Module 3: Duality through examples

In an instance of the shortest path problem, we are given

- a graph $G = (V, E)$, a non-negative length c_e for each edge $e \in E$, and
- a pair of vertices s and t in V .

In an instance of the shortest path problem, we are given

- a graph $G = (V, E)$, a non-negative length c_e for each edge $e \in E$, and
- a pair of vertices s and t in V .

Our goal is to compute an s, t -path P of smallest total length.

In an instance of the shortest path problem, we are given

- a graph $G = (V, E)$, a non-negative length c_e for each edge $e \in E$, and
- a pair of vertices s and t in V .

Our goal is to compute an s, t -path P of smallest total length.

Recall: an s, t -path is a sequence

$$
P:=u_1u_2,u_2u_3,\ldots,u_{k-1}u_k
$$

where

- $u_i u_{i+1} \in E$ for all i, and
- $u_1 = s$, $u_k = t$, and $u_i \neq u_j$ for all $i \neq j$.

In an instance of the shortest path problem, we are given

- a graph $G = (V, E)$, a non-negative length c_e for each edge $e \in E$, and
- a pair of vertices s and t in V .

Our goal is to compute an s, t -path P of smallest total length.

Recall: an s, t -path is a sequence

 $P := u_1u_2, u_2u_3, \ldots, u_{k-1}u_k$

where

- $u_i u_{i+1} \in E$ for all i, and
- $u_1 = s$, $u_k = t$, and $u_i \neq u_j$ for all $i \neq j$.

Its length is given by

$$
c(P) = c_{u_1u_2} + c_{u_2u_3} + \ldots + c_{u_{k-1}u_k}
$$

$$
P = sa, ac, cb, bt
$$

is a shortest path and that its length is 9.

 $P = sa, ac, cb, bt$

is a shortest path and that its length is 9.

Question

1. Given a shortest-path instance and a candidate shortest s, t-path P , is there a short proof of its optimality?

 $P = sa, ac, cb, bt$

is a shortest path and that its length is 9.

Question

- 1. Given a shortest-path instance and a candidate shortest s, t-path P , is there a short proof of its optimality?
- 2. How can we find a shortest s, t -path?

 $P = sa, ac, cb, bt$

is a shortest path and that its length is 9.

Question

- 1. Given a shortest-path instance and a candidate shortest s, t-path P , is there a short proof of its optimality?
- 2. How can we find a shortest s, t -path?

We will answer both questions in this module. This lecture focus on question 1.

Shortest Paths: Finding an Intuitive Lower Bound

To make our lives easier, we will first consider the cardinality special case of the shortest path problem.

To make our lives easier, we will first consider the cardinality special case of the shortest path problem.

We consider shortest path instances where...

• each edge $e \in E$ has length 1, and

To make our lives easier, we will first consider the cardinality special case of the shortest path problem.

We consider shortest path instances where...

- each edge $e \in E$ has length 1, and
- we are therefore looking for an s, t -path with the smallest number of edges.

To make our lives easier, we will first consider the cardinality special case of the shortest path problem.

We consider shortest path instances where...

- each edge $e \in E$ has length 1, and
- we are therefore looking for an s, t -path with the smallest number of edges.

Example: In the diagram above, one easily sees that

$$
P = sj, ji, ig, gt
$$

is a shortest s, t -path.

How can we prove this fact?

To make our lives easier, we will first consider the cardinality special case of the shortest path problem.

We consider shortest path instances where...

- each edge $e \in E$ has length 1, and
- we are therefore looking for an s, t -path with the smallest number of edges.

Example: In the diagram above, one easily sees that

$$
P = sj, ji, ig, gt
$$

is a shortest s, t -path.

How can we prove this fact? \longrightarrow The answer lies in s,t-cuts!

Definition

For $U \subseteq V$, we define

 $\delta(U) = \{uv \in E : u \in U, v \notin U\}$

and call it an s, t -cut if $s \in U$, and $t \notin U$.

