Module 1: Formulations (IP Models)




Integer Programming
WaterTech

max  300x; + 260x2 + 220x3 4+ 180x4 — 8ys — 6y,

s.t.

11xy 4+ 7xo 4+ 6x3 + bxy < 700
4x1 4+ 6x2 4+ bx3 4+ 4x4 < 500
8x1 + 5x2 + 5x3 + 6x4 < ys
7x1+8x2 +7x3 +4x3 < yy
ys < 600

yu < 650

X1 X2, X3, X45 Yuy Ys > 0.




Integer Programming
WaterTech

max  300x; + 260x2 + 220x3 4+ 180x4 — 8ys — 6y,
s.t. 1lxy + 7xo 4+ 6x3 + 5x4 < 700
4x1 4+ 6x2 4+ bx3 4+ 4x4 < 500
8x1 + 5x2 + 5x3 + 6x4 < ys
7x1+8x2 +7x3 +4x3 < yy
ys < 600
yu < 650

X1 X2, X3, X45 Yuy Ys > 0.

Optimal solution: x = (16 4+ 2,50,0,33 + 1)7, ys = 583 + 1,
vy = 650




Integer Programming
WaterTech

max  300x; + 260x2 + 220x3 4+ 180x4 — 8ys — 6y,
s.t. 1lxy + 7xo 4+ 6x3 + 5x4 < 700
4x1 4+ 6x2 4+ bx3 4+ 4x4 < 500
8x1 + 5x2 + 5x3 + 6x4 < ys
7x1+8x2 +7x3 +4x3 < yy
ys < 600
yu < 650

X1 X2, X3, X45 Yuy Ys > 0.

. . 2 1 1
Optimal solution: x = (16 + £,50,0,33 + §)T, ys =583 + 3,
vy = 650
Fractional solutions are often not desirable! Can we force solution
to take on only integer values?




Integer Programming

@ Yes! max X1+ X2 + 2xa
An integer program is a st. xi+x<1
linear program with added —xp —x3 > —1

integrality constraints for

i X1+ X3 = 1
some/all variables.

x1,Xx2,x3 > 0




Integer Programming

@ Yes! max X1+ X2 + 2xa
An integer program is a st. xi+x<1
linear program with added —xp —x3 > —1

integrality constraints for

i X1+ X3 = 1
some/all variables.

x1,Xx2,x3 > 0

X1, X3 integer.




Integer Programming

@ Yes! max X1+ X2 + 2xa
An integer program is a st. xi+x<1
linear program with added —xp —x3 > —1

integrality constraints for

X1+ X3 = 1
some/all variables.

x1,Xx2,x3 > 0
@ We call an IP mixed if there X1, X3 integer.
are integer and fractional
variables, and pure
otherwise.




Integer Programming

@ Yes! max X1+ X2 + 2xa
An integer program is a st. xi+x<1
linear program with added —xp —x3 > —1

integrality constraints for

i X1+ X3 = 1
some/all variables.

x1,%2,x3 > 0
@ We call an IP mixed if there X1, X3 integer.
are integer and fractional
variables, and pure
otherwise.

o Difference between LPs and
IPs is subtle. Yet: LPs are
easy to solve, IPs are not!




Integer Programming
Can we solve IPs?

@ Integer programs are provably difficult to solve!




Integer Programming
Can we solve IPs?

@ Integer programs are provably difficult to solve!

@ Every problem instance has a size which we normally denote
by n.




Integer Programming
Can we solve IPs?

@ Integer programs are provably difficult to solve!

@ Every problem instance has a size which we normally denote
by n.
Think: n ~ number of variables/constraints of IP.




Integer Programming
Can we solve IPs?

@ Integer programs are provably difficult to solve!

@ Every problem instance has a size which we normally denote
by n.
Think: n ~ number of variables/constraints of IP.

@ The running time of an algorithm is then the number of steps
that an algorithm takes.




Integer Programming
Can we solve IPs?

@ Integer programs are provably difficult to solve!

