcllcll} \hline \min & -x_1 - x_2 & & \\ \text{s.t.} & & \\ & -x_2 + x_1^2 & \leq & 0 & (1) \\ & & -x_1 + x_2^2 & \leq & 0 & (2) \\ & & & -x_1 + \frac{1}{2} & \leq & 0 & (3) \end{array}
$$

(1) $x_2 \geq x_1^2$; (2) $x_1 \ge x_2^2$; (3) $x_1 \geq \frac{1}{2}$.

$$
\begin{array}{|lcll} \hline \min & -x_1 - x_2 \\ \text{s.t.} \\ & -x_2 + x_1^2 & \leq & 0 & (1) \\ & -x_1 + x_2^2 & \leq & 0 & (2) \\ & & -x_1 + \frac{1}{2} & \leq & 0 & (3) \end{array}
$$

$$
\begin{array}{|lcll} \hline \min & -x_1 - x_2 \\ \text{s.t.} \\ & -x_2 + x_1^2 & \leq & 0 & (1) \\ & -x_1 + x_2^2 & \leq & 0 & (2) \\ & -x_1 + \frac{1}{2} & \leq & 0 & (3) \\ \hline \end{array}
$$

Claim $\bar{x} = (1, 1)^{\top}$ is an optimal solution to the NLP.

$$
\begin{array}{|l|l|}\n\hline\n\text{min} & -x_1 - x_2 \\
\text{s.t.} \\
\hline\n\begin{array}{rcl}\n-x_2 + x_1^2 & \leq & 0 & (1) \\
-x_1 + x_2^2 & \leq & 0 & (2) \\
\hline\n-x_1 + \frac{1}{2} & \leq & 0 & (3)\n\end{array}\n\hline\n\end{array}
$$

 $\bar{x} = (1, 1)^{\top}$ is an optimal solution to the NLP.

How do we prove this?

$$
\begin{array}{|l|l|}\n\hline\n\text{min} & -x_1 - x_2 \\
\text{s.t.} & \\
\hline\n-x_2 + x_1^2 & \leq 0 \quad (1) \\
\hline\n-x_1 + x_2^2 & \leq 0 \quad (2) \\
\hline\n-x_1 + \frac{1}{2} & \leq 0 \quad (3)\n\end{array}
$$

 $\bar{x} = (1, 1)^{\top}$ is an optimal solution to the NLP.

How do we prove this?

Step 1. Find a relaxation of the NLP.

$$
\begin{array}{|l|l|}\n\hline\n\min & -x_1 - x_2 \\
\text{s.t.} \\
\hline\n-x_2 + x_1^2 & \leq 0 \quad (1) \\
\hline\n-x_1 + x_2^2 & \leq 0 \quad (2) \\
\hline\n-x_1 + \frac{1}{2} & \leq 0 \quad (3)\n\end{array}
$$

 $\bar{x} = (1, 1)^{\top}$ is an optimal solution to the NLP.

How do we prove this?

Step 1. Find a relaxation of the NLP.

Step 2. Prove \bar{x} is optimal for the relaxation.

$$
\begin{array}{|lcll} \hline \min & -x_1 - x_2 & \\ \hline \text{s.t.} & & \\ & -x_2 + x_1^2 & \leq & 0 & (1) \\ & & -x_1 + x_2^2 & \leq & 0 & (2) \\ & & & -x_1 + \frac{1}{2} & \leq & 0 & (3) \\ \hline \end{array}
$$

 $\bar{x} = (1, 1)^{\top}$ is an optimal solution to the NLP.

How do we prove this?

- Step 1. Find a relaxation of the NLP.
- **Step 2.** Prove \bar{x} is optimal for the relaxation.
- **Step 3.** Deduce that \bar{x} is optimal for the NLP.

 \min $- x_1 - x_2$ s.t. $-x_2+x_1^2 \quad \leq \quad 0 \quad \text{ (1)}$ $-x_1+x_2^2 \leq 0$ (2) $-x_1 + \frac{1}{2} \leq 0$ (3)

min $- x_1 - x_2$ s.t. $-x_2+x_1^2 \leq 0 \quad (1)$ $-x_1+x_2^2 \leq 0$ (2) $-x_1 + \frac{1}{2} \leq 0 \quad (3)$

Relaxation

min $- x_1 - x_2$ s.t. $-x_2 + x_1^2 \leq 0 \quad (1)$ $-x_1+x_2^2 \leq 0$ (2)

min $- x_1 - x_2$ s.t. $-x_2+x_1^2 \leq 0 \quad (1)$ $-x_1+x_2^2 \leq 0$ (2) $-x_1+\frac{1}{2} \leq 0 \quad (3)$

 \min $- x_1 - x_2$ s.t. $2x_1 - x_2 \leq 1$ (a) $-x_1+x_2^2 \leq 0$ (2)

min $- x_1 - x_2$ s.t. $-x_2+x_1^2 \leq 0 \quad (1)$ $-x_1+x_2^2 \leq 0$ (2) $-x_1+\frac{1}{2} \leq 0 \quad (3)$

New relaxation

 \min $- x_1 - x_2$ s.t. $2x_1 - x_2 \leq 1$ (a) $-x_1 + 2x_2 \leq 1$ (b)

 $\bar{x} = (1, 1)^{\top}$ is an optimal solution to

min $-x_1-x_2$ s.t. $2x_1 - x_2 \le 1$ (a)
 $-x_1 + 2x_2 \le 1$ (b)

 $\bar{x} = (1, 1)^{\top}$ is an optimal solution to

 $\max x_1 + x_2$ s.t. $2x_1 - x_2 \le 1$ (a)
 $-x_1 + 2x_2 \le 1$ (b)

 $\bar{x} = (1, 1)^{\top}$ is an optimal solution to

 $max \quad x_1 + x_2$ s.t. $2x_1 - x_2 \le 1$ (a)
 $-x_1 + 2x_2 \le 1$ (b)

Proof

 $\bar{x} = (1, 1)^{\top}$ is an optimal solution to

 $max \quad x_1+x_2$ $s.t.$ $2x_1 - x_2 \le 1$ (a)
 $-x_1 + 2x_2 \le 1$ (b)

Proof

Tight constraints for \bar{x} are (a) and (b).

 $\bar{x} = (1,1)^{\top}$ is an optimal solution to

 $max \quad x_1+x_2$ $s.t.$ $2x_1 - x_2 \le 1$ (a)
 $-x_1 + 2x_2 \le 1$ (b)

Proof

Tight constraints for \bar{x} are (a) and (b).

Goal: Show that the objective function is in the cone of tight constraints.

 $\bar{x} = (1,1)^{\top}$ is an optimal solution to

 $max \quad x_1+x_2$ $s.t.$ $2x_1 - x_2 \le 1$ (a)
 $-x_1 + 2x_2 \le 1$ (b)

Proof

Tight constraints for \bar{x} are (a) and (b).

Goal: Show that the objective function is in the cone of tight constraints.

$$
\begin{pmatrix} 1 \\ 1 \end{pmatrix} \stackrel{?}{\in} cone\left\{ \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \end{pmatrix} \right\}
$$

 $\bar{x} = (1,1)^{\top}$ is an optimal solution to

 $max \quad x_1+x_2$ $s.t.$ $2x_1 - x_2 \le 1$ (a)
 $-x_1 + 2x_2 \le 1$ (b)

Proof

Tight constraints for \bar{x} are (a) and (b).

