Module 4: Duality Theory (Weak Duality)

Solutions to a shortest path instance $G = (V, E)$, $s, t \in V$, $c_e \geq 0$ for all $e \in E$, correspond to feasible 0, 1-solutions for the LP

$$
\min \sum (c_e x_e : e \in E)
$$
\n
$$
\text{s.t. } \sum (x_e : e \in \delta(U)) \ge 1
$$
\n
$$
(U \subseteq V, s \in U, t \notin U)
$$
\n
$$
x \ge 0
$$

Solutions to a shortest path instance $G = (V, E), s, t \in V, c_e \geq 0$ for all $e \in E$, correspond to feasible 0, 1-solutions for the LP

$$
\min \sum (c_e x_e : e \in E)
$$
\n
$$
\text{s.t. } \sum (x_e : e \in \delta(U)) \ge 1
$$
\n
$$
(U \subseteq V, s \in U, t \notin U)
$$
\n
$$
x \ge 0
$$

This LP is of the form:

 $\min\{c^T x : Ax \geq b, x \geq 0\}$

Solutions to a shortest path instance $G = (V, E)$, $s, t \in V$, $c_e \geq 0$ for all $e \in E$, correspond to feasible 0, 1-solutions for the LP

$$
\min \sum (c_e x_e : e \in E)
$$
\n
$$
\text{s.t. } \sum (x_e : e \in \delta(U)) \ge 1
$$
\n
$$
(U \subseteq V, s \in U, t \notin U)
$$
\n
$$
x \ge 0
$$

where

$$
\bullet \;\; b = \mathbb{1};
$$

This LP is of the form:

 $\min\{c^T x : Ax \geq b, x \geq 0\}$

Solutions to a shortest path instance $G = (V, E)$, $s, t \in V$, $c_e \geq 0$ for all $e \in E$, correspond to feasible 0, 1-solutions for the LP

$$
\min \sum (c_e x_e : e \in E)
$$
\n
$$
\text{s.t. } \sum (x_e : e \in \delta(U)) \ge 1
$$
\n
$$
(U \subseteq V, s \in U, t \notin U)
$$
\n
$$
x \ge 0
$$

This LP is of the form:

$$
\min\{c^T x \,:\, Ax \ge b, x \ge 0\}
$$

where

- \bullet $b = \mathbb{1}$;
- A has a row for every s, t -cut $\delta(U)$, and a column for every edge e; and

Solutions to a shortest path instance $G = (V, E)$, $s, t \in V$, $c_e \geq 0$ for all $e \in E$, correspond to feasible 0, 1-solutions for the LP

$$
\min \sum (c_e x_e : e \in E)
$$
\n
$$
\text{s.t. } \sum (x_e : e \in \delta(U)) \ge 1
$$
\n
$$
(U \subseteq V, s \in U, t \notin U)
$$
\n
$$
x \ge 0
$$

This LP is of the form:

$$
\min\{c^T x \,:\, Ax \geq b, x \geq 0\}
$$

where

- \bullet $b = \mathbb{1}$;
- A has a row for every s, t -cut $\delta(U)$, and a column for every edge e ; and
- $A_{Ue} = 1$ if $e \in \delta(U)$ and $A_{Ue} = 0$ otherwise.

$$
\min\{c^T x : Ax \ge b, x \ge 0\} \quad \text{(P)}
$$

$$
\min\{c^T x : Ax \ge b, x \ge 0\} \quad \text{(P)}
$$

The dual of (P) is given by

$$
\max\{b^T y : A^T y \le c, y \ge 0\} \quad \text{(D)}
$$

$$
\min\{c^T x : Ax \ge b, x \ge 0\} \quad \text{(P)}
$$

The dual of (P) is given by

$$
\max\{b^T y : A^T y \le c, y \ge 0\} \quad \text{(D)}
$$

If (P) is a shortest path LP, then we can rewrite (D) as

$$
\max \sum(y_U : s \in U, t \notin U)
$$

s.t.
$$
\sum(y_U : e \in \delta(U)) \le c_e
$$

$$
(e \in E)
$$

$$
y \ge 0
$$

$$
\min\{c^T x : Ax \ge b, x \ge 0\} \quad \text{(P)}
$$

The dual of (P) is given by

$$
\max\{b^T y : A^T y \le c, y \ge 0\} \quad \text{(D)}
$$

If (P) is a shortest path LP, then we can rewrite (D) as

$$
\max \sum(y_U : s \in U, t \notin U)
$$

s.t.
$$
\sum(y_U : e \in \delta(U)) \le c_e
$$

$$
(e \in E)
$$

$$
y \ge 0
$$

Theorem

If \bar{x} is feasible for (P) and \bar{y} is feasible for (D), then $b^T\bar{y}\leq c^T\bar{x}.$