@ Every problem instance has a size which we normally denote
by n.
Think: n ~ number of variables/constraints of IP.

@ The running time of an algorithm is then the number of steps
that an algorithm takes.

e It is stated as a function of n: f(n) measures the largest
number of steps an algorithm takes on an instance of size n.




Integer Programming
Can we solve IPs?

@ An algorithm is efficient if its
running time f(n) is a polynomial
of n.




Integer Programming

Can we solve IPs?

@ An algorithm is efficient if its
running time f(n) is a polynomial
of n.

@ LPs can be solved efficiently. et us.

WORLD | US| NX./REGION BUSINESS | TECHNOLOGY SCIENCE HEALTH | SPORTS | OPINION

Travel the way you want

The American Express *

[ ep— €arn 25,000 Welcome Bonus Poir

BREAKTHROUGH IN PROBLEM SOLVING

A 28-year-old mathematician at AT&T. Bell Laboratories has made [ racesoor
a starting theoretical breakthrough in the solving of systems of [p—
equations that often grow too vast and complex for the most

powerful computers 1 cooeres
@ e

‘The discovery, which is to be formally published next month, is @ e

already cirulating rapidly through the mathematcal world. Ithas

also setoff a deluge of inquiries from brokerage houses, ol
companies and airlines, industries with millions of dolars at stakein (& swoue race
problems known as linear programming. ® rerrnis

‘These problems are fiendishly complicated systems, often with




Integer Programming

we solve IPs?

An algorithm is efficient if its

running time f(n) is a polynomial

of n.
LPs can be solved efficiently.

IPs are very unlikely to admit
efficient algorithms!

TheNewYork Eimes us

WORLD | US| NX./REGION BUSINESS | TECHNOLOGY SCIENCE HEALTH | SPORTS | OPINION

BREAKTHROUGH IN PROBLEM SOLVING

A 28-year-old mathematician at AT&T. Bell Laboratories has made [ racesoor

a startling theoretical breakthrough in the solving of systems of ¥ s
equations that often grow too vast and complex for the most

powerful computers 1 cooeres
@ e

‘The discovery, which is to be formally published next month, is @ e

already cirulating rapidly through the mathematcal world. Ithas

also setoff a deluge of inquiries from brokerage houses, ol
companies and airlines, industries with millions of dolars at stakein (& swoue race
problems known as linear programming, ® rer

‘These problems are fiendishly complicated systems, often with




Integer Programming

we solve IPs?

An algorithm is efficient if its
running time f(n) is a polynomial
of n.

LPs can be solved efficiently.

IPs are very unlikely to admit
efficient algorithms!

It is very important to look for an
efficient algorithm for a problem.
The table states actual running
times of a computer that can
execute 1 million operations per
second on an instance of size

n = 100:

TheNewYork Times us

WoRL USINESS | TECHNOLOGY  SCIENCE | HEALTH | SPOKTS | OPINION

'HROUGH IN PROBLEM SOLVING

A 28-year-old mathematician at AT.&T. Bell Laboratories has made
a startling theoretical breakthrough in the solving of systems of
equations that often grow too vast and complex for the most
powerful computers

‘The discovery, which is to be formally published next month, is
already cireulating h the mathematical world. It has

also set off a deluge
companies and airli with millions of dollars at stake in
problems known as linear programming,

‘These problems are fiendishly complicated systems, often with THE

‘ nlog,(n) ‘ n

[ f(n) | n

3]

15" =] 5.2r-. .}




Integer Programming

IP Models: Knapsack




KitchTech Shipping

@ Company wishes to ship crates from Toronto to Kitchener.




Integer Programming

KitchTech Shipping

@ Company wishes to ship crates from Toronto to Kitchener.

@ Each crate type has weight and value:

| Type [1[2[3]4]5/[6]
weight (Ibs) |[ 30 | 20 | 30 | 90 | 30 | 70
value ($) 60 | 70 | 40 | 70 | 20 | 90




Integer Programming

KitchTech Shipping

@ Company wishes to ship crates from Toronto to Kitchener.