Goal: Show that the objective function is in the cone of tight constraints.

$$
\begin{pmatrix} 1 \\ 1 \end{pmatrix} \stackrel{?}{\in} cone\left\{ \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \end{pmatrix} \right\} \iff
$$

$$
\begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1 \times \begin{pmatrix} 2 \\ -1 \end{pmatrix} + 1 \times \begin{pmatrix} -1 \\ 2 \end{pmatrix} \quad \checkmark
$$

Relaxation

	$\min -x_1 - x_2$		
s.t.			
	$2x_1 - x_2 \leq 1$ (a)		
	$-x_1+2x_2 \leq 1$ (b)		

 \min $-x_1-x_2$ s.t. $\begin{array}{rcl} -x_2 + x_1^2 & \leq & 0 & (1) \\ -x_1 + x_2^2 & \leq & 0 & (2) \\ -x_1 + \frac{1}{2} & \leq & 0 & (3) \end{array}$

Relaxation

 $\bar{x} = (1, 1)^{\top}$ is an optimal solution to the relaxation

 \min $-x_1-x_2$ $s.t.$ $-x_2 + x_1^2 \le 0$ (1)
 $-x_1 + x_2^2 \le 0$ (2)
 $-x_1 + \frac{1}{2} \le 0$ (3)

Relaxation

	$\min \quad -x_1 - x_2$		
s.t.			
	$2x_1 - x_2 \leq 1 \quad (a)$		
	$-x_1+2x_2 \leq 1$ (b)		

 $\bar{x} = (1, 1)^{\top}$ is an optimal solution to the relaxation

 \bar{x} is an optimal solution to the *original NLP*

 \min $-x_1-x_2$ s.t. $-x_2 + x_1^2 \leq 0 \quad (1)$ $-x_1+x_2^2 \leq 0$ (2) $-x_1 + \frac{1}{2} \leq 0 \quad (3)$

Relaxation

 $\bar{x} = (1, 1)^{\top}$ is an optimal solution to the relaxation

 \bar{x} is an optimal solution to the *original NLP*

Question

Can we do this in general?

 $\min \, -x_1 - x_2$ s.t. $-x_2 + x_1^2 \le 0 \quad (1)$
 $-x_1 + x_2^2 \le 0 \quad (2)$ $-x_1 + \frac{1}{2} \leq 0$ (3)

 $\bar{x} = (1, 1)^{\top}$ is an optimal solution to the relaxation

 \bar{x} is an optimal solution to the *original NLP*

Question

Can we do this in general? YES

 \min $-x_1-x_2$ s.t. $\begin{array}{rcl} -x_2 + x_1^2 & \leq & 0 & (1) \\ -x_1 + x_2^2 & \leq & 0 & (2) \end{array}$ $-x_1 + \frac{1}{2} \leq 0$ (3)

 $\bar{x} = (1, 1)^{\top}$ is an optimal solution to the relaxation

 \bar{x} is an optimal solution to the *original NLP*

Question

Can we do this in general? YES

The key tool we'll use is subgradients.

Let $f: \Re^n \to \Re$ be a convex function

Let $f: \Re^n \to \Re$ be a convex function and $\bar{x} \in \Re^n$.

Let $f: \Re^n \to \Re$ be a convex function and $\bar{x} \in \Re^n$.

Then, $s \in \mathbb{R}^n$ is a subgradient of f at \bar{x} if

Let $f: \Re^n \to \Re$ be a convex function and $\bar{x} \in \Re^n$.

Then, $s \in \mathbb{R}^n$ is a subgradient of f at \bar{x} if

$$
h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x) \qquad \text{for all } x \in \mathbb{R}^n
$$

Let $f: \Re^n \to \Re$ be a convex function and $\bar{x} \in \Re^n$.

Then, $s \in \mathbb{R}^n$ is a subgradient of f at \bar{x} if

$$
h(x) := f(\bar{x}) + s^\top (x - \bar{x}) \le f(x) \qquad \text{for all } x \in \Re^n.
$$

 $h(x)$ is affine

Let $f: \Re^n \to \Re$ be a convex function and $\bar{x} \in \Re^n$.

Then, $s \in \mathbb{R}^n$ is a subgradient of f at \bar{x} if

$$
h(x) := f(\bar{x}) + s^\top (x - \bar{x}) \le f(x) \qquad \text{for all } x \in \Re^n.
$$

 $h(x)$ is affine

 $h(\bar{x}) = f(\bar{x})$

Let $f: \Re^n \to \Re$ be a convex function and $\bar{x} \in \Re^n$.

Then, $s \in \mathbb{R}^n$ is a subgradient of f at \bar{x} if

$$
h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x) \qquad \text{for all } x \in \mathbb{R}^n
$$

 $h(x)$ is affine

 $h(\bar{x}) = f(\bar{x})$

 h is a lower bound for f

Let $f: \Re^n \to \Re$ be a convex function and $\bar{x} \in \Re^n$.

Then, $s \in \mathbb{R}^n$ is a subgradient of f at \bar{x} if

$$
h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x) \qquad \text{for all } x \in \mathbb{R}^n
$$

Let $f: \Re^n \to \Re$ be a convex function and $\bar{x} \in \Re^n$.

$$
h(x) := f(\bar{x}) + s^\top (x - \bar{x}) \le f(x) \qquad \text{for all } x \in \Re^n
$$

Let $f: \Re^n \to \Re$ be a convex function and $\bar{x} \in \Re^n$.

$$
h(x) := f(\bar{x}) + s^\top (x - \bar{x}) \le f(x) \qquad \text{for all } x \in \Re^n
$$

Let $f: \Re^n \to \Re$ be a convex function and $\bar{x} \in \Re^n$.

$$
h(x) := f(\bar{x}) + s^\top (x - \bar{x}) \le f(x) \qquad \text{for all } x \in \Re^n
$$

Let $f: \Re^n \to \Re$ be a convex function and $\bar{x} \in \Re^n$.

$$
h(x) := f(\bar{x}) + s^\top (x - \bar{x}) \le f(x) \qquad \text{for all } x \in \Re^n
$$

 $s \in \Re^n$ is a subgradient of f at \bar{x} if

$$
h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x) \quad \text{for all } x \in \mathbb{R}^n.
$$

 $s \in \Re^n$ is a subgradient of f at \bar{x} if

$$
h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x) \quad \text{for all } x \in \mathbb{R}^n.
$$

Example

 $s \in \Re^n$ is a subgradient of f at \bar{x} if

$$
h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x) \quad \text{for all } x \in \mathbb{R}^n.
$$

Example

Consider $f: \Re^2 \to \Re$ where $f(x) = -x_1 + x_2^2$ and $\bar{x} = (1,1)^\top$.

 $s \in \Re^n$ is a subgradient of f at \bar{x} if

$$
h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x) \quad \text{for all } x \in \mathbb{R}^n.
$$

Example

Consider $f: \Re^2 \to \Re$ where $f(x) = -x_1 + x_2^2$ and $\bar{x} = (1,1)^{\top}$.