$$
\min\{c^T x : Ax \ge b, x \ge 0\} \quad \text{(P)}
$$

The dual of (P) is given by

$$
\max\{b^T y : A^T y \le c, y \ge 0\} \quad \text{(D)}
$$

If (P) is a shortest path LP, then we can rewrite (D) as

$$
\max \sum(y_U : s \in U, t \notin U)
$$

s.t.
$$
\sum(y_U : e \in \delta(U)) \le c_e
$$

$$
(e \in E)
$$

$$
y \ge 0
$$

Theorem

If \bar{x} is feasible for (P) and \bar{y} is feasible for (D), then $b^T\bar{y}\leq c^T\bar{x}.$

Equivalent: y feasible widths and P an s,t -path $\longrightarrow \mathbb{1}^T y \leq c(P)$

Question: Can we find lower-bounds on the optimal value of a general LP?

 $\max c^T x$ s.t. Ax ? b x ? **0**

Question: Can we find lower-bounds on the optimal value of a general LP?

In the LP on the right,

 Ar ? b

stands for a system of inequalities whose sign is one of $\leq, \, = \text{or } \geq$

 $\max c^T x$ s.t. Ax ? b x ? **0**

Question: Can we find lower-bounds on the optimal value of a general LP?

In the LP on the right,

 Ar ? b

stands for a system of inequalities whose sign is one of $\leq, =$ or \geq , and

x ? **0**

indicates that variables are either non-negative, non-positive, or free.

$$
\begin{array}{c}\n\max c^T x \\
\text{s.t. } Ax ? b \\
x ? 0\n\end{array}
$$

Recall: in the primal-dual pair

$$
\min\{c^T x : Ax \ge b, x \ge 0\} \qquad \text{(P)}
$$

$$
\max\{b^T y \,:\, A^T y \le c, y \ge 0\} \qquad \text{(D)}
$$

Question: Can we find lower-bounds on the optimal value of a general LP?

In the LP on the right,

 Ar ? b

stands for a system of inequalities whose sign is one of $\leq, \, =$ or \geq , and

x ? **0**

indicates that variables are either non-negative, non-positive, or free.

$$
\begin{array}{c}\n\max c^T x \\
\text{s.t. } Ax ? b \\
x ? 0\n\end{array}
$$

Recall: in the primal-dual pair

$$
\min\{c^T x : Ax \ge b, x \ge 0\} \qquad \text{(P)}
$$

$$
\max\{b^T y \,:\, A^T y \le c, y \ge 0\} \qquad \text{(D)}
$$

• each non-negative variable, x_e , in (P) corresponds to a ' \leq '-constraint in (D), and

Question: Can we find lower-bounds on the optimal value of a general LP?

In the LP on the right,

 Ar ? b

stands for a system of inequalities whose sign is one of $\leq, =$ or \geq , and

x ? **0**

indicates that variables are either non-negative, non-positive, or free.

$$
\begin{array}{c}\n\max c^T x \\
\text{s.t. } Ax ? b \\
x ? 0\n\end{array}
$$

Recall: in the primal-dual pair

$$
\min\{c^T x : Ax \ge b, x \ge 0\} \qquad \text{(P)}
$$

$$
\max\{b^T y \,:\, A^T y \le c, y \ge 0\} \qquad \text{(D)}
$$

- each non-negative variable, x_e , in (P) corresponds to a ' \leq '-constraint in (D), and
- each \geq -constraint in (P) corresponds to a non-negative variable y_U in (D).

Consider the primal LP

 $\max c^T x$ s.t. Ax ? b x ? **0**

Consider the primal LP

$$
\begin{array}{c}\n\max c^T x \\
\text{s.t. } Ax ? b \\
x ? 0\n\end{array}
$$

Its dual LP is given by

$$
\min b^T y
$$

s.t. $A^T y ? c$
 $y ? 0$

Consider the primal LP

$$
\begin{array}{c}\n\max c^T x \\
\text{s.t. } Ax ? b \\
x ? 0\n\end{array}
$$

Its dual LP is given by

$$
\min b^T y
$$

s.t. $A^T y ? c$
 $y ? 0$

Question: What are the question marks?

