Module 6: Nonlinear Programs (the KKT theorem)

$$\begin{array}{rcl} \min & -x_1 - x_2 \\ \text{s.t.} & & \\ & -x_2 + x_1^2 & \leq & 0 & (1) \\ & & -x_1 + x_2^2 & \leq & 0 & (2) \\ & & -x_1 + \frac{1}{2} & \leq & 0 & (3) \end{array}$$

$$\begin{array}{rcl} \min & -x_1 - x_2 \\ \text{s.t.} & & \\ & -x_2 + x_1^2 & \leq & 0 & (1) \\ & & -x_1 + x_2^2 & \leq & 0 & (2) \\ & & -x_1 + \frac{1}{2} & \leq & 0 & (3) \end{array}$$

(1) $x_2 \ge x_1^2$;

$$\begin{array}{rll} \min & -x_1 - x_2 \\ \text{s.t.} & & \\ & -x_2 + x_1^2 & \leq & 0 & (1) \\ & -x_1 + x_2^2 & \leq & 0 & (2) \\ & -x_1 + \frac{1}{2} & \leq & 0 & (3) \end{array}$$

(1) $x_2 \ge x_1^2;$ (2) $x_1 \ge x_2^2;$

$$\begin{array}{rll} \min & -x_1 - x_2 \\ \text{s.t.} & & \\ & -x_2 + x_1^2 & \leq & 0 & (1) \\ & -x_1 + x_2^2 & \leq & 0 & (2) \\ & -x_1 + \frac{1}{2} & \leq & 0 & (3) \end{array}$$

(1) $x_2 \ge x_1^2$; (2) $x_1 \ge x_2^2$; (3) $x_1 \ge \frac{1}{2}$.

$$\begin{array}{rcl} \min & -x_1 - x_2 \\ \text{s.t.} & & \\ & -x_2 + x_1^2 & \leq & 0 & (1) \\ & -x_1 + x_2^2 & \leq & 0 & (2) \\ & -x_1 + \frac{1}{2} & \leq & 0 & (3) \end{array}$$

Claim $\bar{x} = (1, 1)^{\top}$ is an optimal solution to the NLP.

 $\bar{x} = (1,1)^\top$ is an optimal solution to the NLP.

How do we prove this?

 $\bar{x} = (1,1)^\top$ is an optimal solution to the NLP.

How do we prove this?

Step 1. Find a relaxation of the NLP.

 $\bar{x} = (1,1)^\top$ is an optimal solution to the NLP.

How do we prove this?

Step 1. Find a relaxation of the NLP.

Step 2. Prove \bar{x} is optimal for the relaxation.

$$\begin{array}{rcl} \min & -x_1 - x_2 \\ \text{s.t.} & & \\ & -x_2 + x_1^2 & \leq & 0 & (1) \\ & -x_1 + x_2^2 & \leq & 0 & (2) \\ & -x_1 + \frac{1}{2} & \leq & 0 & (3) \end{array}$$

 $\bar{x} = (1, 1)^{\top}$ is an optimal solution to the NLP.

How do we prove this?

- Step 1. Find a relaxation of the NLP.
- **Step 2.** Prove \bar{x} is optimal for the relaxation.
- **Step 3.** Deduce that \bar{x} is optimal for the NLP.

 $\begin{array}{rll} \min & -x_1 - x_2 \\ {\rm s.t.} & & \\ & -x_2 + x_1^2 & \leq & 0 & (1) \\ & -x_1 + x_2^2 & \leq & 0 & (2) \\ & -x_1 + \frac{1}{2} & \leq & 0 & (3) \end{array}$

min $-x_1 - x_2$ s.t. $-x_2 + x_1^2 \leq 0$ (1) $-x_1 + x_2^2 \leq 0$ (2) $-x_1 + \frac{1}{2} \leq 0$ (3)

Relaxation

min $-x_1 - x_2$ s.t. $-x_2 + x_1^2 \leq 0$ (1) $-x_1 + x_2^2 \leq 0$ (2)

min $-x_1 - x_2$ s.t. $-x_2 + x_1^2 \leq 0$ (1) $-x_1 + x_2^2 \leq 0$ (2) $-x_1 + \frac{1}{2} \leq 0$ (3)

min $-x_1 - x_2$ s.t. $2x_1 - x_2 \leq 1$ (a) $-x_1 + x_2^2 \leq 0$ (2)

min $-x_1 - x_2$ s.t. $-x_2 + x_1^2 \leq 0$ (1) $-x_1 + x_2^2 \leq 0$ (2) $-x_1 + \frac{1}{2} \leq 0$ (3)

(3) $\frac{3}{4}$ (2) $\frac{1}{2}$ (1) $\frac{1}{4}$ $\overline{1}^{x_1}$ 0 $\overline{2}$ x_2 $\frac{3}{4}$ (b)(a) $1 x_1$ 0

New relaxation

min $-x_1 - x_2$ s.t. $2x_1 - x_2 \leq 1$ (a) $-x_1 + 2x_2 \leq 1$ (b)

 $\bar{x} = (1,1)^\top$ is an optimal solution to

min $-x_1 - x_2$ s.t. $2x_1 - x_2 \leq 1$ (a) $-x_1 + 2x_2 \leq 1$ (b)

 $\bar{x} = (1,1)^\top$ is an optimal solution to

 $\begin{array}{rll} \max & x_1 + x_2 \\ {\rm s.t.} & & \\ & & 2x_1 - x_2 & \leq & 1 & (a) \\ & & -x_1 + 2x_2 & \leq & 1 & (b) \end{array}$

 $\bar{x} = (1,1)^\top$ is an optimal solution to

 $\begin{array}{rcl} \max & x_1 + x_2 \\ {\rm s.t.} & & \\ & & 2x_1 - x_2 & \leq & 1 & (a) \\ & & -x_1 + 2x_2 & \leq & 1 & (b) \end{array}$

Proof

 $\bar{x} = (1,1)^\top$ is an optimal solution to

 $\begin{array}{rcl} \max & x_1 + x_2 \\ {\rm s.t.} & & \\ & & 2x_1 - x_2 & \leq & 1 & (a) \\ & & -x_1 + 2x_2 & \leq & 1 & (b) \end{array}$

Proof

Tight constraints for \bar{x} are (a) and (b).

 $\bar{x} = (1,1)^\top$ is an optimal solution to

 $\begin{array}{rcl} \max & x_1 + x_2 \\ {\rm s.t.} & & \\ & & 2x_1 - x_2 & \leq & 1 & (a) \\ & & -x_1 + 2x_2 & \leq & 1 & (b) \end{array}$

Proof

Tight constraints for \bar{x} are (a) and (b).

Goal: Show that the objective function is in the cone of tight constraints.

 $\bar{x} = (1,1)^\top$ is an optimal solution to

 $\begin{array}{rll} \max & x_1 + x_2 \\ {\rm s.t.} & & \\ & & 2x_1 - x_2 & \leq & 1 & (a) \\ & & -x_1 + 2x_2 & \leq & 1 & (b) \end{array}$

Proof

Tight constraints for \bar{x} are (a) and (b).

Goal: Show that the objective function is in the cone of tight constraints.

$$\begin{pmatrix} 1\\1 \end{pmatrix} \stackrel{?}{\in} cone \left\{ \begin{pmatrix} 2\\-1 \end{pmatrix}, \begin{pmatrix} -1\\2 \end{pmatrix} \right\}$$

 $\bar{x} = (1,1)^\top$ is an optimal solution to

 $\begin{array}{rll} \max & x_1 + x_2 \\ {\rm s.t.} & & \\ & & 2x_1 - x_2 & \leq & 1 & (a) \\ & & -x_1 + 2x_2 & \leq & 1 & (b) \end{array}$

Proof

Tight constraints for \bar{x} are (a) and (b).