 $s \in \Re^n$ is a subgradient of f at \bar{x} if

$$
h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x) \quad \text{for all } x \in \mathbb{R}^n.
$$

Example

Consider $f: \Re^2 \to \Re$ where $f(x) = -x_1 + x_2^2$ and $\bar{x} = (1,1)^{\top}$.

$$
h(x) = f(\bar{x}) + s^{\top}(x - \bar{x}) =
$$

 $s \in \Re^n$ is a subgradient of f at \bar{x} if

$$
h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x) \quad \text{for all } x \in \mathbb{R}^n.
$$

Example

Consider $f: \Re^2 \to \Re$ where $f(x) = -x_1 + x_2^2$ and $\bar{x} = (1,1)^{\top}$.

$$
h(x) = f(\bar{x}) + s^{\top}(x - \bar{x}) =
$$

= 0 +

 $s \in \Re^n$ is a subgradient of f at \bar{x} if

$$
h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x) \quad \text{for all } x \in \mathbb{R}^n.
$$

Example

Consider $f: \Re^2 \to \Re$ where $f(x) = -x_1 + x_2^2$ and $\bar{x} = (1,1)^{\top}$.

$$
h(x) = f(\bar{x}) + s^{\top}(x - \bar{x}) =
$$

= 0 + (-1, 2)(x - (1, 1)^T) =

 $s \in \Re^n$ is a subgradient of f at \bar{x} if

$$
h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x) \quad \text{for all } x \in \mathbb{R}^n.
$$

Example

Consider $f: \Re^2 \to \Re$ where $f(x) = -x_1 + x_2^2$ and $\bar{x} = (1,1)^{\top}$.

$$
h(x) = f(\bar{x}) + s^{\top}(x - \bar{x}) =
$$

= 0 + (-1, 2)(x - (1, 1)^T) = -x₁ + 2x₂ - 1.

 $s \in \Re^n$ is a subgradient of f at \bar{x} if $h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x)$ for all $x \in \Re^n$.

Example

Consider $f: \mathbb{R}^2 \to \mathbb{R}$ where $f(x) = -x_1 + x_2^2$ and $\bar{x} = (1,1)^\top$.

We claim that $(-1,2)^\top$ is a subgradient of f at \bar{x} .

$$
h(x) = f(\bar{x}) + s^{\top}(x - \bar{x}) =
$$

= 0 + (-1, 2)(x - (1, 1)^T) = -x₁ + 2x₂ - 1.

Check: $h(x) \leq f(x)$ for all $x \in \mathbb{R}^n$.

 $s \in \Re^n$ is a subgradient of f at \bar{x} if $h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x)$ for all $x \in \Re^n$.

Example

Consider
$$
f: \mathbb{R}^2 \to \mathbb{R}
$$
 where $f(x) = -x_1 + x_2^2$ and $\bar{x} = (1, 1)^\top$

We claim that $(-1,2)^\top$ is a subgradient of f at \bar{x} .

$$
h(x) = f(\bar{x}) + s^{\top}(x - \bar{x}) =
$$

= 0 + (-1, 2)(x - (1, 1)^{\top}) = -x_1 + 2x_2 - 1.

Check: $h(x) \le f(x)$ for all $x \in \mathbb{R}^n$.

$$
-x_1 + 2x_2 - 1 \stackrel{?}{\leq} -x_1 + x_2^2
$$

 $s \in \Re^n$ is a subgradient of f at \bar{x} if $h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x)$ for all $x \in \Re^n$.

Example

Consider
$$
f : \mathbb{R}^2 \to \mathbb{R}
$$
 where $f(x) = -x_1 + x_2^2$ and $\bar{x} = (1, 1)^T$
We claim that $(-1, 2)^T$ is a subgradient of f at \bar{x}

$$
h(x) = f(\bar{x}) + s^{\top}(x - \bar{x}) =
$$

= 0 + (-1, 2)(x - (1, 1)^{\top}) = -x_1 + 2x_2 - 1.

Check: $h(x) \le f(x)$ for all $x \in \mathbb{R}^n$.

$$
-x_1+2x_2-1 \overset{?}{\leq} -x_1+x_2^2
$$

or equivalently,

$$
x_2^2 - 2x_2 + 1 \overset{?}{\geq} 0,
$$

 $s \in \Re^n$ is a subgradient of f at \bar{x} if $h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) < f(x)$ for all $x \in \Re^n$.

Example

Consider
$$
f : \mathbb{R}^2 \to \mathbb{R}
$$
 where $f(x) = -x_1 + x_2^2$ and $\bar{x} = (1, 1)^\top$
We claim that $(-1, 2)^\top$ is a subgradient of f at \bar{x} .

$$
h(x) = f(\bar{x}) + s^{\top}(x - \bar{x}) =
$$

= 0 + (-1, 2)(x - (1, 1)^{\top}) = -x_1 + 2x_2 - 1.

Check: $h(x) \leq f(x)$ for all $x \in \mathbb{R}^n$.

$$
-x_1+2x_2-1 \overset{?}{\leq} -x_1+x_2^2
$$

or equivalently, $x_2^2-2x_2+1\overset{?}{\geq}0.$ which is the case as $x_2^2 - 2x_2 + 1 = (x_2 - 1)^2 > 0$.

Let $C \in \mathbb{R}^n$ be a convex set and let $\bar{x} \in C$.

Let $C \in \mathbb{R}^n$ be a convex set and let $\bar{x} \in C$.

The halfspace $F = \{x : s^\top x \leq \beta\}$ is supporting C at \bar{x} if

Let $C \in \mathbb{R}^n$ be a convex set and let $\bar{x} \in C$. The halfspace $F = \{x : s^\top x \leq \beta\}$ is supporting C at \bar{x} if (1) $C \subseteq F$ and

Let $C \in \mathbb{R}^n$ be a convex set and let $\bar{x} \in C$.

The halfspace $F = \{x : s^\top x \leq \beta\}$ is supporting C at \bar{x} if

(1) $C \subseteq F$ and (2) $s^{\top} \bar{x} = \beta$. That is, \bar{x} is on the boundary of F.

Let $C \in \mathbb{R}^n$ be a convex set and let $\bar{x} \in C$. The halfspace $F = \{x : s^\top x \leq \beta\}$ is supporting C at \bar{x} if (1) $C \subseteq F$ and (2) $s^{\top} \bar{x} = \beta$. That is, \bar{x} is on the boundary of F.

Let $C \in \mathbb{R}^n$ be a convex set and let $\bar{x} \in C$. The halfspace $F = \{x : s^\top x \leq \beta\}$ is supporting C at \bar{x} if (1) $C \subseteq F$ and (2) $s^{\top} \bar{x} = \beta$. That is, \bar{x} is on the boundary of F.

UNIQUE SUPPORTING HALFSPACE AT \bar{x} .

Let $C \in \mathbb{R}^n$ be a convex set and let $\bar{x} \in C$. The halfspace $F = \{x : s^{\top} x \leq \beta\}$ is supporting C at \bar{x} if (1) $C \subseteq F$ and (2) $s^{\top} \bar{x} = \beta$. That is, \bar{x} is on the boundary of F.

Let $C \in \mathbb{R}^n$ be a convex set and let $\bar{x} \in C$. The halfspace $F = \{x : s^\top x \leq \beta\}$ is supporting C at \bar{x} if (1) $C \subseteq F$ and (2) $s^{\top} \bar{x} = \beta$. That is, \bar{x} is on the boundary of F.

Let $C \in \mathbb{R}^n$ be a convex set and let $\bar{x} \in C$. The halfspace $F = \{x : s^\top x \leq \beta\}$ is supporting C at \bar{x} if (1) $C \subseteq F$ and (2) $s^{\top} \bar{x} = \beta$. That is, \bar{x} is on the boundary of F.

NON-UNIQUE SUPPORTING HALFSPACE AT \bar{x} .

Let $C \in \mathbb{R}^n$ be a convex set and let $\bar{x} \in C$. The halfspace $F = \{x : s^{\top} x \leq \beta\}$ is supporting C at \bar{x} if (1) $C \subseteq F$ and

(2) $s^{\top} \bar{x} = \beta$. That is, \bar{x} is on the boundary of F.

