Module 1: Formulations (IP Models)
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WaterTech

max  300x; + 260x2 + 220x3 4+ 180x4 — 8ys — 6y,

s.t.

11xy 4+ 7xo 4+ 6x3 + bxy < 700
4x1 4+ 6x2 4+ bx3 4+ 4x4 < 500
8x1 + 5x2 + 5x3 + 6x4 < ys
7x1+8x2 +7x3 +4x3 < yy
ys < 600

yu < 650

X1 X2, X3, X45 Yuy Ys > 0.
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Integer Programming
WaterTech

max  300x; + 260x2 + 220x3 4+ 180x4 — 8ys — 6y,
s.t. 1lxy + 7xo 4+ 6x3 + 5x4 < 700
4x1 4+ 6x2 4+ bx3 4+ 4x4 < 500
8x1 + 5x2 + 5x3 + 6x4 < ys
7x1+8x2 +7x3 +4x3 < yy
ys < 600
yu < 650

X1 X2, X3, X45 Yuy Ys > 0.

. . 2 1 1
Optimal solution: x = (16 + £,50,0,33 + §)T, ys =583 + 3,
vy = 650
Fractional solutions are often not desirable! Can we force solution
to take on only integer values?
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integrality constraints for

i X1+ X3 = 1
some/all variables.

x1,Xx2,x3 > 0
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Integer Programming

@ Yes! max X1+ X2 + 2xa
An integer program is a st. xi+x<1
linear program with added —xp —x3 > —1

integrality constraints for

i X1+ X3 = 1
some/all variables.

x1,%2,x3 > 0
@ We call an IP mixed if there X1, X3 integer.
are integer and fractional
variables, and pure
otherwise.

o Difference between LPs and
IPs is subtle. Yet: LPs are
easy to solve, IPs are not!
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Integer Programming
Can we solve IPs?

@ Integer programs are provably difficult to solve!

@ Every problem instance has a size which we normally denote
by n.
Think: n ~ number of variables/constraints of IP.

@ The running time of an algorithm is then the number of steps
that an algorithm takes.

e It is stated as a function of n: f(n) measures the largest
number of steps an algorithm takes on an instance of size n.
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Can we solve IPs?

@ An algorithm is efficient if its
running time f(n) is a polynomial
of n.

@ LPs can be solved efficiently. et us.
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we solve IPs?

An algorithm is efficient if its

running time f(n) is a polynomial

of n.
LPs can be solved efficiently.

IPs are very unlikely to admit
efficient algorithms!
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Integer Programming

we solve IPs?

An algorithm is efficient if its
running time f(n) is a polynomial
of n.

LPs can be solved efficiently.

IPs are very unlikely to admit
efficient algorithms!

It is very important to look for an
efficient algorithm for a problem.
The table states actual running
times of a computer that can
execute 1 million operations per
second on an instance of size

n = 100:
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IP Models: Knapsack
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Integer Programming

KitchTech Shipping

@ Company wishes to ship crates from Toronto to Kitchener.

Each crate type has weight and value:

| Type [1[2[3]4]5/[6]
weight (Ibs) |[ 30 | 20 | 30 | 90 | 30 | 70
value ($) 60 | 70 | 40 | 70 | 20 | 90

Total weight of crates shipped must not exceed 10,000 Ibs.

@ Goal: Maximize total value of shipped goods.
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Integer Programming
IP Model

@ Variables. One variable x; for number of crates of type / to
pack.




Integer Programming

I[P Model

@ Variables. One variable x; for number of crates of type / to
pack.

@ Constraints.




Integer Programming
IP Model

@ Variables. One variable x; for number of crates of type /i to
pack.

o Constraints. The total weight of a crates picked must not
exceed 10000 Ibs.




Integer Programming
IP Model

@ Variables. One variable x; for number of crates of type /i to
pack.

@ Constraints. The total weight of a crates picked must not
exceed 10000 Ibs.

30x7 + 20x> + 30x3 + 90x4 + 30x5 + 70x < 10000




Integer Programming
IP Model

@ Variables. One variable x; for number of crates of type /i to
pack.

@ Constraints. The total weight of a crates picked must not
exceed 10000 Ibs.

30x7 + 20x> + 30x3 + 90x4 + 30x5 + 70x < 10000

@ Objective function: Maximize total value.




Integer Programming
IP Model

@ Variables. One variable x; for number of crates of type / to
pack.

@ Constraints. The total weight of a crates picked must not
exceed 10000 Ibs.