Goal: Show that the objective function is in the cone of tight constraints.

$$\begin{pmatrix} 1\\1 \end{pmatrix} \stackrel{?}{\in} cone \left\{ \begin{pmatrix} 2\\-1 \end{pmatrix}, \begin{pmatrix} -1\\2 \end{pmatrix} \right\} \iff$$
$$\begin{pmatrix} 1\\1 \end{pmatrix} = 1 \times \begin{pmatrix} 2\\-1 \end{pmatrix} + 1 \times \begin{pmatrix} -1\\2 \end{pmatrix} \quad \checkmark$$

$-x_1 - x_2$			
$-x_2 + x_1^2$	\leq	0	(1)
$-x_1 + x_2^2$	\leq	0	(2)
$-x_1 + \frac{1}{2}$	\leq	0	(3)
	$-x_2 + x_1^2$ $-x_1 + x_2^2$	$\begin{aligned} -x_2 + x_1^2 &\leq \\ -x_1 + x_2^2 &\leq \end{aligned}$	$-x_2 + x_1^2 \leq 0$ $-x_1 + x_2^2 \leq 0$

Relaxation

$-x_1 - x_2$			
$-x_1 + 2x_2$	\leq	1	(b)
	$2x_1 - x_2$	$2x_1 - x_2 \leq$	$-x_1 - x_2$ $2x_1 - x_2 \leq 1$ $-x_1 + 2x_2 \leq 1$

min $-x_1 - x_2$ s.t. $-x_2 + x_1^2 \leq 0$ (1) $-x_1 + x_2^2 \leq 0$ (2) $-x_1 + \frac{1}{2} \leq 0$ (3)

Relaxation

\min	$-x_1 - x_2$			
s.t.				
	$2x_1 - x_2$	\leq	1	(a)
	$-x_1 + 2x_2$	\leq	1	(b)

 $\bar{x} = (1,1)^{\top}$ is an optimal solution to the relaxation

 $\begin{array}{rll} \min & -x_1 - x_2 \\ \text{s.t.} & & \\ & -x_2 + x_1^2 & \leq & 0 & (1) \\ & -x_1 + x_2^2 & \leq & 0 & (2) \\ & -x_1 + \frac{1}{2} & \leq & 0 & (3) \end{array}$

Relaxation

\min	$-x_1 - x_2$			
s.t.				
	$2x_1 - x_2$	\leq	1	(a)
	$-x_1 + 2x_2$	\leq	1	(b)

 $\bar{x} = (1,1)^{\top}$ is an optimal solution to the relaxation

 \bar{x} is an optimal solution to the *original NLP*

 $\begin{array}{rll} \min & -x_1 - x_2 \\ \text{s.t.} & & \\ & -x_2 + x_1^2 & \leq & 0 & (1) \\ & -x_1 + x_2^2 & \leq & 0 & (2) \\ & -x_1 + \frac{1}{2} & \leq & 0 & (3) \end{array}$

Relaxation

\min	$-x_1 - x_2$			
s.t.				
	$2x_1 - x_2$	\leq	1	(a)
	$-x_1 + 2x_2$	\leq	1	<i>(b)</i>

 $\bar{x} = (1,1)^{\top}$ is an optimal solution to the relaxation

 \bar{x} is an optimal solution to the *original NLP*

Question

Can we do this in general?

 $\begin{array}{rll} \min & -x_1 - x_2 \\ \text{s.t.} & & \\ & -x_2 + x_1^2 & \leq & 0 & (1) \\ & -x_1 + x_2^2 & \leq & 0 & (2) \\ & -x_1 + \frac{1}{2} & \leq & 0 & (3) \end{array}$

Relaxation

\min	$-x_1 - x_2$			
s.t.				
	$2x_1 - x_2$	\leq	1	(a)
	$-x_1 + 2x_2$	\leq	1	(b)

 $\bar{x} = (1,1)^\top$ is an optimal solution to the relaxation

 \bar{x} is an optimal solution to the *original NLP*

Question

Can we do this in general? $\underline{\rm YES}$

 $\begin{array}{rll} \min & -x_1 - x_2 \\ \text{s.t.} & & \\ & -x_2 + x_1^2 & \leq & 0 & (1) \\ & -x_1 + x_2^2 & \leq & 0 & (2) \\ & -x_1 + \frac{1}{2} & \leq & 0 & (3) \end{array}$

$-x_1 - x_2$			
$-x_1 + 2x_2$	\leq	1	(b)
	$2x_1 - x_2$	$2x_1 - x_2 \leq$	$-x_1 - x_2$ $2x_1 - x_2 \leq 1$ $-x_1 + 2x_2 \leq 1$

 $\bar{x} = (1,1)^{\top}$ is an optimal solution to the relaxation

 \bar{x} is an optimal solution to the *original NLP*

Question

Can we do this in general? $\underline{\rm YES}$

The key tool we'll use is subgradients.

Let $f:\Re^n \to \Re$ be a convex function

Let $f: \Re^n \to \Re$ be a convex function and $\bar{x} \in \Re^n$.

Let $f: \Re^n \to \Re$ be a convex function and $\bar{x} \in \Re^n$.

Then, $s \in \Re^n$ is a subgradient of f at \bar{x} if

Let $f: \Re^n \to \Re$ be a convex function and $\bar{x} \in \Re^n$.

Then, $s \in \Re^n$ is a subgradient of f at \bar{x} if

$$h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x)$$
 for all $x \in \Re^n$

Let $f: \Re^n \to \Re$ be a convex function and $\bar{x} \in \Re^n$.

Then, $s \in \Re^n$ is a subgradient of f at \bar{x} if

$$h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x)$$
 for all $x \in \Re^n$.

h(x) is affine

Let $f: \Re^n \to \Re$ be a convex function and $\bar{x} \in \Re^n$.

Then, $s \in \Re^n$ is a subgradient of f at \bar{x} if

$$h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x)$$
 for all $x \in \Re^n$.

h(x) is affine

 $h(\bar{x}) = f(\bar{x})$

Let $f: \Re^n \to \Re$ be a convex function and $\bar{x} \in \Re^n$.

Then, $s \in \Re^n$ is a subgradient of f at \bar{x} if

$$h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x)$$
 for all $x \in \Re^n$.

 $h(\boldsymbol{x})$ is affine

 $h(\bar{x})=f(\bar{x})$

h is a lower bound for f

Let $f: \Re^n \to \Re$ be a convex function and $\bar{x} \in \Re^n$.

Then, $s \in \Re^n$ is a subgradient of f at \bar{x} if

$$h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x)$$
 for all $x \in \Re^n$

Let $f: \Re^n \to \Re$ be a convex function and $\bar{x} \in \Re^n$.

$$h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x)$$
 for all $x \in \Re^n$

Let $f: \Re^n \to \Re$ be a convex function and $\bar{x} \in \Re^n$.

$$h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x)$$
 for all $x \in \Re^n$

Let $f: \Re^n \to \Re$ be a convex function and $\bar{x} \in \Re^n$.

$$h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x)$$
 for all $x \in \Re^n$

Let $f: \Re^n \to \Re$ be a convex function and $\bar{x} \in \Re^n$.

$$h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x)$$
 for all $x \in \Re^n$

$$h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x) \qquad \text{for all } x \in \Re^n.$$

 $s\in\Re^n$ is a subgradient of f at \bar{x} if

$$h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x) \qquad \text{for all } x \in \Re^n.$$

Example

 $s \in \Re^n$ is a subgradient of f at \bar{x} if

$$h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x) \qquad \text{for all } x \in \Re^n.$$

Example

Consider $f: \Re^2 \to \Re$ where $f(x) = -x_1 + x_2^2$ and $\bar{x} = (1, 1)^{\top}$.