Let $C \in \mathbb{R}^n$ be a convex set and let $\bar{x} \in C$. The halfspace $F = \{x : s^\top x \leq \beta\}$ is supporting C at \bar{x} if (1) $C \subseteq F$ and (2) $s^{\top} \bar{x} = \beta$. That is, \bar{x} is on the boundary of F.

Question

What do we get when $n = 1$?

Let $C \in \mathbb{R}^n$ be a convex set and let $\bar{x} \in C$. The halfspace $F = \{x : s^\top x \leq \beta\}$ is supporting C at \bar{x} if (1) $C \subseteq F$ and (2) $s^{\top} \bar{x} = \beta$. That is, \bar{x} is on the boundary of F.

Question

```
What do we get when n = 1?
```
• C is a segment (or a halfline)

Let $C \in \mathbb{R}^n$ be a convex set and let $\bar{x} \in C$. The halfspace $F = \{x : s^\top x \leq \beta\}$ is supporting C at \bar{x} if (1) $C \subseteq F$ and (2) $s^{\top} \bar{x} = \beta$. That is, \bar{x} is on the boundary of F.

Question

```
What do we get when n = 1?
```
- C is a segment (or a halfline)
- \bullet F is a halfline

Let $C \in \mathbb{R}^n$ be a convex set and let $\bar{x} \in C$. The halfspace $F = \{x : s^{\top} x \leq \beta\}$ is supporting C at \bar{x} if (1) $C \subseteq F$ and (2) $s^{\top} \bar{x} = \beta$. That is, \bar{x} is on the boundary of F.

Question

```
What do we get when n = 1?
```
- C is a segment (or a halfline)
- \bullet F is a halfline

Proposition

Let $g: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $g(\bar{x}) = 0$.

Proposition

Let $g: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $g(\bar{x}) = 0$.

Let s be a subgradient of g at \bar{x} .

Proposition

Let $g: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $g(\bar{x}) = 0$.

```
Let s be a subgradient of g at \bar{x}.
```

```
Let C = \{x : g(x) \le 0\}.
```
Proposition

Let $g: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $g(\bar{x}) = 0$.

Let s be a subgradient of g at \bar{x} .

Let $C = \{x : q(x) \leq 0\}.$

Let $F = \{x : h(x) := q(\bar{x}) + s^{\top}(x - \bar{x}) \leq 0\}.$

Proposition

Let $g: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $g(\bar{x}) = 0$.

Let s be a subgradient of g at \bar{x} .

Let $C = \{x : q(x) \leq 0\}.$

Let
$$
F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.
$$

Then, F is a supporting halfspace of C at \bar{x} .
Proposition

Let $g: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $g(\bar{x}) = 0$.

Let s be a subgradient of g at \bar{x} .

Let $C = \{x : q(x) \leq 0\}.$

Let
$$
F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.
$$

Then, F is a supporting halfspace of C at \bar{x} .

Remark

Proposition

Let $g: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $g(\bar{x}) = 0$.

Let s be a subgradient of g at \bar{x} .

Let $C = \{x : g(x) \le 0\}.$

Let
$$
F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.
$$

Then, F is a supporting halfspace of C at \bar{x} .

Remark

• C is convex, as q is a convex function,

Proposition

Let $q: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $q(\bar{x}) = 0$.

Let s be a subgradient of g at \bar{x} .

Let $C = \{x : q(x) \leq 0\}.$

Let
$$
F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.
$$

Then, F is a supporting halfspace of C at \bar{x} .

Remark

- C is convex, as q is a convex function,
- F is a halfspace, as $h(x)$ is an affine function, and

Proposition

Let $q: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $q(\bar{x}) = 0$.

Let s be a subgradient of g at \bar{x} .

Let $C = \{x : q(x) \leq 0\}.$

Let
$$
F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.
$$

Then, F is a supporting halfspace of C at \bar{x} .

Remark

- C is convex, as q is a convex function,
- F is a halfspace, as $h(x)$ is an affine function, and
- $h(\bar{x}) = q(\bar{x}) = 0$ thus, \bar{x} is on the boundary of F.

Let $g: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $g(\bar{x}) = 0$. Let s be a subgradient of q at \bar{x} . Let $C = \{x : g(x) \le 0\}.$ Let $F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.$ Then, F is a supporting halfspace of C at \bar{x} .

Example

Let $g: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $g(\bar{x}) = 0$. Let s be a subgradient of q at \bar{x} . Let $C = \{x : g(x) \le 0\}.$ Let $F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.$ Then, F is a supporting halfspace of C at \bar{x} .

Example

 $q(x) = x_2^2 - x_1$

Let $g: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $g(\bar{x}) = 0$. Let s be a subgradient of q at \bar{x} . Let $C = \{x : g(x) \le 0\}.$ Let $F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.$ Then, F is a supporting halfspace of C at \bar{x} .

Example

$$
g(x) = x_2^2 - x_1
$$

$$
\bar{x}=(1,1)^\top
$$

 $s=(-1,2)^{\top}$ subgradient at \bar{x}

Let $q: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $q(\bar{x}) = 0$. Let s be a subgradient of q at \bar{x} . Let $C = \{x : g(x) \le 0\}.$ Let $F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.$ Then, F is a supporting halfspace of C at \bar{x} .

Example $q(x) = x_2^2 - x_1$ $\bar{x} = (1, 1)^{\top}$ $s=(-1,2)^{\top}$ subgradient at \bar{x} $h(x) = 0 + (-1,2) \left[\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right]$ $=-x_1+2x_2-1$

Let $q: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $q(\bar{x}) = 0$. Let s be a subgradient of q at \bar{x} . Let $C = \{x : g(x) \le 0\}.$ Let $F = \{x : h(x) := q(\bar{x}) + s^{\top}(x - \bar{x}) \leq 0\}.$ Then, F is a supporting halfspace of C at \bar{x} .

Example

$$
g(x) = x_2^2 - x_1
$$

$$
\bar{x}=(1,1)^\top
$$

 $s = (-1, 2)^{\top}$ subgradient at \bar{x} $h(x) = 0 + (-1,2) \left[\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right]$ $=$ $-x_1 + 2x_2 - 1$ $F = \{x : -x_1 + 2x_2 \leq 1\}$

Let $g: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $g(\bar{x}) = 0$.

Let s be a subgradient of q at \bar{x} .

Let $C = \{x : g(x) \le 0\}.$ Let $F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.$ Then, F is a supporting halfspace of C at \bar{x} .

Let $g: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $g(\bar{x}) = 0$.

Let s be a subgradient of q at \bar{x} .

Let $C = \{x : g(x) \le 0\}.$ Let $F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.$ Then, F is a supporting halfspace of C at \bar{x} .

Let $g: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $g(\bar{x}) = 0$.

Let s be a subgradient of q at \bar{x} .

```
Let C = \{x : g(x) \le 0\}.Let F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.Then, F is a supporting halfspace of C at \bar{x}.
```
Proof

Let $g: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $g(\bar{x}) = 0$. Let s be a subgradient of q at \bar{x} . Let $C = \{x : g(x) \le 0\}.$ Let $F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.$ Then, F is a supporting halfspace of C at \bar{x} .

Proof Claim: $C \subseteq F$.