Definition

For $U \subseteq V$, we define

 $\delta(U) = \{uv \in E : u \in U, v \notin U\}$

and call it an s, t -cut if $s \in U$, and $t \notin U$.

Example

Let $U = \{s, a, j\}$. It follows that

$$
\delta(U) = \{ab, ah, ji\}
$$

is an s, t -cut.

Definition

For $U \subseteq V$, we define

 $\delta(U) = \{uv \in E : u \in U, v \notin U\}$

and call it an s, t-cut if $s \in U$, and $t \notin U$.

Example

Let $U = \{s, a, j\}$. It follows that

$$
\delta(U) = \{ab, ah, ji\}
$$

is an s, t -cut.

Recall:

• If P is an s, t-path and $\delta(U)$ an s, t-cut, then P contains an edge of $\delta(U)$.

Definition

For $U \subseteq V$, we define

 $\delta(U) = \{uv \in E : u \in U, v \notin U\}$

and call it an s, t-cut if $s \in U$, and $t \notin U$.

Example

Let $U = \{s, a, j\}$. It follows that

$$
\delta(U) = \{ab, ah, ji\}
$$

is an s, t -cut.

s $a \rightarrow b$ d c g h j i t

Recall:

- If P is an s, t-path and $\delta(U)$ an s, t-cut, then P contains an edge of $\delta(U)$.
- If $S \subseteq E$ contains an edge from every s, t -cut, then S contains an s, t -path.

The example on the right shows 4 s, t-cuts, $\delta(U_1), \delta(U_2), \delta(U_3), \delta(U_4)$.

$$
\begin{array}{rcl} \delta(U_1) &=& \{sa,sj\} \\ \delta(U_2) &=& \{ab,ah,ji\} \\ \delta(U_3) &=& \{bc,hc,ig\} \\ \delta(U_4) &=& \{dt,gt\} \end{array}
$$

The example on the right shows 4 s, t-cuts, $\delta(U_1), \delta(U_2), \delta(U_3), \delta(U_4)$.

Two important notes:

(1)
$$
\delta(U_i) \cap \delta(U_j) = \emptyset
$$
 for $i \neq j$ and

$$
\begin{array}{rcl} \delta(U_1) &=& \{sa,sj\} \\ \delta(U_2) &=& \{ab,ah,ji\} \\ \delta(U_3) &=& \{bc,hc,ig\} \\ \delta(U_4) &=& \{dt,gt\} \end{array}
$$

The example on the right shows 4 s, t-cuts, $\delta(U_1)$, $\delta(U_2)$, $\delta(U_3)$, $\delta(U_4)$.

Two important notes:

- (1) $\delta(U_i) \cap \delta(U_j) = \emptyset$ for $i \neq j$ and
- (2) an s, t -path must contain an edge from $\delta(U_i)$ for all i.

$$
\begin{array}{rcl} \delta(U_1) &=& \{sa,sj\} \\ \delta(U_2) &=& \{ab,ah,ji\} \\ \delta(U_3) &=& \{bc,hc,ig\} \\ \delta(U_4) &=& \{dt,gt\} \end{array}
$$

The example on the right shows 4 s, t-cuts, $\delta(U_1)$, $\delta(U_2)$, $\delta(U_3)$, $\delta(U_4)$.

Two important notes:

- (1) $\delta(U_i) \cap \delta(U_j) = \emptyset$ for $i \neq j$ and
- (2) an s, t -path must contain an edge from $\delta(U_i)$ for all i.

 \longrightarrow Every s, t-path must have at least 4 edges.

$$
\begin{array}{rcl} \delta(U_1) &=& \{sa,sj\} \\ \delta(U_2) &=& \{ab,ah,ji\} \\ \delta(U_3) &=& \{bc,hc,ig\} \\ \delta(U_4) &=& \{dt,gt\} \end{array}
$$

The example on the right shows 4 s, t-cuts, $\delta(U_1)$, $\delta(U_2)$, $\delta(U_3)$, $\delta(U_4)$.