 $s \in \Re^n$ is a subgradient of f at \bar{x} if

$$h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x) \qquad \text{for all } x \in \Re^n.$$

Example

Consider $f: \Re^2 \to \Re$ where $f(x) = -x_1 + x_2^2$ and $\bar{x} = (1, 1)^{\top}$.

 $s \in \Re^n$ is a subgradient of f at \bar{x} if

$$h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x) \qquad \text{for all } x \in \Re^n.$$

Example

Consider $f: \Re^2 \to \Re$ where $f(x) = -x_1 + x_2^2$ and $\bar{x} = (1, 1)^\top$.

$$h(x) \quad = \quad f(\bar{x}) + s^{\top}(x - \bar{x}) =$$

 $s \in \Re^n$ is a subgradient of f at \bar{x} if

$$h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x) \qquad \text{for all } x \in \Re^n.$$

Example

Consider $f: \Re^2 \to \Re$ where $f(x) = -x_1 + x_2^2$ and $\bar{x} = (1, 1)^\top$.

$$h(x) = f(\bar{x}) + s^{\top}(x - \bar{x}) =$$

= 0 +

 $s \in \Re^n$ is a subgradient of f at \bar{x} if

$$h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x) \qquad \text{for all } x \in \Re^n.$$

Example

Consider $f: \Re^2 \to \Re$ where $f(x) = -x_1 + x_2^2$ and $\bar{x} = (1, 1)^\top$.

$$\begin{aligned} h(x) &= f(\bar{x}) + s^\top (x - \bar{x}) = \\ &= 0 + (-1, 2)(x - (1, 1)^\top) = \end{aligned}$$

 $s \in \Re^n$ is a subgradient of f at \bar{x} if

$$h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x) \qquad \text{for all } x \in \Re^n.$$

Example

Consider $f: \Re^2 \to \Re$ where $f(x) = -x_1 + x_2^2$ and $\bar{x} = (1, 1)^\top$.

$$h(x) = f(\bar{x}) + s^{\top}(x - \bar{x}) =$$

= 0 + (-1,2)(x - (1,1)^{\top}) = -x_1 + 2x_2 - 1.

 $s \in \Re^n$ is a subgradient of f at \bar{x} if

$$h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x) \qquad \text{for all } x \in \Re^n.$$

Example

Consider $f: \Re^2 \to \Re$ where $f(x) = -x_1 + x_2^2$ and $\bar{x} = (1, 1)^\top$.

We claim that $(-1,2)^{\top}$ is a subgradient of f at \bar{x} .

$$h(x) = f(\bar{x}) + s^{\top}(x - \bar{x}) =$$

= 0 + (-1,2)(x - (1,1)^{\top}) = -x_1 + 2x_2 - 1.

Check: $h(x) \leq f(x)$ for all $x \in \Re^n$.

 $s \in \Re^n$ is a subgradient of f at \bar{x} if

$$h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x) \qquad \text{for all } x \in \Re^n.$$

Example

Consider
$$f: \Re^2 \to \Re$$
 where $f(x) = -x_1 + x_2^2$ and $\bar{x} = (1, 1)^\top$

We claim that $(-1,2)^{\top}$ is a subgradient of f at \bar{x} .

$$h(x) = f(\bar{x}) + s^{\top}(x - \bar{x}) =$$

= 0 + (-1,2)(x - (1,1)^{\top}) = -x_1 + 2x_2 - 1.

Check: $h(x) \leq f(x)$ for all $x \in \Re^n$.

$$-x_1 + 2x_2 - 1 \stackrel{?}{\leq} -x_1 + x_2^2$$

 $s \in \Re^n$ is a subgradient of f at \bar{x} if

$$h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x) \qquad \text{for all } x \in \Re^n.$$

Example

Consider
$$f: \Re^2 \to \Re$$
 where $f(x) = -x_1 + x_2^2$ and $\bar{x} = (1, 1)^\top$

We claim that $(-1,2)^{\top}$ is a subgradient of f at \bar{x} .

$$h(x) = f(\bar{x}) + s^{\top}(x - \bar{x}) =$$

= 0 + (-1,2)(x - (1,1)^{\top}) = -x_1 + 2x_2 - 1.

Check: $h(x) \leq f(x)$ for all $x \in \Re^n$.

$$-x_1 + 2x_2 - 1 \stackrel{?}{\leq} -x_1 + x_2^2$$

or equivalently,

$$x_2^2 - 2x_2 + 1 \stackrel{?}{\ge} 0,$$

 $s \in \Re^n$ is a subgradient of f at \bar{x} if

$$h(x) := f(\bar{x}) + s^{\top}(x - \bar{x}) \le f(x) \qquad \text{for all } x \in \Re^n.$$

Example

Consider
$$f: \Re^2 \to \Re$$
 where $f(x) = -x_1 + x_2^2$ and $\bar{x} = (1, 1)^\top$

We claim that $(-1,2)^{\top}$ is a subgradient of f at \bar{x} .

$$h(x) = f(\bar{x}) + s^{\top}(x - \bar{x}) =$$

= 0 + (-1,2)(x - (1,1)^{\top}) = -x_1 + 2x_2 - 1.

Check: $h(x) \leq f(x)$ for all $x \in \Re^n$.

$$-x_1 + 2x_2 - 1 \stackrel{?}{\leq} -x_1 + x_2^2$$

or equivalently, $x_2^2-2x_2+1\stackrel{?}{\geq}0,$ which is the case as $x_2^2-2x_2+1=(x_2-1)^2\geq 0.$

Let $C \in \Re^n$ be a convex set and let $\bar{x} \in C$.

Let $C \in \Re^n$ be a convex set and let $\bar{x} \in C$.

The halfspace $F = \{x : s^{\top}x \leq \beta\}$ is supporting C at \bar{x} if

Let $C \in \Re^n$ be a convex set and let $\bar{x} \in C$. The halfspace $F = \{x : s^{\top}x \leq \beta\}$ is supporting C at \bar{x} if (1) $C \subseteq F$ and

Let $C \in \Re^n$ be a convex set and let $\bar{x} \in C$. The halfspace $F = \{x : s^{\top}x \leq \beta\}$ is supporting C at \bar{x} if (1) $C \subseteq F$ and (2) $s^{\top}\bar{x} = \beta$. That is, \bar{x} is on the boundary of F.

Let $C \in \Re^n$ be a convex set and let $\bar{x} \in C$. The halfspace $F = \{x : s^{\top}x \leq \beta\}$ is supporting C at \bar{x} if (1) $C \subseteq F$ and (2) $s^{\top}\bar{x} = \beta$. That is, \bar{x} is on the boundary of F.

Let $C \in \Re^n$ be a convex set and let $\bar{x} \in C$. The halfspace $F = \{x : s^{\top}x \leq \beta\}$ is supporting C at \bar{x} if (1) $C \subseteq F$ and (2) $s^{\top}\bar{x} = \beta$. That is, \bar{x} is on the boundary of F.

Unique supporting halfspace at \bar{x} .

Let $C \in \Re^n$ be a convex set and let $\bar{x} \in C$. The halfspace $F = \{x : s^{\top}x \leq \beta\}$ is supporting C at \bar{x} if (1) $C \subseteq F$ and (2) $s^{\top}\bar{x} = \beta$. That is, \bar{x} is on the boundary of F.

Let $C \in \Re^n$ be a convex set and let $\bar{x} \in C$. The halfspace $F = \{x : s^{\top}x \leq \beta\}$ is supporting C at \bar{x} if (1) $C \subseteq F$ and (2) $s^{\top}\bar{x} = \beta$. That is, \bar{x} is on the boundary of F.