Let $q: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $q(\bar{x}) = 0$. Let s be a subgradient of q at \bar{x} . Let $C = \{x : g(x) \le 0\}.$ Let $F = \{x : h(x) := q(\bar{x}) + s^{\top}(x - \bar{x}) \leq 0\}.$ Then, F is a supporting halfspace of C at \bar{x} .

Proof Claim: $C \subseteq F$. Let $x \in C$ and thus, $q(x) \leq 0$

Let $q: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $q(\bar{x}) = 0$. Let s be a subgradient of q at \bar{x} . Let $C = \{x : g(x) \le 0\}.$ Let $F = \{x : h(x) := q(\bar{x}) + s^{\top}(x - \bar{x}) \leq 0\}.$ Then, F is a supporting halfspace of C at \bar{x} .

Proof Claim: $C \subseteq F$. Let $x \in C$ and thus, $q(x) \leq 0$

By definition of a subgradient, we know that $h(x) \leq q(x)$.

Let $q: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $q(\bar{x}) = 0$. Let s be a subgradient of q at \bar{x} . Let $C = \{x : q(x) \leq 0\}.$ Let $F = \{x : h(x) := q(\bar{x}) + s^{\top}(x - \bar{x}) \leq 0\}.$ Then, F is a supporting halfspace of C at \bar{x} .

Proof

Claim: $C \subseteq F$.

Let $x \in C$ and thus, $q(x) \leq 0$

By definition of a subgradient, we know that $h(x) \leq q(x)$.

It follows that $h(x) \leq q(x) \leq 0$.

Let $q: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $q(\bar{x}) = 0$. Let s be a subgradient of q at \bar{x} . Let $C = \{x : q(x) \leq 0\}.$ Let $F = \{x : h(x) := q(\bar{x}) + s^{\top}(x - \bar{x}) \leq 0\}.$ Then, F is a supporting halfspace of C at \bar{x} .

Proof

Claim: $C \subseteq F$.

```
Let x \in C and thus, q(x) \leq 0
```
By definition of a subgradient, we know that $h(x) \leq q(x)$.

```
It follows that h(x) \leq q(x) \leq 0.
```
Hence, $x \in F$.

Let $q: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $q(\bar{x}) = 0$. Let s be a subgradient of q at \bar{x} . Let $C = \{x : q(x) \leq 0\}.$ Let $F = \{x : h(x) := q(\bar{x}) + s^{\top}(x - \bar{x}) \leq 0\}.$ Then, F is a supporting halfspace of C at \bar{x} .

Proof Claim: $C \subseteq F$. Let $x \in C$ and thus, $q(x) \leq 0$ By definition of a subgradient, we know that $h(x) \leq q(x)$. It follows that $h(x) \leq q(x) \leq 0$. Hence, $x \in F$. Claim: $h(\bar{x}) = 0$

Let $q: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $q(\bar{x}) = 0$. Let s be a subgradient of q at \bar{x} . Let $C = \{x : q(x) \leq 0\}.$ Let $F = \{x : h(x) := q(\bar{x}) + s^{\top}(x - \bar{x}) \leq 0\}.$ Then, F is a supporting halfspace of C at \bar{x} .

Proof Claim: $C \subseteq F$. Let $x \in C$ and thus, $q(x) \leq 0$ By definition of a subgradient, we know that $h(x) \leq q(x)$. It follows that $h(x) \leq q(x) \leq 0$. Hence, $x \in F$. Claim: $h(\bar{x}) = 0$ $h(\bar{x})=g(\bar{x})$

Let $q: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $q(\bar{x}) = 0$. Let s be a subgradient of q at \bar{x} . Let $C = \{x : q(x) \leq 0\}.$ Let $F = \{x : h(x) := q(\bar{x}) + s^{\top}(x - \bar{x}) \leq 0\}.$ Then, F is a supporting halfspace of C at \bar{x} .

Proof Claim: $C \subseteq F$. Let $x \in C$ and thus, $q(x) \leq 0$ By definition of a subgradient, we know that $h(x) \leq q(x)$. It follows that $h(x) \leq q(x) \leq 0$. Hence, $x \in F$. Claim: $h(\bar{x}) = 0$ $h(\bar{x})=g(\bar{x})=0.$

Let $g: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $g(\bar{x}) = 0$. Let s be a subgradient of q at \bar{x} . Let $C = \{x : g(x) \le 0\}.$ Let $F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.$ Then, F is a supporting halfspace of \overline{C} at \overline{x} .

Question

Why is this relevant for us?

Let $q: \mathbb{R}^n \to \mathbb{R}$ be convex and let \bar{x} where $q(\bar{x}) = 0$. Let s be a subgradient of g at \bar{x} . Let $C = \{x : g(x) \le 0\}.$ Let $F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.$ Then, F is a supporting halfspace of C at \bar{x} .

Question

Why is this relevant for us?

WE USE IT TO CONSTRUCT RELAXATIONS OF NLPS

min
$$
c^{\top} x
$$

s.t. $g_i(x) \le 0$ $(i = 1, ..., k)$
min
$$
c^{\top} x
$$

\ns.t.
\n $g_i(x) \le 0$ $(i = 1, ..., k)$

 \bar{x} is a feasible solution

min
$$
c^{\top} x
$$

\ns.t.
\n $g_i(x) \le 0$ $(i = 1, ..., k)$

 \bar{x} is a feasible solution g_1 is convex

$$
\begin{aligned}\n\min \quad & c^{\top} x \\
\text{s.t.} \\
& g_i(x) \leq 0 \qquad (i = 1, \dots, k)\n\end{aligned}
$$

 \bar{x} is a feasible solution g_1 is convex $g_1(\bar{x})=0$

min
$$
c^{\top} x
$$

\ns.t.
\n $g_i(x) \le 0$ $(i = 1, ..., k)$

 \bar{x} is a feasible solution g_1 is convex $g_1(\bar{x})=0$ s is a subgradient for g_1 at \bar{x} min $c^{\top}x$

s.t.

$$
g_i(x) \le 0 \qquad (i = 1, \ldots, k)
$$

 \bar{x} is a feasible solution g_1 is convex $g_1(\bar{x})=0$ s is a subgradient for g_1 at \bar{x}

If we replace the nonlinear constraint

 $g_1(x) \leq 0$

min $c^{\top}x$

s.t.

$$
g_i(x) \le 0 \qquad (i = 1, \ldots, k)
$$

If we replace the nonlinear constraint

$$
g_1(x) \leq 0
$$

with the linear constraint

$$
h(x) = g_1(\bar{x}) + s^\top (x - \bar{x}) \le 0
$$

we get a relaxation.

 \bar{x} is a feasible solution g_1 is convex $g_1(\bar{x})=0$ s is a subgradient for g_1 at \bar{x} min $c^{\top}x$

s.t.

$$
g_i(x) \le 0 \qquad (i = 1, \ldots, k)
$$

If we replace the nonlinear constraint

$$
g_1(x) \leq 0
$$

with the linear constraint

$$
h(x) = g_1(\bar{x}) + s^\top (x - \bar{x}) \le 0
$$

we get a relaxation.