Two important notes:

- (1) $\delta(U_i) \cap \delta(U_j) = \emptyset$ for $i \neq j$ and
- (2) an s, t-path must contain an edge from $\delta(U_i)$ for all i.

 \longrightarrow Every s, t-path must have at least 4 edges.

 \longrightarrow sj, ji, ig, gt is a shortest s, t -path!

$$
\begin{array}{rcl} \delta(U_1) &=& \{sa,sj\} \\ \delta(U_2) &=& \{ab,ah,ji\} \\ \delta(U_3) &=& \{bc,hc,ig\} \\ \delta(U_4) &=& \{dt,gt\} \end{array}
$$

Question

Notice: hi is not in any of the $\delta(U_i)$. Does this mean that hi is not on any shortest s, t -path?

$$
\begin{array}{rcl} \delta(U_1) & = & \{sa,sj\} \\ \delta(U_2) & = & \{ab,ah,ji\} \\ \delta(U_3) & = & \{bc,hc,ig\} \\ \delta(U_4) & = & \{dt,gt\} \end{array}
$$

Question

Notice: hi is not in any of the $\delta(U_i)$. Does this mean that hi is not on any shortest s, t-path?

Yes!

An s, t -path that contains hi must also contain an edge from each of the s, t-cuts $\delta(U_i)$.

$$
\begin{array}{rcl} \delta(U_1) &=& \{sa,sj\} \\ \delta(U_2) &=& \{ab,ah,ji\} \\ \delta(U_3) &=& \{bc,hc,ig\} \\ \delta(U_4) &=& \{dt,gt\} \end{array}
$$

Question

Notice: hi is not in any of the $\delta(U_i)$. Does this mean that hi is not on any shortest s, t-path?

Yes!

An s, t -path that contains hi must also contain an edge from each of the s, t-cuts $\delta(U_i)$. \longrightarrow It must contain at least 5 edges!

$$
\begin{array}{rcl} \delta(U_1) &=& \{sa,sj\} \\ \delta(U_2) &=& \{ab,ah,ji\} \\ \delta(U_3) &=& \{bc,hc,ig\} \\ \delta(U_4) &=& \{dt,gt\} \end{array}
$$

In general instances, we assign a non-negative width y_U to every s, t-cut $\delta(U)$.


```
In general instances, we assign a
non-negative width y_U to every
s, t-cut \delta(U).
```
Definition

A width assignment ${y_U : \delta(U) \, s, t\text{-cut}}$ is feasible if,


```
In general instances, we assign a
non-negative width y_U to every
s, t-cut \delta(U).
```
Definition

A width assignment ${y_U : \delta(U) \, s, t\text{-cut}}$ is feasible if, for every edge $e \in E$,

In general instances, we assign a non-negative width y_U to every s, t-cut $\delta(U)$.

Definition

A width assignment ${y_U : \delta(U) \, s, t\text{-cut}}$ is feasible if, for every edge $e \in E$, the total width of all cuts containing e is no more than c_e .

In general instances, we assign a non-negative width y_U to every s, t-cut $\delta(U)$.

Definition

A width assignment ${y_{U} : \delta(U) \, s, t\text{-cut}}$ is feasible if, for every edge $e \in E$, the total width of all cuts containing e is no more than c_{e} .

Using math: y is feasible if for all e $\sum(y_U : \delta(U)$ s, t-cut and $e \in E) \leq c_e$

Consider the example on the right with $4 \, s, t$ -cuts.

$$
U_1 = \{s\}
$$

\n
$$
U_2 = \{s, a\}
$$

\n
$$
U_3 = \{s, a, c\}
$$

\n
$$
U_4 = \{s, a, b, c, d\}
$$

Consider the example on the right with $4 \, s, t$ -cuts.