Let $C \in \Re^n$ be a convex set and let $\bar{x} \in C$. The halfspace $F = \{x : s^{\top}x \leq \beta\}$ is supporting C at \bar{x} if (1) $C \subseteq F$ and (2) $s^{\top}\bar{x} = \beta$. That is, \bar{x} is on the boundary of F.

Non-unique supporting halfspace at \bar{x} .

Let $C \in \Re^n$ be a convex set and let $\bar{x} \in C$. The halfspace $F = \{x : s^{\top}x \leq \beta\}$ is supporting C at \bar{x} if (1) $C \subseteq F$ and (2) $s^{\top}\bar{x} = \beta$. That is, \bar{x} is on the boundary of F.

Let $C \in \Re^n$ be a convex set and let $\bar{x} \in C$. The halfspace $F = \{x : s^{\top}x \leq \beta\}$ is supporting C at \bar{x} if (1) $C \subseteq F$ and (2) $s^{\top}\bar{x} = \beta$. That is, \bar{x} is on the boundary of F.

Question

What do we get when n = 1?

Let $C \in \Re^n$ be a convex set and let $\bar{x} \in C$. The halfspace $F = \{x : s^{\top}x \leq \beta\}$ is supporting C at \bar{x} if (1) $C \subseteq F$ and (2) $s^{\top}\bar{x} = \beta$. That is, \bar{x} is on the boundary of F.

Question

What do we get when n = 1?

• C is a segment (or a halfline)

Let $C \in \Re^n$ be a convex set and let $\bar{x} \in C$. The halfspace $F = \{x : s^{\top}x \leq \beta\}$ is supporting C at \bar{x} if (1) $C \subseteq F$ and (2) $s^{\top}\bar{x} = \beta$. That is, \bar{x} is on the boundary of F.

Question

What do we get when n = 1?

- C is a segment (or a halfline)
- F is a halfline

Let $C \in \Re^n$ be a convex set and let $\bar{x} \in C$. The halfspace $F = \{x : s^{\top}x \leq \beta\}$ is supporting C at \bar{x} if (1) $C \subseteq F$ and (2) $s^{\top}\bar{x} = \beta$. That is, \bar{x} is on the boundary of F.

Question

What do we get when n = 1?

- C is a segment (or a halfline)
- F is a halfline

Proposition

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$.

Proposition

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$.

```
Let s be a subgradient of g at \bar{x}.
```

Proposition

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$.

```
Let s be a subgradient of g at \bar{x}.
```

```
Let C = \{x : g(x) \leq 0\}.
```

Proposition

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$.

Let s be a subgradient of g at \bar{x} .

Let $C = \{x : g(x) \leq 0\}.$

Let $F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.$

Proposition

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$.

Let s be a subgradient of g at \bar{x} .

Let $C = \{x : g(x) \leq 0\}.$

Let
$$F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.$$

Then, F is a supporting halfspace of C at \bar{x} .

Proposition

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$.

Let s be a subgradient of g at \bar{x} .

Let $C = \{x : g(x) \leq 0\}.$

Let
$$F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.$$

Then, F is a supporting halfspace of C at \bar{x} .

Remark

Proposition

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$.

Let s be a subgradient of g at \bar{x} .

Let $C = \{x : g(x) \leq 0\}.$

Let
$$F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.$$

Then, F is a supporting halfspace of C at \bar{x} .

Remark

• C is convex, as g is a convex function,

Proposition

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$.

Let s be a subgradient of g at \bar{x} .

Let $C = \{x : g(x) \leq 0\}.$

Let
$$F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.$$

Then, F is a supporting halfspace of C at \bar{x} .

Remark

- C is convex, as g is a convex function,
- F is a halfspace, as h(x) is an affine function, and

Proposition

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$.

Let s be a subgradient of g at \bar{x} .

Let $C = \{x : g(x) \leq 0\}.$

Let
$$F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}.$$

Then, F is a supporting halfspace of C at \bar{x} .

Remark

- C is convex, as g is a convex function,
- F is a halfspace, as h(x) is an affine function, and
- $h(\bar{x}) = g(\bar{x}) = 0$ thus, \bar{x} is on the boundary of F.

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$. Let s be a subgradient of g at \bar{x} . Let $C = \{x : g(x) \le 0\}$. Let $F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}$. Then, F is a supporting halfspace of C at \bar{x} .

Example

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$. Let s be a subgradient of g at \bar{x} . Let $C = \{x : g(x) \le 0\}$. Let $F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}$. Then, F is a supporting halfspace of C at \bar{x} .

Example

 $g(x) = x_2^2 - x_1$

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$. Let s be a subgradient of g at \bar{x} . Let $C = \{x: g(x) \le 0\}$. Let $F = \{x: h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}$. Then, F is a supporting halfspace of C at \bar{x} .

Example

$$g(x) = x_2^2 - x_1$$

$$\bar{x} = (1,1)^{\top}$$

 $s=(-1,2)^\top$ subgradient at \bar{x}

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$. Let s be a subgradient of g at \bar{x} . Let $C = \{x: g(x) \le 0\}$. Let $F = \{x: h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}$. Then, F is a supporting halfspace of C at \bar{x} .

Example

$$g(x) = x_2^2 - x_1$$

$$\bar{x} = (1,1)^{\mathsf{T}}$$

 $s=(-1,2)^\top$ subgradient at \bar{x}

$$h(x) = 0 + (-1,2) \left[\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right]$$

= $-x_1 + 2x_2 - 1$

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$. Let s be a subgradient of g at \bar{x} . Let $C = \{x: g(x) \le 0\}$. Let $F = \{x: h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}$. Then, F is a supporting halfspace of C at \bar{x} .

Example

$$g(x) = x_2^2 - x_1$$

$$\bar{x} = (1,1)^{\mathsf{T}}$$

 $s = (-1,2)^\top$ subgradient at \bar{x}

$$h(x) = 0 + (-1, 2) \left[\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right]$$

= $-x_1 + 2x_2 - 1$
$$F = \{x : -x_1 + 2x_2 \le 1\}$$

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$. Let s be a subgradient of g at \bar{x} .

Let $C = \{x : g(x) \le 0\}$. Let $F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}$. Then, F is a supporting halfspace of C at \bar{x} .

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$. Let s be a subgradient of g at \bar{x} .

Let $C = \{x : g(x) \le 0\}$. Let $F = \{x : h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}$. Then, F is a supporting halfspace of C at \bar{x} .

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$. Let s be a subgradient of g at \bar{x} . Let $C = \{x: g(x) \le 0\}$. Let $F = \{x: h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}$. Then, F is a supporting halfspace of C at \bar{x} .

Proof

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$. Let s be a subgradient of g at \bar{x} . Let $C = \{x: g(x) \le 0\}$. Let $F = \{x: h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}$. Then, F is a supporting halfspace of C at \bar{x} .

Proof <u>Claim</u>: $C \subseteq F$.

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$. Let s be a subgradient of g at \bar{x} . Let $C = \{x: g(x) \le 0\}$. Let $F = \{x: h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}$. Then, F is a supporting halfspace of C at \bar{x} .

Proof

<u>Claim</u>: $C \subseteq F$.

Let $x \in C$ and thus, $g(x) \leq 0$

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$. Let s be a subgradient of g at \bar{x} . Let $C = \{x: g(x) \le 0\}$. Let $F = \{x: h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}$. Then, F is a supporting halfspace of C at \bar{x} .

Proof

<u>Claim</u>: $C \subseteq F$.

```
Let x \in C and thus, g(x) \leq 0
```

By definition of a subgradient, we know that $h(x) \leq g(x)$.

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$. Let s be a subgradient of g at \bar{x} . Let $C = \{x: g(x) \le 0\}$. Let $F = \{x: h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}$. Then, F is a supporting halfspace of C at \bar{x} .