 \bar{x} is a feasible solution g_1 is convex $g_1(\bar{x})=0$ s is a subgradient for g_1 at \bar{x}

min $c^{\top}x$:.
 $g_i(x) \le 0 \quad (i = 1, ..., k)$ $s.t.$

min $c^{\top}x$ $s.t.$:.
 $g_i(x) \le 0 \quad (i = 1, ..., k)$ g_1, \ldots, g_k all convex

min $c^{\top}x$ $s.t.$ $g_i(x) \le 0$ $(i = 1, ..., k)$ g_1, \ldots, g_k all convex \bar{x} is a feasible solution

min $c^{\top}x$.
 $g_i(x) \le 0 \quad (i = 1, ..., k)$ $s.t.$

 g_1, \ldots, g_k all convex \bar{x} is a feasible solution $\forall i \in I, g_i(\bar{x}) = 0$

min $c^{\top}x$ s.t. .
 $g_i(x) \le 0 \quad (i = 1, ..., k)$ g_1, \ldots, g_k all convex \bar{x} is a feasible solution $\forall i \in I, g_i(\bar{x}) = 0$ $\forall i \in I$, $s^{(i)}$ subgradient for q_i at \bar{x}

min $c^{\top}x$ s.t. .
 $g_i(x) \le 0 \quad (i = 1, ..., k)$

 g_1, \ldots, g_k all convex \bar{x} is a feasible solution $\forall i \in I, g_i(\bar{x}) = 0$ $\forall i \in I$, $s^{(i)}$ subgradient for q_i at \bar{x}

If $-c \in cone\{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

min $c^{\top}x$ s.t. $g_i(x) \le 0 \quad (i = 1, \ldots, k)$

 g_1, \ldots, g_k all convex \bar{x} is a feasible solution $\forall i \in I, g_i(\bar{x}) = 0$ $\forall i \in I$, $s^{(i)}$ subgradient for q_i at \bar{x}

If $-c \in cone\{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Example

min $-x_1-x_2$ s.t. $-x_2+x_1^2 \leq 0$ (1) $-x_1+x_2^2 < 0$ (2) $-x_1 + \frac{1}{2} \leq 0$ (3)

$$
\bar{x}=(1,1)^\top \text{ feasible}
$$

min $c^{\top}x$ s.t. $g_i(x) \le 0 \quad (i = 1, ..., k)$

 g_1, \ldots, g_k all convex \bar{x} is a feasible solution $\forall i \in I, g_i(\bar{x}) = 0$ $\forall i \in I$, $s^{(i)}$ subgradient for q_i at \bar{x}

If $-c \in cone\{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Example

min $-x_1-x_2$ s.t. $-x_2+x_1^2 \leq 0$ (1) $-x_1+x_2^2 < 0$ (2) $-x_1 + \frac{1}{2} \leq 0$ (3)

$$
\bar{x} = (1,1)^{\top} \text{ feasible}
$$

$$
I = \{1, 2\}
$$

min $c^{\top}x$ s.t. $g_i(x) \le 0 \quad (i = 1, ..., k)$

 g_1, \ldots, g_k all convex \bar{x} is a feasible solution $\forall i \in I, g_i(\bar{x}) = 0$ $\forall i \in I$, $s^{(i)}$ subgradient for q_i at \bar{x}

If $-c \in cone\{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Example

min $-x_1-x_2$ s.t. $-x_2+x_1^2 \leq 0$ (1) $-x_1+x_2^2 < 0$ (2) $-x_1 + \frac{1}{2} \leq 0$ (3)

$$
\bar{x} = (1,1)^{\top} \text{ feasible}
$$

$$
I = \{1,2\}
$$

$$
(2,-1)^{\top} \text{ subgradient for } g_1 \text{ at } \bar{x}
$$

min $c^{\top}x$ $5[†]$ $q_i(x) \leq 0 \quad (i = 1, \ldots, k)$

 q_1, \ldots, q_k all convex \bar{x} is a feasible solution $\forall i \in I, g_i(\bar{x}) = 0$ $\forall i \in I$, $s^{(i)}$ subgradient for q_i at \bar{x}

If $-c \in cone\{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Example

min $- x_1 - x_2$ s.t. $-x_2 + x_1^2 \le 0$ (1)
-x₁ + x₂² \le 0 (2) $-x_1 + \frac{1}{2} \leq 0$ (3)

 $\bar{x} = (1,1)^\top$ feasible $I = \{1, 2\}$ $(2,-1)^T$ subgradient for q_1 at \bar{x} $(-1,2)^T$ subgradient for q_2 at \bar{x}

min $c^{\top}x$ $5[†]$ $q_i(x) \leq 0 \quad (i = 1, \ldots, k)$

 q_1, \ldots, q_k all convex \bar{x} is a feasible solution $\forall i \in I, g_i(\bar{x}) = 0$ $\forall i \in I$, $s^{(i)}$ subgradient for q_i at \bar{x}

If $-c \in cone\{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Example

min $-x_1-x_2$ s.t. $-x_2+x_1^2 \leq 0$ (1) $-x_1+x_2^2 < 0$ (2) $-x_1 + \frac{1}{2} \leq 0$ (3)

 $\bar{x} = (1,1)^\top$ feasible $I = \{1, 2\}$ $(2,-1)^T$ subgradient for q_1 at \bar{x} $(-1,2)^T$ subgradient for q_2 at \bar{x}

$$
-\begin{pmatrix} -1 \\ -1 \end{pmatrix} \in \text{cone}\left\{ \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \end{pmatrix} \right\} \implies \bar{x} \text{ optimal.}
$$

min $c^{\top}x$ s.t. .
 $g_i(x) \le 0 \quad (i = 1, ..., k)$

 g_1, \ldots, g_k all convex \bar{x} is a feasible solution $\forall i \in I, g_i(\bar{x}) = 0$ $\forall i \in I$, $s^{(i)}$ subgradient for q_i at \bar{x}

If $-c \in cone\{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

min $c^{\top}x$ s.t. $g_i(x) \le 0 \quad (i = 1, ..., k)$

 g_1, \ldots, g_k all convex \bar{x} is a feasible solution $\forall i \in I, g_i(\bar{x}) = 0$ $\forall i \in I$, $s^{(i)}$ subgradient for q_i at \bar{x}

If $-c \in cone\{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Proof

min $c^{\top}x$ s.t. $g_i(x) \le 0 \quad (i = 1, \ldots, k)$

 g_1, \ldots, g_k all convex \bar{x} is a feasible solution $\forall i \in I, g_i(\bar{x}) = 0$ $\forall i \in I$, $s^{(i)}$ subgradient for q_i at \bar{x}

If $-c \in cone\{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Proof

We have a relaxation

$$
\begin{aligned}\n\min \quad & c^\top x \\
\text{s.t.} \quad & g_i(x) \le 0 \quad (i \in I)\n\end{aligned}
$$

min $c^{\top}x$ $s.t.$ $g_i(x) \le 0 \quad (i = 1, ..., k)$

 g_1, \ldots, g_k all convex \bar{x} is a feasible solution $\forall i \in I, g_i(\bar{x}) = 0$ $\forall i \in I$, $s^{(i)}$ subgradient for q_i at \bar{x}

If $-c \in cone\{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Proof

We have a relaxation

$$
\begin{aligned}\n\min \quad & c^\top x \\
\text{.t.} \quad & g_i(x) \le 0 \quad (i \in I)\n\end{aligned}
$$

We proved that the set of solutions to $g_i(x) \leq 0$

 $\mathbf n$ s

 $q_i(\bar{x}) + s^{(i)}(x - \bar{x}) \leq 0.$ is contained in the set of solutions to

min $c^{\top}x$ s.t. $g_i(x) \le 0 \quad (i = 1, ..., k)$

 g_1, \ldots, g_k all convex \bar{x} is a feasible solution $\forall i \in I, g_i(\bar{x}) = 0$ $\forall i \in I$, $s^{(i)}$ subgradient for q_i at \bar{x}