@ Each crate type has weight and value:

| Type [1[2[3]4]5/[6]
weight (Ibs) |[ 30 | 20 | 30 | 90 | 30 | 70
value ($) 60 | 70 | 40 | 70 | 20 | 90

@ Total weight of crates shipped must not exceed 10,000 Ibs.




Integer Programming

KitchTech Shipping

@ Company wishes to ship crates from Toronto to Kitchener.

Each crate type has weight and value:

| Type [1[2[3]4]5/[6]
weight (Ibs) |[ 30 | 20 | 30 | 90 | 30 | 70
value ($) 60 | 70 | 40 | 70 | 20 | 90

Total weight of crates shipped must not exceed 10,000 Ibs.

@ Goal: Maximize total value of shipped goods.




Integer Programming
IP Model

@ Variables.




Integer Programming
IP Model

@ Variables. One variable x; for number of crates of type / to
pack.




Integer Programming

I[P Model

@ Variables. One variable x; for number of crates of type / to
pack.

@ Constraints.




Integer Programming
IP Model

@ Variables. One variable x; for number of crates of type /i to
pack.

o Constraints. The total weight of a crates picked must not
exceed 10000 Ibs.




Integer Programming
IP Model

@ Variables. One variable x; for number of crates of type /i to
pack.

@ Constraints. The total weight of a crates picked must not
exceed 10000 Ibs.

30x7 + 20x> + 30x3 + 90x4 + 30x5 + 70x < 10000




Integer Programming
IP Model

@ Variables. One variable x; for number of crates of type /i to
pack.

@ Constraints. The total weight of a crates picked must not
exceed 10000 Ibs.

30x7 + 20x> + 30x3 + 90x4 + 30x5 + 70x < 10000

@ Objective function: Maximize total value.




Integer Programming
IP Model

@ Variables. One variable x; for number of crates of type / to
pack.

@ Constraints. The total weight of a crates picked must not
exceed 10000 Ibs.

30x1 + 20x2 4+ 30x3 + 90x4 + 30x5 + 70xg < 10000
@ Objective function: Maximize total value.

max 60x; + 70x> + 40x3 + 70x4 + 20x5 + 90xg




Integer Programming
IP Model

max 60x; + 70x> + 40x3 + 70x5 + 20x5 + 90x5

s.t.  30x3 4+ 20x2 4+ 30x3 + 90x4 + 30x5 + 70xg < 10000
xi >0 (ie€[6])
x; integer (i € [6])




Integer Programming
IP Model

max 60x; + 70x> + 40x3 + 70x4 + 20x5 + 90x4

s.t.  30x3 4+ 20x2 4+ 30x3 4+ 90x4 + 30x5 + 70xs < 10000
x>0 (i€l6])
x; integer (i € [6])

Let's make this model a bit more interesting...




Integer Programming

KitchTech:

Suppose that ...
@ We must not send max  60x + 70xz + 40x3+
more than 10 crates 70x4 + 20x5 + 90x6
of the same type. s.t.  30xy + 20x> + 30x3+
90x4 + 30x5 + 70xs < 10000
xi >0 (i€]6])
x; integer (i € [6])




Integer Programming

KitchTech:

Suppose that ...
@ We must not send max  60x + 70xz + 40x3+
more than 10 crates 70x4 + 20x5 + 90x6
of the same type. s.t.  30xy + 20x> + 30x3+
90x4 + 30x5 + 70xs < 10000
0<x <10 (iel6])
x; integer (i € [6])




Integer Programming

KitchTech:

Suppose that ...

@ We must not send
more than 10 crates
of the same type.

@ Can only send crates
of type 3, if we send
at least 1 crate of
type 4.

max 60x; + 70x> + 40x3+

s.t.

70x4 + 20x5 4+ 90x5

30x1 4+ 20x2 4 30x3+

90x4 4 30x5 4 70x¢ < 10000
0<x <10 (iel6))

x; integer (i € [6])




Integer Programming

KitchTech:

Suppose that ...

@ We must not send
more than 10 crates
of the same type.