Proof

<u>Claim</u>: $C \subseteq F$.

Let $x \in C$ and thus, $g(x) \leq 0$

By definition of a subgradient, we know that $h(x) \leq g(x)$.

It follows that $h(x) \leq g(x) \leq 0$.

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$. Let s be a subgradient of g at \bar{x} . Let $C = \{x: g(x) \le 0\}$. Let $F = \{x: h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}$. Then, F is a supporting halfspace of C at \bar{x} .

Proof

<u>Claim</u>: $C \subseteq F$.

```
Let x \in C and thus, g(x) \leq 0
```

By definition of a subgradient, we know that $h(x) \leq g(x)$.

It follows that $h(x) \leq g(x) \leq 0$.

Hence, $x \in F$.

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$. Let s be a subgradient of g at \bar{x} . Let $C = \{x: g(x) \le 0\}$. Let $F = \{x: h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}$. Then, F is a supporting halfspace of C at \bar{x} .

Proof

<u>Claim</u>: $C \subseteq F$.

```
Let x \in C and thus, g(x) \leq 0
```

By definition of a subgradient, we know that $h(x) \leq g(x)$.

```
It follows that h(x) \leq g(x) \leq 0.
```

Hence, $x \in F$.

<u>Claim</u>: $h(\bar{x}) = 0$

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$. Let s be a subgradient of g at \bar{x} . Let $C = \{x: g(x) \le 0\}$. Let $F = \{x: h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}$. Then, F is a supporting halfspace of C at \bar{x} .

Proof

<u>Claim</u>: $C \subseteq F$.

```
Let x \in C and thus, g(x) \leq 0
```

By definition of a subgradient, we know that $h(x) \leq g(x)$.

```
It follows that h(x) \leq g(x) \leq 0.
```

```
Hence, x \in F.
```

<u>Claim</u>: $h(\bar{x}) = 0$

$$h(\bar{x}) = g(\bar{x})$$

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$. Let s be a subgradient of g at \bar{x} . Let $C = \{x: g(x) \le 0\}$. Let $F = \{x: h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}$. Then, F is a supporting halfspace of C at \bar{x} .

Proof

<u>Claim</u>: $C \subseteq F$.

```
Let x \in C and thus, g(x) \leq 0
```

By definition of a subgradient, we know that $h(x) \leq g(x)$.

```
It follows that h(x) \leq g(x) \leq 0.
```

```
Hence, x \in F.
```

<u>Claim</u>: $h(\bar{x}) = 0$

$$h(\bar{x}) = g(\bar{x}) = 0.$$

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$. Let s be a subgradient of g at \bar{x} . Let $C = \{x: g(x) \le 0\}$. Let $F = \{x: h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}$. Then, F is a supporting halfspace of C at \bar{x} .

Question

Why is this relevant for us?

Let $g: \Re^n \to \Re$ be convex and let \bar{x} where $g(\bar{x}) = 0$. Let s be a subgradient of g at \bar{x} . Let $C = \{x: g(x) \le 0\}$. Let $F = \{x: h(x) := g(\bar{x}) + s^{\top}(x - \bar{x}) \le 0\}$. Then, F is a supporting halfspace of C at \bar{x} .

Question

Why is this relevant for us?

WE USE IT TO CONSTRUCT RELAXATIONS OF NLPS

$$\begin{array}{ll} \min & c^\top x \\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

$$\begin{array}{ll} \min & c^\top x \\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

 $\bar{\boldsymbol{x}}$ is a feasible solution

$$\begin{array}{ll} \min & c^\top x \\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

 $ar{x}$ is a feasible solution g_1 is convex

$$\begin{array}{ll} \min & c^\top x \\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

 $ar{x}$ is a feasible solution g_1 is convex $g_1(ar{x})=0$

$$\begin{array}{ll} \min & c^\top x \\ \text{s.t.} & \\ & g_i(x) \leq 0 \qquad (i=1,\ldots,k) \end{array}$$

 \bar{x} is a feasible solution g_1 is convex $g_1(\bar{x})=0$ s is a subgradient for g_1 at \bar{x}

min $c^{\top}x$

s.t.

$$g_i(x) \le 0$$
 $(i = 1, \dots, k)$

 $ar{x}$ is a feasible solution g_1 is convex $g_1(ar{x}) = 0$ s is a subgradient for g_1 at $ar{x}$

If we replace the nonlinear constraint

 $g_1(x) \leq 0$

min $c^{\top}x$

s.t.

$$g_i(x) \le 0 \qquad (i = 1, \dots, k)$$

 \bar{x} is a feasible solution g_1 is convex $g_1(\bar{x}) = 0$ s is a subgradient for g_1 at \bar{x}

If we replace the nonlinear constraint

$${\color{black} {g_1(x) \leq 0}}$$

with the linear constraint

$$h(x) = g_1(\bar{x}) + s^{\top}(x - \bar{x}) \le 0$$

we get a relaxation.

min $c^{\top}x$

s.t.

$$g_i(x) \le 0 \qquad (i = 1, \dots, k)$$

If we replace the nonlinear constraint

$$g_1(x) \le 0$$

with the linear constraint

$$h(x) = g_1(\bar{x}) + s^{\top}(x - \bar{x}) \le 0$$

we get a relaxation.

 $ar{x}$ is a feasible solution g_1 is convex $g_1(ar{x}) = 0$ s is a subgradient for g_1 at $ar{x}$

 $\begin{array}{ll} \min & c^\top x \\ \text{s.t.} \\ & g_i(x) \leq 0 \quad (i=1,\ldots,k) \end{array}$

 $\begin{array}{ll} \min & c^\top x \\ {\sf s.t.} \\ & g_i(x) \leq 0 \quad (i=1,\ldots,k) \end{array}$

 g_1, \ldots, g_k all convex

 $\begin{array}{ll} \min \quad c^\top x \\ \mathsf{s.t.} \\ g_i(x) \leq 0 \quad (i=1,\ldots,k) \end{array}$

 g_1, \ldots, g_k all convex \bar{x} is a feasible solution

 $\begin{array}{ll} \min & c^\top x \\ \text{s.t.} \\ g_i(x) \leq 0 \quad (i=1,\ldots,k) \end{array}$

 g_1, \ldots, g_k all convex \bar{x} is a feasible solution $\forall i \in I, g_i(\bar{x}) = 0$

min $c^{\top}x$ s.t. $g_i(x) \leq 0 \quad (i = 1, \dots, k)$ $\begin{array}{l} g_1,\ldots,g_k \text{ all convex} \\ \bar{x} \text{ is a feasible solution} \\ \forall i \in I, \; g_i(\bar{x}) = 0 \\ \forall i \in I, \; s^{(i)} \text{ subgradient for } g_i \text{ at } \bar{x} \end{array}$

 $\begin{array}{ll} \min \quad c^{\top}x & g_1, \dots, g_k \text{ all convex} \\ \text{s.t.} & \\ g_i(x) \leq 0 \quad (i = 1, \dots, k) \end{array} \qquad \begin{array}{l} g_1, \dots, g_k \text{ all convex} \\ \bar{x} \text{ is a feasible solution} \\ \forall i \in I, \ g_i(\bar{x}) = 0 \\ \forall i \in I, \ s^{(i)} \text{ subgradient for } g_i \text{ at } \bar{x} \end{array}$

If $-c \in cone \{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

min $c^{\top} x$ s.t. $g_i(x) \le 0 \quad (i = 1, \dots, k)$ $\begin{array}{l} g_1,\ldots,g_k \text{ all convex} \\ \bar{x} \text{ is a feasible solution} \\ \forall i \in I, \; g_i(\bar{x}) = 0 \\ \forall i \in I, \; s^{(i)} \text{ subgradient for } g_i \text{ at } \bar{x} \end{array}$