The width assignment

$$
y_{U_1} = 3
$$

\n
$$
y_{U_2} = 1
$$

\n
$$
y_{U_3} = 2
$$

\n
$$
y_{U_4} = 1
$$

is easily checked to be feasible.

$$
U_1 = \{s\}
$$

\n
$$
U_2 = \{s, a\}
$$

\n
$$
U_3 = \{s, a, c\}
$$

\n
$$
U_4 = \{s, a, b, c, d\}
$$

Proposition

If y is a feasible width assignment, then any s, t -path must have length at least

$$
\sum (y_U\,:\,U\,\,s,t\text{-cut}).
$$

$$
U_1 = \{s\}
$$

\n
$$
U_2 = \{s, a\}
$$

\n
$$
U_3 = \{s, a, c\}
$$

\n
$$
U_4 = \{s, a, b, c, d\}
$$

Proposition

If y is a feasible width assignment, then any s, t -path must have length at least

$$
\sum(y_U\,:\,U\,\,s,t\text{-cut}).
$$

Example:

$$
y_{U_1} + y_{U_2} + y_{U_3} + y_{U_4} = 7
$$

$$
U_1 = \{s\}
$$

\n
$$
U_2 = \{s, a\}
$$

\n
$$
U_3 = \{s, a, c\}
$$

\n
$$
U_4 = \{s, a, b, c, d\}
$$

Proposition

If y is a feasible width assignment, then any s, t -path must have length at least

$$
\sum (y_U\,:\,U\,\,s,t\text{-cut}).
$$

Example:

$$
y_{U_1} + y_{U_2} + y_{U_3} + y_{U_4} = 7
$$

 \longrightarrow Path sa, ac, cb, bt is a shortest path!

$$
U_1 = \{s\}
$$

\n
$$
U_2 = \{s, a\}
$$

\n
$$
U_3 = \{s, a, c\}
$$

\n
$$
U_4 = \{s, a, b, c, d\}
$$

Proposition

If y is a feasible width assignment, then any s, t -path must have length at least

$$
\sum(y_U: U \ s, t\text{-cut}).
$$

Proof: Consider an s , t -path P . It follows that

$$
c(P) = \sum (c_e : e \in P)
$$

Example:

$$
y_{U_1} + y_{U_2} + y_{U_3} + y_{U_4} = 7
$$

 \longrightarrow Path sa, ac, cb, bt is a shortest path!

Proposition

If y is a feasible width assignment, then any s, t -path must have length at least

$$
\sum(y_U\,:\,U\,\,s,t\text{-cut}).
$$

Proof: Consider an s , t -path P . It follows that

$$
c(P) = \sum (c_e : e \in P)
$$

\n
$$
\geq \sum (\sum (y_U : e \in \delta(U)) : e \in P)
$$

where the first inequality follows from the feasibility of y .

Example:

$$
y_{U_1} + y_{U_2} + y_{U_3} + y_{U_4} = 7
$$

 \longrightarrow Path sa, ac, cb, bt is a shortest path!

Proposition

If y is a feasible width assignment, then any s, t -path must have length at least

$$
\sum(y_U\,:\,U\,\,s,t\text{-cut}).
$$

Example:

$$
y_{U_1} + y_{U_2} + y_{U_3} + y_{U_4} = 7
$$

 \longrightarrow Path sa, ac, cb, bt is a shortest path!

Proof: Consider an s , t -path P . It follows that

$$
c(P) = \sum (c_e : e \in P)
$$

\n
$$
\geq \sum (\sum (y_U : e \in \delta(U)) : e \in P)
$$

where the first inequality follows from the feasibility of y .

Note: if $\delta(U)$ is an s, t-cut, then P contains at least one edge from $\delta(U)$.