30x1 + 20x2 4+ 30x3 + 90x4 + 30x5 + 70xg < 10000
@ Objective function: Maximize total value.

max 60x; + 70x> + 40x3 + 70x4 + 20x5 + 90xg




Integer Programming
IP Model

max 60x; + 70x> + 40x3 + 70x5 + 20x5 + 90x5

s.t.  30x3 4+ 20x2 4+ 30x3 + 90x4 + 30x5 + 70xg < 10000
xi >0 (ie€[6])
x; integer (i € [6])




Integer Programming
IP Model

max 60x; + 70x> + 40x3 + 70x4 + 20x5 + 90x4

s.t.  30x3 4+ 20x2 4+ 30x3 4+ 90x4 + 30x5 + 70xs < 10000
x>0 (i€l6])
x; integer (i € [6])

Let's make this model a bit more interesting...
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KitchTech:

Suppose that ...
@ We must not send max  60x + 70xz + 40x3+
more than 10 crates 70x4 + 20x5 + 90x6
of the same type. s.t.  30xy + 20x> + 30x3+
90x4 + 30x5 + 70xs < 10000
xi >0 (i€]6])
x; integer (i € [6])




Integer Programming

KitchTech:

Suppose that ...
@ We must not send max  60x + 70xz + 40x3+
more than 10 crates 70x4 + 20x5 + 90x6
of the same type. s.t.  30xy + 20x> + 30x3+
90x4 + 30x5 + 70xs < 10000
0<x <10 (iel6])
x; integer (i € [6])
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KitchTech:

Suppose that ...

@ We must not send
more than 10 crates
of the same type.

@ Can only send crates
of type 3, if we send
at least 1 crate of
type 4.

max 60x; + 70x> + 40x3+

s.t.

70x4 + 20x5 4+ 90x5

30x1 4+ 20x2 4 30x3+

90x4 4 30x5 4 70x¢ < 10000
0<x <10 (iel6))

x; integer (i € [6])




Integer Programming

KitchTech:

Suppose that ...

@ We must not send
more than 10 crates
of the same type.

@ Can only send crates
of type 3, if we send
at least 1 crate of
type 4.

Note: Can send at
most 10 crates of
type 3 by previous
constraint!
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x; integer (i € [6])




Integer Programming

KitchTech:

Suppose that ...
@ We must not send max  60x1 4 70xz + 40x3+
more than 10 crates 70x4 + 20x5 + 90xg
of the same type. s.t. 30xy + 20x2 + 30x3+

e Can only send crates 90x4 + 30x5 + 70x6 < 10000

of type 3, if we send x3 < 10x4
at least 1 crate of 0<x <10 (i€l6])
type 4. x; integer (i € [6])

Note: Can send at
most 10 crates of
type 3 by previous
constraint!




Integer Programming

KitchTech:

Correctness:

® x4 >1— new max 60x; + 70x2 + 40x3+

constraint is 70x4 + 20x5 + 90xg
redundant! s.t.  30x; + 20xo + 30x3+
90x4 + 30x5 + 70xs < 10000
x3 < 10xy

0<x <10 (iel6])
x; integer (i € [6])
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KitchTech:

Correctness:

@ x4 >1— new
constraint is
redundant!

@ x4 =0 —new
constraint becomes

X3§0.

max

s.t.

60x7 + 70x> 4+ 40x3+

70x4 + 20x5 4+ 90x5

30x1 + 20x> + 30x3+

90x4 4 30x5 4 70x¢ < 10000
x3 < 10xy

0<x <10 (i€][6])

x; integer (i € [6])
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KitchTech:

Suppose that we must

© take a total of at
least 4 crates of type
1or2, or

@ take at least 4 crates
of type 5 or 6.

max 60x; + 70xp + 40x3+

s.t.

70x4 + 20x5 4+ 90x5

30x1 + 20x> + 30x3+

90x4 4 30x5 4 70x¢ < 10000
x3 < 10x4

0<x;, <10 (i€[6])

x; integer (i € [6])
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KitchTech:

Suppose that we must

© take a total of at
least 4 crates of type
1or2, or

@ take at least 4 crates
of type 5 or 6.

Ideas?

max 60x; + 70xp + 40x3+

s.t.

70x4 + 20x5 4+ 90x5

30x1 + 20x> + 30x3+

90x4 4 30x5 4 70x¢ < 10000
x3 < 10x4

0<x;, <10 (i€[6])

x; integer (i € [6])
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KitchTech:

Suppose that we must

© take a total of at
least 4 crates of type
1or2, or

@ take at least 4 crates
of type 5 or 6.