If $-c \in cone \{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Example

 $\begin{array}{ll} \min & -x_1 - x_2 \\ {\rm s.t.} & & \\ & -x_2 + x_1^2 \leq 0 & (1) \\ & -x_1 + x_2^2 \leq 0 & (2) \\ & -x_1 + \frac{1}{2} \leq 0 & (3) \end{array}$

$$\bar{x} = (1, 1)^{\top}$$
 feasible

min $c^{\top} x$ s.t. $g_i(x) \le 0 \quad (i = 1, \dots, k)$ $\begin{array}{l} g_1,\ldots,g_k \text{ all convex} \\ \bar{x} \text{ is a feasible solution} \\ \forall i \in I, \; g_i(\bar{x}) = 0 \\ \forall i \in I, \; s^{(i)} \text{ subgradient for } g_i \text{ at } \bar{x} \end{array}$

If $-c \in cone \{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Example

 $\begin{array}{ll} \min & -x_1 - x_2 \\ {\rm s.t.} & & \\ & -x_2 + x_1^2 \leq 0 & (1) \\ & -x_1 + x_2^2 \leq 0 & (2) \\ & -x_1 + \frac{1}{2} \leq 0 & (3) \end{array}$

$$\bar{x} = (1, 1)^{\top}$$
 feasible
 $I = \{1, 2\}$

min $c^{\top} x$ s.t. $g_i(x) \le 0 \quad (i = 1, \dots, k)$ $\begin{array}{l} g_1,\ldots,g_k \text{ all convex} \\ \bar{x} \text{ is a feasible solution} \\ \forall i \in I, \; g_i(\bar{x}) = 0 \\ \forall i \in I, \; s^{(i)} \text{ subgradient for } g_i \text{ at } \bar{x} \end{array}$

If $-c \in cone \{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Example

 $\begin{array}{ll} \min & -x_1 - x_2 \\ {\rm s.t.} & & \\ & -x_2 + x_1^2 \leq 0 & (1) \\ & -x_1 + x_2^2 \leq 0 & (2) \\ & -x_1 + \frac{1}{2} \leq 0 & (3) \end{array}$

$$ar{x} = (1,1)^{ op}$$
 feasible
 $I = \{1,2\}$
 $(2,-1)^{ op}$ subgradient for g_1 at $ar{x}$

min $c^{\top}x$ s.t. $g_i(x) \leq 0 \quad (i = 1, \dots, k)$ $\begin{array}{l} g_1,\ldots,g_k \text{ all convex} \\ \bar{x} \text{ is a feasible solution} \\ \forall i \in I, \; g_i(\bar{x}) = 0 \\ \forall i \in I, \; s^{(i)} \text{ subgradient for } g_i \text{ at } \bar{x} \end{array}$

If $-c \in cone \{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Example

 $\begin{array}{ll} \min & -x_1 - x_2 \\ {\rm s.t.} & & \\ & -x_2 + x_1^2 \leq 0 & (1) \\ & -x_1 + x_2^2 \leq 0 & (2) \\ & -x_1 + \frac{1}{2} \leq 0 & (3) \end{array}$

 $\bar{x} = (1, 1)^{\top}$ feasible $I = \{1, 2\}$ $(2, -1)^{\top}$ subgradient for g_1 at \bar{x} $(-1, 2)^{\top}$ subgradient for g_2 at \bar{x}

min $c^{\top} x$ s.t. $g_i(x) \le 0 \quad (i = 1, \dots, k)$ $\begin{array}{l} g_1,\ldots,g_k \text{ all convex} \\ \bar{x} \text{ is a feasible solution} \\ \forall i \in I, \; g_i(\bar{x}) = 0 \\ \forall i \in I, \; s^{(i)} \text{ subgradient for } g_i \text{ at } \bar{x} \end{array}$

If $-c \in cone \{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Example

min $-x_1 - x_2$ s.t. $-x_2 + x_1^2 \le 0$ (1) $-x_1 + x_2^2 \le 0$ (2) $-x_1 + \frac{1}{2} \le 0$ (3)

 $\bar{x} = (1, 1)^{\top}$ feasible $I = \{1, 2\}$ $(2, -1)^{\top}$ subgradient for g_1 at \bar{x} $(-1, 2)^{\top}$ subgradient for g_2 at \bar{x}

$$-\begin{pmatrix} -1\\ -1 \end{pmatrix} \in cone\left\{ \begin{pmatrix} 2\\ -1 \end{pmatrix}, \begin{pmatrix} -1\\ 2 \end{pmatrix} \right\} \implies \bar{x} \text{ optimal.}$$

 $\begin{array}{ll} \min \quad c^{\top}x & g_1, \dots, g_k \text{ all convex} \\ \text{s.t.} & \\ g_i(x) \leq 0 \quad (i = 1, \dots, k) \end{array} \qquad \begin{array}{l} g_1, \dots, g_k \text{ all convex} \\ \bar{x} \text{ is a feasible solution} \\ \forall i \in I, \ g_i(\bar{x}) = 0 \\ \forall i \in I, \ s^{(i)} \text{ subgradient for } g_i \text{ at } \bar{x} \end{array}$

If $-c \in cone \{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

min $c^{\top}x$ s.t. $g_i(x) \le 0$ $(i = 1, \dots, k)$ $\begin{array}{l} g_1,\ldots,g_k \text{ all convex} \\ \bar{x} \text{ is a feasible solution} \\ \forall i \in I, \; g_i(\bar{x}) = 0 \\ \forall i \in I, \; s^{(i)} \text{ subgradient for } g_i \text{ at } \bar{x} \end{array}$

If $-c \in cone \{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Proof

min $c^{\top}x$ s.t. $g_i(x) \leq 0 \quad (i = 1, \dots, k)$ $\begin{array}{l} g_1,\ldots,g_k \text{ all convex} \\ \bar{x} \text{ is a feasible solution} \\ \forall i \in I, \ g_i(\bar{x}) = 0 \\ \forall i \in I, \ s^{(i)} \text{ subgradient for } g_i \text{ at } \bar{x} \end{array}$

If $-c \in cone \{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Proof

We have a relaxation

$$\begin{array}{ll} \min & c^\top x \\ \text{s.t.} & \\ & g_i(x) \leq 0 \quad (i \in I) \end{array} \end{array}$$

min $c^{\top}x$ s.t. $g_i(x) \leq 0 \quad (i = 1, \dots, k)$ $\begin{array}{l} g_1,\ldots,g_k \text{ all convex} \\ \bar{x} \text{ is a feasible solution} \\ \forall i \in I, \; g_i(\bar{x}) = 0 \\ \forall i \in I, \; s^{(i)} \text{ subgradient for } g_i \text{ at } \bar{x} \end{array}$

If $-c \in cone \{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Proof

We have a relaxation

$$\begin{array}{ll} & \text{in} \quad c^\top x \\ & \text{t.} & \\ & g_i(x) \leq 0 \quad (i \in I) \end{array} \end{array}$$

We proved that the set of solutions to $g_i(x) \leq 0$

n s

is contained in the set of solutions to $g_i(\bar{x}) + s^{(i)}(x - \bar{x}) \le 0.$

min $c^{\top}x$ s.t. $g_i(x) \leq 0 \quad (i = 1, \dots, k)$ $\begin{array}{l} g_1,\ldots,g_k \text{ all convex} \\ \bar{x} \text{ is a feasible solution} \\ \forall i \in I, \ g_i(\bar{x}) = 0 \\ \forall i \in I, \ s^{(i)} \text{ subgradient for } g_i \text{ at } \bar{x} \end{array}$