@ Can only send crates
of type 3, if we send
at least 1 crate of
type 4.

Note: Can send at
most 10 crates of
type 3 by previous
constraint!

max 60x; + 70x> + 40x3+

s.t.

70x4 + 20x5 4+ 90x4

30x; + 20x2 + 30x3+

90x4 + 30x5 + 70xs < 10000
0<x <10 (iel[6))

x; integer (i € [6])




Integer Programming

KitchTech:

Suppose that ...
@ We must not send max  60x1 4 70xz + 40x3+
more than 10 crates 70x4 + 20x5 + 90xg
of the same type. s.t. 30xy + 20x2 + 30x3+

e Can only send crates 90x4 + 30x5 + 70x6 < 10000

of type 3, if we send x3 < 10x4
at least 1 crate of 0<x <10 (i€l6])
type 4. x; integer (i € [6])

Note: Can send at
most 10 crates of
type 3 by previous
constraint!




Integer Programming

KitchTech:

Correctness:

® x4 >1— new max 60x; + 70x2 + 40x3+

constraint is 70x4 + 20x5 + 90xg
redundant! s.t.  30x; + 20xo + 30x3+
90x4 + 30x5 + 70xs < 10000
x3 < 10xy

0<x <10 (iel6])
x; integer (i € [6])




Integer Programming

KitchTech:

Correctness:

@ x4 >1— new
constraint is
redundant!

@ x4 =0 —new
constraint becomes

X3§0.

max

s.t.

60x7 + 70x> 4+ 40x3+

70x4 + 20x5 4+ 90x5

30x1 + 20x> + 30x3+

90x4 4 30x5 4 70x¢ < 10000
x3 < 10xy

0<x <10 (i€][6])

x; integer (i € [6])




Integer Programming

KitchTech:

Suppose that we must

© take a total of at
least 4 crates of type
1or2, or

@ take at least 4 crates
of type 5 or 6.

max 60x; + 70xp + 40x3+

s.t.

70x4 + 20x5 4+ 90x5

30x1 + 20x> + 30x3+

90x4 4 30x5 4 70x¢ < 10000
x3 < 10x4

0<x;, <10 (i€[6])

x; integer (i € [6])




Integer Programming

KitchTech:

Suppose that we must

© take a total of at
least 4 crates of type
1or2, or

@ take at least 4 crates
of type 5 or 6.

Ideas?

max 60x; + 70xp + 40x3+

s.t.

70x4 + 20x5 4+ 90x5

30x1 + 20x> + 30x3+

90x4 4 30x5 4 70x¢ < 10000
x3 < 10x4

0<x;, <10 (i€[6])

x; integer (i € [6])




Integer Programming

KitchTech:

Suppose that we must

© take a total of at
least 4 crates of type
1or2, or

@ take at least 4 crates
of type 5 or 6.

Ideas?

Create a new variable y
s.t.

Qy=1—
X1+ x2 > 4,

Qy=0—

max 60x; + 70xp + 40x3+

s.t.

70x5 + 20x5 + 90xg

30x1 + 20x> + 30x3+

90x4 4 30x5 4 70x¢ < 10000
x3 < 10x4

0<x;, <10 (i€[6])

x; integer (i € [6])




Integer Programming

KitchTech:

Create a new variable y
s.t.

Qy=1—
x1+x2 > 4,

Qy=0—
X5 + X5 > 4.

Force y to take on values
0orl.

Add constraints:

max 60x; + 70xp + 40x3+

s.t.

70x5 + 20x5 + 90xg

30x1 + 20x> + 30x3+

90x4 4 30x5 4 70x¢ < 10000
x3 < 10x4

0<x;, <10 (i€[6])

x; integer (i € [6])




Integer Programming

KitchTech

Create a new variable y
s.t.

Qy=1—
x1+x2 > 4,

Qy=0—
X5 + X5 > 4.

Force y to take on values
0orl.

Add constraints:
Q x1 +x >4y

max 60x; + 70xp + 40x3+

s.t.