Ideas?

Create a new variable y
s.t.

Qy=1—
X1+ x2 > 4,

Qy=0—

max 60x; + 70xp + 40x3+

s.t.

70x5 + 20x5 + 90xg

30x1 + 20x> + 30x3+

90x4 4 30x5 4 70x¢ < 10000
x3 < 10x4

0<x;, <10 (i€[6])

x; integer (i € [6])
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KitchTech:

Create a new variable y
s.t.

Qy=1—
x1+x2 > 4,

Qy=0—
X5 + X5 > 4.

Force y to take on values
0orl.

Add constraints:

max 60x; + 70xp + 40x3+

s.t.

70x5 + 20x5 + 90xg

30x1 + 20x> + 30x3+

90x4 4 30x5 4 70x¢ < 10000
x3 < 10x4

0<x;, <10 (i€[6])

x; integer (i € [6])
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KitchTech

Create a new variable y
s.t.

Qy=1—
x1+x2 > 4,

Qy=0—
X5 + X5 > 4.

Force y to take on values
0orl.

Add constraints:
Q x1 +x >4y

max 60x; + 70xp + 40x3+

s.t.

70x5 + 20x5 + 90xg

30x1 + 20x> + 30x3+

90x4 4 30x5 4 70x¢ < 10000
x3 < 10x4

0<x;, <10 (i€[6])

x; integer (i € [6])




Integer Programming

KitchTech

Create a new variable y
s.t.

Qy=1—
x1+x2 > 4,

Qy=0—
X5 + X5 > 4.

Force y to take on values
0orl.

Add constraints:
Q x1 +x >4y

Q@ x5 +x>4(1—y)

max 60x; + 70xp + 40x3+

s.t.

70x5 + 20x5 + 90xg

30x1 + 20x> + 30x3+

90x4 4 30x5 4 70x¢ < 10000
x3 < 10x4

0<x;, <10 (i€[6])

x; integer (i € [6])
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KitchTech:

Create a new variable y

st. max  60x + 70x; + 40x3+
Qy=1— 70x4 + 20x5 + 90xg
X+ =4, s.t. 30x + 20x; + 30x3+
0y-0 90x4 + 30x5 + 70x5 < 10000
X5 + X6 > 4. x3 < 10xg
Force y to take on values 0<x;, <10 (i€[6])
0orl. x; integer (i € [6])

Add constraints:
QO x1+x >4y

9 X5+X624(1—y)
QO 0<y<l
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KitchTech:

Create a new variable y

st. max  60x + 70x; + 40x3+
Qy=1— 70x4 + 20x5 + 90xg
X+ =4, s.t. 30x + 20x; + 30x3+
0y-0 90x4 + 30x5 + 70x5 < 10000
X5 + X6 > 4. x3 < 10xg
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Integer Programming

KitchTech:

Create a new variable y max  60x; 4 70xs -+ 40x3+

s.t.
70x4 + 20x5 4+ 90x5
Qy=1— s.t. 30x7 + 20x> + 30x3+
Xt 24, 90x4 + 30x5 + 70x5 < 10000
Qy=0— x3 < 10x4
X5 + Xp > 4. X1+ xp > 4y
Force y to take on values x5 4 xg > 4(1—y)
0orl. 0<y<1
Add constraints: 0<x, <10 (i€]l6])
Q x1+x2>4y y integer
@ x5+ x5 > 41— y) x; integer (i € [6])

QO 0<y<l L



Integer Programming
Binary Variables

max 60x; + 70x> + 40x3+

Variable y is called a
binary variable.

These are very useful for
modeling logical
constraints of the form:

[Condition (A or B) and
C]— D

Will see more examples ...

s.t.

70x4 + 20x5 4+ 90x5

30x1 + 20x> + 30x3+

90x4 4 30x5 4 70x¢ < 10000
x3 < 10x4

X1+ xp > 4y

x5+ x6 > 4(1 — y)
0<y<l1

0<x;, <10 (i€[6])
y integer

x; integer (i € [6])




Integer Programming

IP Models: Scheduling
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The neighbourhood coffee
shop is open on workdays.

Daily demand for workers:

Mon | Tues | Wed | Thurs | Fri '\_
3 5 9 2 7

Each worker works for 4
consecutive days and has

one day off. ®
e.g.. work: Mon, Tue, Wed,

Thu; off: Fri -y
or work: Wed, Thu, Fri,

Mon; off: Tue

Goal: hire the smallest
number of workers so that
the demand can be met!