If $-c \in cone \{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Proof

We have a relaxation $\begin{array}{c} \min \quad c^{\top}x\\ \text{s.t.}\\ g_i(\bar{x})+s^{(i)}(x-\bar{x})\leq 0 \quad (i\in I) \end{array}$

min $c^{\top} x$ s.t. $g_i(x) \le 0 \quad (i = 1, \dots, k)$ $\begin{array}{l} g_1,\ldots,g_k \text{ all convex} \\ \bar{x} \text{ is a feasible solution} \\ \forall i \in I, \ g_i(\bar{x}) = 0 \\ \forall i \in I, \ s^{(i)} \text{ subgradient for } g_i \text{ at } \bar{x} \end{array}$

If $-c \in cone \{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Proof

We have a relaxation $\begin{array}{c} \min \quad c^{\top}x\\ \text{s.t.}\\ g_i(\bar{x})+s^{(i)}(x-\bar{x})\leq 0 \quad (i\in I) \end{array}$

 $g_i(\bar{x}) + s^{(i)}(x - \bar{x}) \le 0$ can be rewritten as

min $c^{\top}x$ s.t. $g_i(x) \leq 0 \quad (i = 1, \dots, k)$ $\begin{array}{l} g_1,\ldots,g_k \text{ all convex} \\ \bar{x} \text{ is a feasible solution} \\ \forall i \in I, \ g_i(\bar{x}) = 0 \\ \forall i \in I, \ s^{(i)} \text{ subgradient for } g_i \text{ at } \bar{x} \end{array}$

If $-c \in cone \{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Proof

We have a relaxation $\begin{array}{c} \min \quad c^{\top}x\\ \text{s.t.}\\ g_i(\bar{x}) + s^{(i)}(x-\bar{x}) \leq 0 \quad (i \in I) \end{array}$ $g_i(\bar{x}) + s^{(i)}(x-\bar{x}) \leq 0 \text{ can be rewritten as} \\ s^{(i)}x \leq s^{(i)}\bar{x} - g_i(\bar{x}) \end{array}$

min $c^{\top}x$ s.t. $g_i(x) \leq 0 \quad (i = 1, \dots, k)$ $\begin{array}{l} g_1,\ldots,g_k \text{ all convex} \\ \bar{x} \text{ is a feasible solution} \\ \forall i \in I, \; g_i(\bar{x}) = 0 \\ \forall i \in I, \; s^{(i)} \text{ subgradient for } g_i \text{ at } \bar{x} \end{array}$

If $-c \in cone \{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Proof

We have a relaxation

$$\begin{array}{ll} \max & -c^\top x \\ \text{s.t.} & \\ & s^{(i)}x \leq s^{(i)}\bar{x} - g_i(\bar{x}) \quad (i \in I) \end{array}$$

min $c^{\top}x$ s.t. $g_i(x) \le 0 \quad (i = 1, \dots, k)$ $\begin{array}{l} g_1,\ldots,g_k \text{ all convex} \\ \bar{x} \text{ is a feasible solution} \\ \forall i \in I, \; g_i(\bar{x}) = 0 \\ \forall i \in I, \; s^{(i)} \text{ subgradient for } g_i \text{ at } \bar{x} \end{array}$

If $-c \in cone \{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Proof

We have a relaxation

$$\begin{array}{ll} \max & -c^{\top}x\\ \text{s.t.} & \\ & s^{(i)}x \leq s^{(i)}\bar{x} - g_i(\bar{x}) \quad (i \in I) \end{array}$$

Then, \bar{x} is optimal for the relaxation if $-c \in cone \{s^{(i)} : i \in I\}$.

min $c^{\top}x$ s.t. $g_i(x) \leq 0 \quad (i = 1, \dots, k)$ $\begin{array}{l} g_1,\ldots,g_k \text{ all convex} \\ \bar{x} \text{ is a feasible solution} \\ \forall i \in I, \; g_i(\bar{x}) = 0 \\ \forall i \in I, \; s^{(i)} \text{ subgradient for } g_i \text{ at } \bar{x} \end{array}$

If $-c \in cone \{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Proof

We have a relaxation

$$\begin{array}{ll} \max & -c^{\top}x\\ \text{s.t.} & \\ & s^{(i)}x \leq s^{(i)}\bar{x} - g_i(\bar{x}) \quad (i \in I) \end{array}$$

Then, \bar{x} is optimal for the relaxation if $-c \in cone \{s^{(i)} : i \in I\}$.

This means that \bar{x} is also optimal for the NLP.

min $c^{\top}x$ s.t. $g_i(x) \leq 0 \quad (i = 1, \dots, k)$ $\begin{array}{l} g_1,\ldots,g_k \text{ all convex} \\ \bar{x} \text{ is a feasible solution} \\ \forall i \in I, \; g_i(\bar{x}) = 0 \\ \forall i \in I, \; s^{(i)} \text{ subgradient for } g_i \text{ at } \bar{x} \end{array}$

If $-c \in cone \{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Proof

We have a relaxation

$$\begin{array}{ll} \max & -c^{\top}x\\ \text{s.t.} & \\ & s^{(i)}x \leq s^{(i)}\bar{x} - g_i(\bar{x}) \quad (i \in I) \end{array}$$

Then, \bar{x} is optimal for the relaxation if $-c \in cone \{s^{(i)} : i \in I\}$.

This means that \bar{x} is also optimal for the NLP.

Question

Is there a converse to this result?

min $c^{\top}x$ s.t. $g_i(x) \le 0 \quad (i = 1, \dots, k)$ $\begin{array}{l} g_1,\ldots,g_k \text{ all convex} \\ \bar{x} \text{ is a feasible solution} \\ \forall i \in I, \; g_i(\bar{x}) = 0 \\ \forall i \in I, \; s^{(i)} \text{ subgradient for } g_i \text{ at } \bar{x} \end{array}$

If $-c \in cone \{s^{(i)} : i \in I\}$ then \bar{x} is optimal.

Proof

We have a relaxation

$$\begin{array}{ll} \max & -c^{\top}x\\ \text{s.t.} & \\ & s^{(i)}x \leq s^{(i)}\bar{x} - g_i(\bar{x}) \quad (i \in I) \end{array}$$

Then, \bar{x} is optimal for the relaxation if $-c \in cone \{s^{(i)} : i \in I\}$.

This means that \bar{x} is also optimal for the NLP.

Question

Is there a converse to this result? YES

Proposition

Let $f: \Re^n \to \Re$ be a convex function and let $\bar{x} \in \Re^n$.

Proposition

Let $f: \Re^n \to \Re$ be a convex function and let $\bar{x} \in \Re^n$.

If the gradient $\nabla f(\bar{x})$ of f exists at \bar{x} , then it is a subgradient.

Proposition

Let $f: \Re^n \to \Re$ be a convex function and let $\bar{x} \in \Re^n$.

If the gradient $\nabla f(\bar{x})$ of f exists at \bar{x} , then it is a subgradient.

Proposition

Let $f: \mathbb{R}^n \to \mathbb{R}$ be function and let $\bar{x} \in \mathbb{R}^n$. If the partial derivative $\frac{\partial f(x)}{\partial x_j}$ exists for f at \bar{x} for all $j = 1, \ldots, n$, then the gradient $\nabla f(\bar{x})$ is obtained by evaluating for \bar{x} ,

$$\left(\frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_n}\right)^{\top}$$

Example

Compute the gradient of the convex function

$$f(x) = -x_2 + x_1^2$$

at $\bar{x} = (1, 1)^{\top}$.

Example

Compute the gradient of the convex function

$$f(x) = -x_2 + x_1^2$$

at $\bar{x} = (1, 1)^\top$.