г

Proposition

If y is a feasible width assignment, then any s, t -path must have length at least

$$
\sum(y_U\,:\,U\,\,s,t\text{-cut}).
$$

Example:

$$
y_{U_1} + y_{U_2} + y_{U_3} + y_{U_4} = 7
$$

 \longrightarrow Path sa, ac, cb, bt is a shortest path!

Proof: Consider an s , t -path P . It follows that

$$
c(P) = \sum (c_e : e \in P)
$$

\n
$$
\geq \sum (\sum (y_U : e \in \delta(U)) : e \in P)
$$

where the first inequality follows from the feasibility of y .

Note: if $\delta(U)$ is an s, t-cut, then P contains at least one edge from $\delta(U)$.

 \rightarrow Variable y_U appears at least once on the right-hand side above, and hence we obtain the 2nd inequality

Proposition

If y is a feasible width assignment, then any s, t -path must have length at least

$$
\sum(y_U\,:\,U\,\,s,t\text{-cut}).
$$

Example:

$$
y_{U_1} + y_{U_2} + y_{U_3} + y_{U_4} = 7
$$

 \longrightarrow Path sa, ac, cb, bt is a shortest path!

Proof: Consider an s , t -path P . It follows that

$$
c(P) = \sum (c_e : e \in P)
$$

\n
$$
\geq \sum (\sum (y_U : e \in \delta(U)) : e \in P)
$$

\n
$$
\geq \sum (y_U : \delta(U) \ s, t\text{-cut})
$$

where the first inequality follows from the feasibility of y .

Note: if $\delta(U)$ is an s, t-cut, then P contains at least one edge from $\delta(U)$.

 \rightarrow Variable y_U appears at least once on the right-hand side above, and hence we obtain the 2nd inequality

Question: Can you spot a shortest s, t -path?

Question: Can you spot a shortest s, t -path?

 $\rightarrow P = sa, ac, cd, dt$ of length 7.

Question: Can you spot a shortest s, t -path?

 $\longrightarrow P = sa, ac, cd, dt$ of length 7.

Question: Can you prove your guess?

Question: Can you spot a shortest s, t -path?

 $\rightarrow P = sa, ac, cd, dt$ of length 7.

Question: Can you prove your guess?

 \rightarrow Yes! There is a feasible dual width assignment of value 7:

$$
y_{\{s\}} = 2
$$

\n
$$
y_{\{s,a\}} = 1
$$

\n
$$
y_{\{s,a,c\}} = 1
$$

\n
$$
y_{\{s,a,c,e\}} = 1
$$

\n
$$
y_{\{s,a,c,d,e\}} = 1
$$

\n
$$
y_{\{s,a,b,c,d,e\}} = 1
$$

Question

(A) In an instance with a shortest path, can we always find feasible widths to prove optimality?

Question

(A) In an instance with a shortest path, can we always find feasible widths to prove optimality?

(B) If so, how do we find a path and these widths?

Question

(A) In an instance with a shortest path, can we always find feasible widths to prove optimality?

(B) If so, how do we find a path and these widths?

We will answer (A) affirmatively, and provide an efficient algorithm for (B) shortly.

Recap

• A shortest path instance is given by a graph $G = (V, E)$ and non-negative lengths c_e for all $e \in E$.

Recap

- A shortest path instance is given by a graph $G = (V, E)$ and non-negative lengths c_e for all $e \in E$.
- A width assignment $y_U \geq 0$ for all s, t -cuts $\delta(U)$ is feasible if

$$
\sum(y_U : e \in \delta(U)) \leq c_e
$$

for all $e \in E$.

Recap

- A shortest path instance is given by a graph $G = (V, E)$ and non-negative lengths c_e for all $e \in E$.
- A width assignment $y_U \geq 0$ for all s, t-cuts $\delta(U)$ is feasible if

$$
\sum(y_U : e \in \delta(U)) \leq c_e
$$

for all $e \in E$.

• If y is a feasible width assignment and P an s, t -path, then

$$
c(P) \ge \sum y_U
$$