70x5 + 20x5 + 90xg

30x1 + 20x> + 30x3+

90x4 4 30x5 4 70x¢ < 10000
x3 < 10x4

0<x;, <10 (i€[6])

x; integer (i € [6])




Integer Programming

KitchTech

Create a new variable y
s.t.

Qy=1—
x1+x2 > 4,

Qy=0—
X5 + X5 > 4.

Force y to take on values
0orl.

Add constraints:
Q x1 +x >4y

Q@ x5 +x>4(1—y)

max 60x; + 70xp + 40x3+

s.t.

70x5 + 20x5 + 90xg

30x1 + 20x> + 30x3+

90x4 4 30x5 4 70x¢ < 10000
x3 < 10x4

0<x;, <10 (i€[6])

x; integer (i € [6])




Integer Programming

KitchTech:

Create a new variable y

st. max  60x + 70x; + 40x3+
Qy=1— 70x4 + 20x5 + 90xg
X+ =4, s.t. 30x + 20x; + 30x3+
0y-0 90x4 + 30x5 + 70x5 < 10000
X5 + X6 > 4. x3 < 10xg
Force y to take on values 0<x;, <10 (i€[6])
0orl. x; integer (i € [6])

Add constraints:
QO x1+x >4y

9 X5+X624(1—y)
QO 0<y<l



Integer Programming

KitchTech:

Create a new variable y

st. max  60x + 70x; + 40x3+
Qy=1— 70x4 + 20x5 + 90xg
X+ =4, s.t. 30x + 20x; + 30x3+
0y-0 90x4 + 30x5 + 70x5 < 10000
X5 + X6 > 4. x3 < 10xg
Force y to take on values 0<x;, <10 (i€[6])
0orl. x; integer (i € [6])

Add constraints:
QO x1+x >4y

9 X5+X624(1—y)
QO 0<y<l



Integer Programming

KitchTech:

Create a new variable y max  60x; 4 70xs -+ 40x3+

s.t.
70x4 + 20x5 4+ 90x5
Qy=1— s.t. 30x7 + 20x> + 30x3+
Xt 24, 90x4 + 30x5 + 70x5 < 10000
Qy=0— x3 < 10x4
X5 + Xp > 4. X1+ xp > 4y
Force y to take on values x5 4 xg > 4(1—y)
0orl. 0<y<1
Add constraints: 0<x, <10 (i€]l6])
Q x1+x2>4y y integer
@ x5+ x5 > 41— y) x; integer (i € [6])

QO 0<y<l L



Integer Programming
Binary Variables

max 60x; + 70x> + 40x3+

Variable y is called a
binary variable.

These are very useful for
modeling logical
constraints of the form:

[Condition (A or B) and
C]— D

Will see more examples ...

s.t.

70x4 + 20x5 4+ 90x5

30x1 + 20x> + 30x3+

90x4 4 30x5 4 70x¢ < 10000
x3 < 10x4

X1+ xp > 4y

x5+ x6 > 4(1 — y)
0<y<l1

0<x;, <10 (i€[6])
y integer

x; integer (i € [6])




Integer Programming

IP Models: Scheduling




Integer Programming

@ The neighbourhood coffee
shop is open on workdays.




Integer Programming

@ The neighbourhood coffee
shop is open on workdays.

@ Daily demand for workers:

Mon | Tues | Wed | Thurs | Fri
3 5 9 2 7




Integer Programming

@ The neighbourhood coffee
shop is open on workdays.

@ Daily demand for workers:

Mon | Tues | Wed | Thurs | Fri
3 5 9 2 7

@ Each worker works for 4
consecutive days and has
one day off.




Integer Programming

@ The neighbourhood coffee
shop is open on workdays.

@ Daily demand for workers:

Mon | Tues | Wed | Thurs | Fri '\»7
3 5 9 2 7

@ Each worker works for 4
consecutive days and has
one day off.

e.g.. work: Mon, Tue, Wed,
Thu; off: Fri

or work: Wed, Thu, Fri,
Mon; off: Tue




Integer Programming

The neighbourhood coffee
shop is open on workdays.