If $-c \in cone\{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Proof

We have a relaxation min $c^{\top}x$ s.t. $q_i(\bar{x}) + s^{(i)}(x - \bar{x}) \leq 0 \quad (i \in I)$

min $c^{\top}x$ s.t. $g_i(x) \le 0 \quad (i = 1, ..., k)$

 g_1, \ldots, g_k all convex \bar{x} is a feasible solution $\forall i \in I, g_i(\bar{x}) = 0$ $\forall i \in I$, $s^{(i)}$ subgradient for q_i at \bar{x}

If $-c \in cone\{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Proof

We have a relaxation

$$
\begin{aligned}\n\min \quad & c^\top x \\
\text{s.t.} \\
& g_i(\bar{x}) + s^{(i)}(x - \bar{x}) \le 0 \quad (i \in I)\n\end{aligned}
$$

 $q_i(\bar{x}) + s^{(i)}(x - \bar{x}) \leq 0$ can be rewritten as

min $c^{\top}x$ s.t. $g_i(x) \le 0 \quad (i = 1, ..., k)$

 q_1, \ldots, q_k all convex \bar{x} is a feasible solution $\forall i \in I, g_i(\bar{x}) = 0$ $\forall i \in I$, $s^{(i)}$ subgradient for q_i at \bar{x}

If $-c \in cone\{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Proof We have a relaxation min $c^{\top}x$ $s.t.$ $q_i(\bar{x}) + s^{(i)}(x - \bar{x}) \leq 0 \quad (i \in I)$ $q_i(\bar{x}) + s^{(i)}(x - \bar{x}) \leq 0$ can be rewritten as $s^{(i)}x \leq s^{(i)}\bar{x} - q_i(\bar{x})$

min $c^{\top}x$ $s.t.$ $g_i(x) \leq 0 \quad (i = 1, \ldots, k)$

 q_1, \ldots, q_k all convex \bar{x} is a feasible solution $\forall i \in I, g_i(\bar{x}) = 0$ $\forall i \in I$, $s^{(i)}$ subgradient for q_i at \bar{x}

If $-c \in cone\{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Proof

We have a relaxation

$$
\begin{aligned}\n\max \quad &-c^\top x \\
\text{s.t.} \\
&s^{(i)}x \le s^{(i)}\bar{x} - g_i(\bar{x}) \quad (i \in I)\n\end{aligned}
$$

min $c^{\top}x$ $S.t.$ $g_i(x) \le 0 \quad (i = 1, ..., k)$

 q_1, \ldots, q_k all convex \bar{x} is a feasible solution $\forall i \in I, g_i(\bar{x}) = 0$ $\forall i \in I$, $s^{(i)}$ subgradient for q_i at \bar{x}

If $-c \in cone\{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Proof

We have a relaxation

$$
\begin{aligned}\n\max \quad &-c^\top x \\
\text{s.t.} \quad & s^{(i)}x \le s^{(i)}\bar{x} - g_i(\bar{x}) \quad (i \in I)\n\end{aligned}
$$

Then, \bar{x} is optimal for the relaxation if $-c \in cone\{s^{(i)} : i \in I\}$.

min $c^{\top}x$ $S.t.$ $g_i(x) \le 0 \quad (i = 1, ..., k)$

 q_1, \ldots, q_k all convex \bar{x} is a feasible solution $\forall i \in I, g_i(\bar{x}) = 0$ $\forall i \in I$, $s^{(i)}$ subgradient for q_i at \bar{x}

If $-c \in cone\{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Proof

We have a relaxation

$$
\begin{aligned}\n\max \quad &-c^\top x \\
\text{s.t.} \\
&s^{(i)}x \le s^{(i)}\bar{x} - g_i(\bar{x}) \quad (i \in I)\n\end{aligned}
$$

Then, \bar{x} is optimal for the relaxation if $-c \in cone\{s^{(i)} : i \in I\}$.

This means that \bar{x} is also optimal for the NLP.

min $c^{\top}x$ $s.t.$ $g_i(x) \le 0 \quad (i = 1, \ldots, k)$ q_1, \ldots, q_k all convex \bar{x} is a feasible solution $\forall i \in I, g_i(\bar{x}) = 0$ $\forall i \in I$, $s^{(i)}$ subgradient for q_i at \bar{x}

If $-c \in cone\{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Proof

We have a relaxation

$$
\begin{aligned}\n\max \quad &-c^\top x \\
\text{s.t.} \\
&s^{(i)}x \le s^{(i)}\bar{x} - g_i(\bar{x}) \quad (i \in I)\n\end{aligned}
$$

Then, \bar{x} is optimal for the relaxation if $-c \in cone\{s^{(i)} : i \in I\}$.

This means that \bar{x} is also optimal for the NLP.

Question

Is there a converse to this result?

min $c^{\top}x$ $s.t.$ $g_i(x) \leq 0 \quad (i = 1, \ldots, k)$ q_1, \ldots, q_k all convex \bar{x} is a feasible solution $\forall i \in I, g_i(\bar{x}) = 0$ $\forall i \in I$, $s^{(i)}$ subgradient for q_i at \bar{x}

If $-c \in cone\{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Proof

We have a relaxation

$$
\begin{aligned}\n\max \quad &-c^\top x \\
\text{s.t.} \\
&s^{(i)}x \le s^{(i)}\bar{x} - g_i(\bar{x}) \quad (i \in I)\n\end{aligned}
$$

Then, \bar{x} is optimal for the relaxation if $-c \in cone\{s^{(i)} : i \in I\}$.

This means that \bar{x} is also optimal for the NLP.

Question

Is there a converse to this result? YES

Proposition

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function and let $\bar{x} \in \mathbb{R}^n$.

Proposition

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function and let $\bar{x} \in \mathbb{R}^n$.

If the gradient $\nabla f(\bar{x})$ of f exists at \bar{x} , then it is a subgradient.

Proposition

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function and let $\bar{x} \in \mathbb{R}^n$.

If the gradient $\nabla f(\bar{x})$ of f exists at \bar{x} , then it is a subgradient.

Proposition

Let $f: \mathbb{R}^n \to \mathbb{R}$ be function and let $\bar{x} \in \mathbb{R}^n$. If the partial derivative $\frac{\partial f(x)}{\partial x_i}$ exists for f at \bar{x} for all $j = 1, ..., n$, then the gradient $\nabla f(\bar{x})$ is obtained by evaluating for \bar{x} ,

$$
\left(\frac{\partial f(x)}{\partial x_1},\ldots,\frac{\partial f(x)}{\partial x_n}\right)^{\perp}
$$

Example

Compute the gradient of the convex function

$$
f(x) = -x_2 + x_1^2
$$

at $\bar{x} = (1, 1)^{\top}$.

Example

Compute the gradient of the convex function

$$
f(x) = -x_2 + x_1^2
$$

at $\bar{x} = (1, 1)^{\top}$.

We have

$$
\left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}\right)^\top = (2x_1, -1)^\top
$$
Example

Compute the gradient of the convex function

$$
f(x) = -x_2 + x_1^2
$$

at $\bar{x} = (1, 1)^{\top}$.

We have

$$
\left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}\right)^\top = (2x_1, -1)^\top
$$

For \bar{x} we get $\nabla f(\bar{x}) = (2, -1)^\top$.

Example

Compute the gradient of the convex function

$$
f(x) = -x_2 + x_1^2
$$

at $\bar{x} = (1, 1)^{\top}$.

We have

$$
\left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}\right)^\top = (2x_1, -1)^\top
$$

For \bar{x} we get $\nabla f(\bar{x}) = (2, -1)^\top$.