We have

$$\left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}\right)^{\top} = (2x_1, -1)^{\top}$$

Example

Compute the gradient of the convex function

$$f(x) = -x_2 + x_1^2$$

at $\bar{x} = (1, 1)^\top$.

We have

$$\left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}\right)^{\top} = (2x_1, -1)^{\top}$$

For \bar{x} we get $\nabla f(\bar{x}) = (2, -1)^{\top}$.

Example

Compute the gradient of the convex function

$$f(x) = -x_2 + x_1^2$$

at $\bar{x} = (1,1)^\top$.

We have

$$\left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}\right)^{\top} = (2x_1, -1)^{\top}$$

For \bar{x} we get $\nabla f(\bar{x}) = (2, -1)^{\top}$.

Since $(2,-1)^{\top}$ is the gradient of f at \bar{x} , it is a subgradient as well.

A feasible solution to \bar{x} is a Slater point of

$$\begin{array}{ll} \min \quad c^{\top}x \\ \text{s.t.} \\ g_i(x) \leq 0 \quad (i=1,\ldots,k) \end{array}$$

if $g_i(\bar{x}) < 0$ for all $i = 1, \ldots, k$.

A feasible solution to \bar{x} is a Slater point of

$$\begin{array}{ll} \min \quad c^{\top}x \\ \text{s.t.} \\ g_i(x) \leq 0 \quad (i=1,\ldots,k) \end{array}$$

if $g_i(\bar{x}) < 0$ for all $i = 1, \ldots, k$.

Example

 $\begin{array}{rll} \min & -x_1 - x_2 \\ \text{s.t.} & & \\ & -x_2 + x_1^2 & \leq & 0 & (1) \\ & -x_1 + x_2^2 & \leq & 0 & (2) \\ & -x_1 + \frac{1}{2} & \leq & 0 & (3) \end{array}$

A feasible solution to \bar{x} is a Slater point of

$$\begin{array}{ll} \min \quad c^{\top}x \\ \text{s.t.} \\ g_i(x) \leq 0 \quad (i=1,\ldots,k) \end{array}$$

if $g_i(\bar{x}) < 0$ for all $i = 1, \ldots, k$.

Example

min $-x_1 - x_2$ s.t. $-x_2 + x_1^2 \leq 0$ (1) $-x_1 + x_2^2 \leq 0$ (2) $-x_1 + \frac{1}{2} \leq 0$ (3)

 $\bar{x} = \left(\frac{3}{4}, \frac{3}{4}\right)^{\top}$ is a Slater point.

A feasible solution to \bar{x} is a Slater point of

$$\begin{array}{ll} \min \quad c^{\top}x \\ \text{s.t.} \\ g_i(x) \leq 0 \quad (i=1,\ldots,k) \end{array}$$

if $g_i(\bar{x}) < 0$ for all $i = 1, \ldots, k$.

Example

$$\bar{x} = \left(\frac{3}{4}, \frac{3}{4}\right)^{\top}$$
 is a Slater point.

Consider the following NLP:

$$\begin{array}{ll} \min \quad c^{\top}x\\ \text{s.t.}\\ g_i(x) \leq 0 \quad (i=1,\ldots,k) \end{array}$$

Consider the following NLP:

$$\begin{array}{ll} \min \quad c^{\top}x\\ \text{s.t.}\\ g_i(x) \leq 0 \quad (i=1,\ldots,k) \end{array}$$

Consider the following NLP:

$$\begin{array}{ll} \min \quad c^{\top}x\\ \text{s.t.}\\ g_i(x) \leq 0 \quad (i=1,\ldots,k) \end{array}$$

Suppose that

1. g_1, \ldots, g_k are all convex,

Consider the following NLP:

$$\begin{array}{ll} \min \quad c^{\top}x\\ \text{s.t.}\\ g_i(x) \leq 0 \quad (i=1,\ldots,k) \end{array}$$

- 1. g_1, \ldots, g_k are all convex,
- 2. there exists a Slater point,

Consider the following NLP:

$$\begin{array}{ll} \min \quad c^{\top}x\\ \text{s.t.}\\ g_i(x) \leq 0 \quad (i=1,\ldots,k) \end{array}$$

- 1. g_1, \ldots, g_k are all convex,
- 2. there exists a Slater point,
- 3. \bar{x} is a feasible solution,

Consider the following NLP:

$$\begin{array}{ll} \min \quad c^{\top}x\\ \text{s.t.}\\ g_i(x) \leq 0 \quad (i=1,\ldots,k) \end{array}$$

- 1. g_1, \ldots, g_k are all convex,
- 2. there exists a Slater point,
- 3. \bar{x} is a feasible solution,
- 4. I is the set of indices i for which $g_i(\bar{x}) = 0$, and

Consider the following NLP:

$$\begin{array}{ll} \min \quad c^{\top}x\\ \text{s.t.}\\ g_i(x) \leq 0 \quad (i=1,\ldots,k) \end{array}$$

- 1. g_1, \ldots, g_k are all convex,
- 2. there exists a Slater point,
- 3. \bar{x} is a feasible solution,
- 4. I is the set of indices i for which $g_i(\bar{x}) = 0$, and
- 5. for all $i \in I$ there exists a gradient $\nabla g_i(\bar{x})$ of g_i at \bar{x} .

Consider the following NLP:

$$\begin{array}{ll} \min \quad c^{\top}x\\ \text{s.t.}\\ g_i(x) \leq 0 \quad (i=1,\ldots,k) \end{array}$$

Suppose that

- 1. g_1, \ldots, g_k are all convex,
- 2. there exists a Slater point,
- 3. \bar{x} is a feasible solution,
- 4. I is the set of indices i for which $g_i(\bar{x}) = 0$, and
- 5. for all $i \in I$ there exists a gradient $\nabla g_i(\bar{x})$ of g_i at \bar{x} .

Then \bar{x} is optimal $\iff -c \in cone \{ \nabla g_i(\bar{x}) : i \in I \}.$

Consider the following NLP:

$$\begin{array}{ll} \min \quad c^{\top}x\\ \text{s.t.}\\ g_i(x) \leq 0 \quad (i=1,\ldots,k) \end{array}$$

Suppose that

- 1. g_1, \ldots, g_k are all convex,
- 2. there exists a Slater point,
- 3. \bar{x} is a feasible solution,
- 4. I is the set of indices i for which $g_i(\bar{x}) = 0$, and
- 5. for all $i \in I$ there exists a gradient $\nabla g_i(\bar{x})$ of g_i at \bar{x} .

Then \bar{x} is optimal $\iff -c \in cone \{ \nabla g_i(\bar{x}) : i \in I \}.$

Remark

We proved the "easy" direction " \Leftarrow ".

• We showed how to prove optimality using relaxations.

- We showed how to prove optimality using relaxations.
- We defined subgradients.

- We showed how to prove optimality using relaxations.
- We defined subgradients.
- We defined supporting halfspaces.

- We showed how to prove optimality using relaxations.
- We defined subgradients.
- We defined supporting halfspaces.
- We related subgradients and supporting halfspaces.

- We showed how to prove optimality using relaxations.
- We defined subgradients.
- We defined supporting halfspaces.
- We related subgradients and supporting halfspaces.
- We showed how to relax convex constraints by a linear constraint.

- We showed how to prove optimality using relaxations.
- We defined subgradients.
- We defined supporting halfspaces.
- We related subgradients and supporting halfspaces.
- We showed how to relax convex constraints by a linear constraint.
- We gave sufficient conditions for a solution to be optimal.

- We showed how to prove optimality using relaxations.
- We defined subgradients.
- We defined supporting halfspaces.
- We related subgradients and supporting halfspaces.
- We showed how to relax convex constraints by a linear constraint.
- We gave sufficient conditions for a solution to be optimal.
- We stated the KKT theorem.