Daily demand for workers:

Mon | Tues | Wed | Thurs | Fri '\_
3 5 9 2 7

Each worker works for 4
consecutive days and has

one day off. ®
e.g.. work: Mon, Tue, Wed,

Thu; off: Fri -y
or work: Wed, Thu, Fri,

Mon; off: Tue

Goal: hire the smallest
number of workers so that
the demand can be met!



Integer Programming

The neighbourhood coffee
shop is open on workdays.

Daily demand for workers:

Mon | Tues | Wed | Thurs | Fri
3 5 9 2 7

Each worker works for 4
consecutive days and has
one day off.

e.g.. work: Mon, Tue, Wed,
Thu; off: Fri

or work: Wed, Thu, Fri,
Mon; off: Tue

_ Can we solve this
Goal: hire the smallest \ J using IP?

number of workers so that
the demand can be met!




Integer Programming

@ Variables. What do we need to decide on?




Integer Programming

@ Variables. What do we need to decide on?
— introduce variable x, for every d € {M, T, W, Th,F}
counting the number of people to hire with starting day d.




Integer Programming

@ Variables. What do we need to decide on?
— introduce variable x, for every d € {M, T, W, Th,F}
counting the number of people to hire with starting day d.

@ Objective function. What do we want to minimize?




Integer Programming

@ Variables. What do we need to decide on?
— introduce variable x, for every d € {M, T, W, Th,F}
counting the number of people to hire with starting day d.

@ Objective function. What do we want to minimize?
— the total number of people hired:

min xps + X7 + Xw + X7 + XF.




Integer Programming

@ Variables. What do we need to decide on?
— introduce variable x, for every d € {M, T, W, Th,F}
counting the number of people to hire with starting day d.

@ Objective function. What do we want to minimize?
— the total number of people hired:

min xp + X7 + Xw + XTh + XF.

© Constraints. Need to ensure that enough people work on each
of the days.




Integer Programming

@ Variables. What do we need to decide on?
— introduce variable x, for every d € {M, T, W, Th,F}
counting the number of people to hire with starting day d.

@ Objective function. What do we want to minimize?
— the total number of people hired:

min xp + X7 + Xw + XTh + XF.

© Constraints. Need to ensure that enough people work on each
of the days.

Question: Given a solution (xp, XT, Xw, XTh, XF), how many
people work on Monday?




Integer Programming

© Variables. What do we need to decide on?
— introduce variable x4 for every d € {M, T, W, Th, F}
counting the number of people to hire with starting day d.

@ Objective function. What do we want to minimize?
— the total number of people hired:

min xp + X7 + Xw + XTh + XF.

© Constraints. Need to ensure that enough people work on each
of the days.

Question: Given a solution (xp, XT, Xw, XTh, XF), how many
people work on Monday?
All but those that start on Tuesday; i.e.,

Xpm + Xw + XTh + XE.




Integer Programming
Constraints

Mon | Tues | Wed | Thurs | Fri

[Daily Demand)]

Monday: XM+ xw +X7h+xF >3




Integer Programming
Constraints

. Mon | Tues | Wed | Thurs | Fri
[Daily Demand] 3 5 9 > 7
Monday: Xm+Fxw +xth+xF >3

Tuesday: XM+ XT+XTh+XF>5H




Integer Programming
Constraints

) Mon | Tues | Wed | Thurs | Fri

[Daily Demand)] 3 : 9 5 7
Monday: Xpm+Xw +XTh+XxF >3
Tuesday: XM+ XT +X7Hh +XF>5

Wednesday: Xp + XT +xw +xF > 9




Integer Programming
Constraints

[Daily Demand]

Monday:
Tuesday:
Wednesday:
Thursday:

Mon

Tues | Wed | Thurs | Fri

XM + Xw + XTh + XxF > 3
XM+ XT + XTh + XF 2 5
XM+ X7+ xw +xF>9
XM+ XT + X+ xT > 2




Integer Programming
Constraints

[Daily Demand]