Since $(2, -1)^\top$ is the gradient of f at \bar{x} , it is a subgradient as well.

A feasible solution to \bar{x} is a Slater point of

$$
\begin{aligned}\n\min \quad & c^\top x \\
\text{s.t.} \\
&g_i(x) \le 0 \quad (i = 1, \dots, k)\n\end{aligned}
$$

if $g_i(\bar{x}) < 0$ for all $i = 1, \ldots, k$.

A feasible solution to \bar{x} is a Slater point of

$$
\begin{aligned}\n\min \quad & c^\top x \\
\text{s.t.} \\
&g_i(x) \le 0 \quad (i = 1, \dots, k)\n\end{aligned}
$$

if $g_i(\bar{x}) < 0$ for all $i = 1, \ldots, k$.

Example

min $- x_1 - x_2$ $s.t.$ $-x_2+x_1^2 \quad \leq \quad 0 \quad \text{ (1)}$ $-x_1 + x_2^2 \le 0$ (2)
 $-x_1 + \frac{1}{2} \le 0$ (3)

A feasible solution to \bar{x} is a Slater point of

$$
\begin{aligned}\n\min \quad & c^\top x \\
\text{s.t.} \\
&g_i(x) \le 0 \quad (i = 1, \dots, k)\n\end{aligned}
$$

if $g_i(\bar{x}) < 0$ for all $i = 1, \ldots, k$.

Example

min $-x_1-x_2$ $s.t.$ $-x_2 + x_1^2 \le 0$ (1)
 $-x_1 + x_2^2 \le 0$ (2)
 $-x_1 + \frac{1}{2} \le 0$ (3)

 $\bar{x} = \left(\frac{3}{4}, \frac{3}{4}\right)^{\top}$ is a Slater point.

A feasible solution to \bar{x} is a Slater point of

$$
\begin{aligned}\n\min \quad & c^\top x \\
\text{s.t.} \\
&g_i(x) \le 0 \quad (i = 1, \dots, k)\n\end{aligned}
$$

if $g_i(\bar{x}) < 0$ for all $i = 1, \ldots, k$.

Example

min
$$
-x_1 - x_2
$$

\ns.t.
\n $-x_2 + x_1^2 \le 0$ (1)
\n $-x_1 + x_2^2 \le 0$ (2)
\n $-x_1 + \frac{1}{2} \le 0$ (3)

 $\bar{x} = \left(\frac{3}{4}, \frac{3}{4}\right)^{\top}$ is a Slater point.

Consider the following NLP:

$$
\begin{array}{ll}\n\text{min} & c^\top x \\
\text{s.t.} \\
g_i(x) \le 0 \quad (i = 1, \dots, k)\n\end{array}
$$

Consider the following NLP:

$$
\begin{aligned}\n\min \quad & c^\top x \\
\text{s.t.} \\
&g_i(x) \le 0 \quad (i = 1, \dots, k)\n\end{aligned}
$$

Consider the following NLP:

$$
\begin{aligned}\n\min \quad & c^\top x \\
\text{s.t.} \\
&g_i(x) \le 0 \quad (i = 1, \dots, k)\n\end{aligned}
$$

Suppose that

1. g_1, \ldots, g_k are all convex,

Consider the following NLP:

$$
\begin{aligned}\n\min \quad & c^\top x \\
\text{s.t.} \\
&g_i(x) \le 0 \quad (i = 1, \dots, k)\n\end{aligned}
$$

- 1. g_1, \ldots, g_k are all convex,
- 2. there exists a Slater point,

Consider the following NLP:

$$
\begin{aligned}\n\min \quad & c^\top x \\
\text{s.t.} \\
&g_i(x) \le 0 \quad (i = 1, \dots, k)\n\end{aligned}
$$

- 1. g_1, \ldots, g_k are all convex,
- 2. there exists a Slater point,
- 3. \bar{x} is a feasible solution,

Consider the following NLP:

$$
\begin{aligned}\n\min \quad & c^\top x \\
\text{s.t.} \\
&g_i(x) \le 0 \quad (i = 1, \dots, k)\n\end{aligned}
$$

- 1. g_1, \ldots, g_k are all convex,
- 2. there exists a Slater point,
- 3. \bar{x} is a feasible solution,
- 4. *I* is the set of indices *i* for which $g_i(\bar{x}) = 0$, and

Consider the following NLP:

$$
\begin{aligned}\n\min \quad & c^\top x \\
\text{s.t.} \\
&g_i(x) \le 0 \quad (i = 1, \dots, k)\n\end{aligned}
$$

- 1. g_1, \ldots, g_k are all convex,
- 2. there exists a Slater point,
- 3. \bar{x} is a feasible solution.
- 4. *I* is the set of indices *i* for which $g_i(\bar{x}) = 0$, and
- 5. for all $i \in I$ there exists a gradient $\nabla g_i(\bar{x})$ of g_i at \bar{x} .

Consider the following NLP:

$$
\begin{aligned}\n\min \quad & c^\top x \\
\text{s.t.} \\
&g_i(x) \le 0 \quad (i = 1, \dots, k)\n\end{aligned}
$$

Suppose that

- 1. g_1, \ldots, g_k are all convex,
- 2. there exists a Slater point,
- 3. \bar{x} is a feasible solution.
- 4. *I* is the set of indices *i* for which $g_i(\bar{x}) = 0$, and
- 5. for all $i \in I$ there exists a gradient $\nabla q_i(\bar{x})$ of q_i at \bar{x} .

Then \bar{x} is optimal $\iff -c \in cone \{ \nabla g_i(\bar{x}) : i \in I \}.$

Consider the following NLP:

$$
\begin{aligned}\n\min \quad & c^\top x \\
\text{s.t.} \\
&g_i(x) \le 0 \quad (i = 1, \dots, k)\n\end{aligned}
$$

Suppose that

- 1. g_1, \ldots, g_k are all convex,
- 2. there exists a Slater point,
- 3. \bar{x} is a feasible solution.
- 4. *I* is the set of indices *i* for which $g_i(\bar{x}) = 0$, and
- 5. for all $i \in I$ there exists a gradient $\nabla q_i(\bar{x})$ of q_i at \bar{x} .

Then \bar{x} is optimal $\iff -c \in cone \{ \nabla g_i(\bar{x}) : i \in I \}.$

Remark

We proved the "easy" direction " \Longleftarrow ".

• We showed how to prove optimality using relaxations.

- We showed how to prove optimality using relaxations.
- We defined subgradients.

- We showed how to prove optimality using relaxations.
- We defined subgradients.
- We defined supporting halfspaces.

- We showed how to prove optimality using relaxations.
- We defined subgradients.
- We defined supporting halfspaces.
- We related subgradients and supporting halfspaces.

- We showed how to prove optimality using relaxations.
- We defined subgradients.
- We defined supporting halfspaces.
- We related subgradients and supporting halfspaces.
- We showed how to relax convex constraints by a linear constraint.

- We showed how to prove optimality using relaxations.
- We defined subgradients.
- We defined supporting halfspaces.
- We related subgradients and supporting halfspaces.
- We showed how to relax convex constraints by a linear constraint.
- We gave sufficient conditions for a solution to be optimal.

- We showed how to prove optimality using relaxations.
- We defined subgradients.
- We defined supporting halfspaces.
- We related subgradients and supporting halfspaces.
- We showed how to relax convex constraints by a linear constraint.
- We gave sufficient conditions for a solution to be optimal.
- We stated the KKT theorem.