Integer Programming

The neighbourhood coffee
shop is open on workdays.

Daily demand for workers:

Mon | Tues | Wed | Thurs | Fri
3 5 9 2 7

Each worker works for 4
consecutive days and has
one day off.

e.g.. work: Mon, Tue, Wed,
Thu; off: Fri

or work: Wed, Thu, Fri,
Mon; off: Tue

_ Can we solve this
Goal: hire the smallest \ J using IP?

number of workers so that
the demand can be met!
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people work on Monday?




Integer Programming

© Variables. What do we need to decide on?
— introduce variable x4 for every d € {M, T, W, Th, F}
counting the number of people to hire with starting day d.

@ Objective function. What do we want to minimize?
— the total number of people hired:

min xp + X7 + Xw + XTh + XF.

© Constraints. Need to ensure that enough people work on each
of the days.

Question: Given a solution (xp, XT, Xw, XTh, XF), how many
people work on Monday?
All but those that start on Tuesday; i.e.,

Xpm + Xw + XTh + XE.




Integer Programming
Constraints

Mon | Tues | Wed | Thurs | Fri

[Daily Demand)]

Monday: XM+ xw +X7h+xF >3
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. Mon | Tues | Wed | Thurs | Fri
[Daily Demand] 3 5 9 > 7
Monday: Xm+Fxw +xth+xF >3

Tuesday: XM+ XT+XTh+XF>5H




Integer Programming
Constraints

) Mon | Tues | Wed | Thurs | Fri

[Daily Demand)] 3 : 9 5 7
Monday: Xpm+Xw +XTh+XxF >3
Tuesday: XM+ XT +X7Hh +XF>5

Wednesday: Xp + XT +xw +xF > 9




Integer Programming
Constraints

[Daily Demand]

Monday:
Tuesday:
Wednesday:
Thursday:

Mon

Tues | Wed | Thurs | Fri

XM + Xw + XTh + XxF > 3
XM+ XT + XTh + XF 2 5
XM+ X7+ xw +xF>9
XM+ XT + X+ xT > 2




Integer Programming
Constraints

[Daily Demand]

Monday:
Tuesday:
Wednesday:
Thursday:
Friday:

Mon

Tues | Wed | Thurs | Fri

XM + Xw + XTh + XxF > 3
XM+ XT + XTh + XF 2 5
XM+ X7+ xw +xF>9
XM+ XT + X+ xT > 2
XT+Xw +XTh +Xxp > 7




Integer Programming
Scheduling LP

min Xy + X7 + Xw + XTh + XF

st. xpy+xw+xmp+xF >3
Xm+XT+XTh+XE>5
XM+ XT+Xw +xF > 9
Xy + X7+ xw +x7 > 2
XT +Xxw +XTh + X 2 7
x > ¥, x integer
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S := {127,289, 1310, 2754}.
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that the x; + ...+ xg isin S. How?
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@ Want: Exactly one of these variables is 1 in a feasible solution.




Integer Programming
Quiz

Given an integer program with integer variables xy,...,xs. Let
S := {127,289, 1310, 2754}.

We want to add constraints and/or variables to the IP that enforce
that the x; + ...+ xg isin S. How?

@ Add binary variables y127, V239, Y1310, Y2754, one for each j € S.
@ Want: Exactly one of these variables is 1 in a feasible solution.

e If y,=1for n €S then Z?:lx,-:n




Integer Programming
Quiz

Add the following constraints:

y127 + Y289 + Y1310 + Y54 = 1
6

doxi=> iy
i=1 ieS

0<y; <1, yjinteger VieS




Integer Programming
Quiz

Add the following constraints:

Y127 + Y280 + y1310 + yo7584 = 1

6
D_xi=2 W
i=1 ieS
0<y; <1, yjinteger Vie S

Why is the resulting IP correct?
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Recap:
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Recap:

@ An integer program is obtained by adding integrality
constraints for some/all of the variables to an LP.

@ An algorithm is efficient if its running time can be bounded by
a polynomial of the input size of the instance.

@ While LPs admit efficient algorithms, IPs are unlikely to have
efficient algorithms. Thus, whenever possible, formulate a
problem as an LP!

@ Variables that can take value 0 or 1 only are called binary.

@ Binary variables are useful for expressing logical conditions.