Monday:
Tuesday:
Wednesday:
Thursday:
Friday:

Mon

Tues | Wed | Thurs | Fri

XM + Xw + XTh + XxF > 3
XM+ XT + XTh + XF 2 5
XM+ X7+ xw +xF>9
XM+ XT + X+ xT > 2
XT+Xw +XTh +Xxp > 7




Integer Programming
Scheduling LP

min Xy + X7 + Xw + XTh + XF

st. xpy+xw+xmp+xF >3
Xm+XT+XTh+XE>5
XM+ XT+Xw +xF > 9
Xy + X7+ xw +x7 > 2
XT +Xxw +XTh + X 2 7
x > ¥, x integer




Integer Programming
Quiz

Given an integer program with integer variables xy,...,xs. Let
S := {127,289, 1310, 2754}.

We want to add constraints and/or variables to the IP that enforce
that the x; + ...+ xg isin S. How?




Integer Programming
Quiz

Given an integer program with integer variables xy,...,xs. Let
S := {127,289, 1310, 2754}.

We want to add constraints and/or variables to the IP that enforce
that the x; + ...+ xg isin S. How?

@ Add binary variables y127, V239, Y1310, Y2754, one for each j € S.




Integer Programming
Quiz

Given an integer program with integer variables xy,...,xs. Let
S := {127,289, 1310, 2754}.

We want to add constraints and/or variables to the IP that enforce
that the x; + ...+ xg isin S. How?

@ Add binary variables y127, V239, Y1310, Y2754, one for each j € S.

@ Want: Exactly one of these variables is 1 in a feasible solution.




Integer Programming
Quiz

Given an integer program with integer variables xy,...,xs. Let
S := {127,289, 1310, 2754}.

We want to add constraints and/or variables to the IP that enforce
that the x; + ...+ xg isin S. How?

@ Add binary variables y127, V239, Y1310, Y2754, one for each j € S.
@ Want: Exactly one of these variables is 1 in a feasible solution.

e If y,=1for n €S then Z?:lx,-:n




Integer Programming
Quiz

Add the following constraints:

y127 + Y289 + Y1310 + Y54 = 1
6

doxi=> iy
i=1 ieS

0<y; <1, yjinteger VieS




Integer Programming
Quiz

Add the following constraints:

Y127 + Y280 + y1310 + yo7584 = 1

6
D_xi=2 W
i=1 ieS
0<y; <1, yjinteger Vie S

Why is the resulting IP correct?




Integer Programming

Recap:

@ An integer program is obtained by adding integrality
constraints for some/all of the variables to an LP.




Integer Programming

Recap:

@ An integer program is obtained by adding integrality
constraints for some/all of the variables to an LP.

@ An algorithm is efficient if its running time can be bounded by
a polynomial of the input size of the instance.




Integer Programming

Recap:

@ An integer program is obtained by adding integrality
constraints for some/all of the variables to an LP.

@ An algorithm is efficient if its running time can be bounded by
a polynomial of the input size of the instance.

@ While LPs admit efficient algorithms, IPs are unlikely to have
efficient algorithms. Thus, whenever possible, formulate a
problem as an LP!




Integer Programming

Recap:

@ An integer program is obtained by adding integrality
constraints for some/all of the variables to an LP.

@ An algorithm is efficient if its running time can be bounded by
a polynomial of the input size of the instance.

@ While LPs admit efficient algorithms, IPs are unlikely to have
efficient algorithms. Thus, whenever possible, formulate a
problem as an LP!

@ Variables that can take value 0 or 1 only are called binary.




Integer Programming

Recap:

@ An integer program is obtained by adding integrality
constraints for some/all of the variables to an LP.

@ An algorithm is efficient if its running time can be bounded by
a polynomial of the input size of the instance.

@ While LPs admit efficient algorithms, IPs are unlikely to have
efficient algorithms. Thus, whenever possible, formulate a
problem as an LP!

@ Variables that can take value 0 or 1 only are called binary.

@ Binary variables are useful for expressing logical conditions.