Consider the primal LP

$$
\begin{array}{c}\n\max c^T x \\
\text{s.t. } Ax ? b \\
x ? 0\n\end{array}
$$

Its dual LP is given by

$$
\min b^T y
$$

s.t. $A^T y ? c$
 $y ? 0$

Question: What are the question marks?

A: As before:

primal variables \equiv dual constraints primal constraints \equiv dual variables

The following table shows how constraints and variables in primal and dual LPs correspond:

The following table shows how constraints and variables in primal and dual LPs correspond:

Example 1:

$$
\max (1,0,2)x
$$
\n
$$
\text{s.t.} \begin{pmatrix} 3 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 3 \\ 4 \end{pmatrix}
$$
\n
$$
x_1, x_2 \geq 0, x_3 \text{ free}
$$
\n
$$
(P)
$$

The following table shows how constraints and variables in primal and dual LPs correspond:

Example 1:

$$
\begin{array}{ll}\n\text{max } (1,0,2)x & \text{(P)} \\
\text{s.t. } \begin{pmatrix} 3 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 3 \\ 4 \end{pmatrix} & \text{s.t. } \begin{pmatrix} 3 & 1 \\ -1 & 0 \\ 0 & 1 \end{pmatrix} y ? \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \\
x_1, x_2 \geq 0, x_3 \text{ free} & y ? 0\n\end{array}
$$
\n(D)

The following table shows how constraints and variables in primal and dual LPs correspond:

Example 1:

max (1,0,2)*x* (P) min (3,4)*y* (D)
\ns.t.
$$
\begin{pmatrix} 3 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix} x \stackrel{\le}{=} \begin{pmatrix} 3 \\ 4 \end{pmatrix}
$$
 s.t. $\begin{pmatrix} 3 & 1 \\ -1 & 0 \\ 0 & 1 \end{pmatrix} y$? $\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$
\n $x_1, x_2 \ge 0, x_3$ free $y_1 \ge 0, y_2$ free

The following table shows how constraints and variables in primal and dual LPs correspond:

Example 1:

$$
\begin{array}{ll}\n\text{max } (1,0,2)x & \text{(P)} & \text{min } (3,4)y & \text{(D)} \\
\text{s.t. } \begin{pmatrix} 3 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix} x \stackrel{\le}{=} \begin{pmatrix} 3 \\ 4 \end{pmatrix} & \text{s.t. } \begin{pmatrix} 3 & 1 \\ -1 & 0 \\ 0 & 1 \end{pmatrix} y \stackrel{\ge}{=} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \\
x_1, x_2 \geq 0, x_3 \text{ free} & \text{y}_1 \geq 0, y_2 \text{ free}\n\end{array}
$$
\n(D)

The following table shows how constraints and variables in primal and dual LPs correspond:

Example 2:

$$
\min d^T y
$$
 (P)
s.t. $W^T y \ge e$
 $y \ge 0$

The following table shows how constraints and variables in primal and dual LPs correspond:

Example 2:

 $\min d^T$ (P) s.t. $W^Ty\geq e$ $y > 0$

To compute dual LP, check right-hand side of table:

$$
\begin{array}{ll}\n\max e^T x & \text{(D)} \\
\text{s.t. } Wx ? d \\
x ? 0\n\end{array}
$$

The following table shows how constraints and variables in primal and dual LPs correspond:

Example 2:

 $\min d^T$ (P) s.t. $W^Ty\geq e$ $y > 0$

To compute dual LP, check right-hand side of table:

$$
\max e^{T} x
$$
 (D)
s.t. $Wx ? d$
 $x \ge 0$

The following table shows how constraints and variables in primal and dual LPs correspond:

Example 2:

 $\min d^T$ (P) s.t. $W^Ty\geq e$ $y > 0$

To compute dual LP, check right-hand side of table:

$$
\max e^{T} x
$$
 (D)
s.t. $Wx \le d$
 $x \ge 0$

Example 2:

 $\min d^T$ (P) s.t. $W^Ty\geq e$ $y > 0$

To compute dual LP, check right-hand side of table:

$$
\max e^{T} x
$$
 (D)
s.t. $Wx \le d$
 $x \ge 0$

Substitute:

- $d \rightarrow c$
- $e \rightarrow b$
- $y \rightarrow x$
- $W^T \longrightarrow A$
- $x \longrightarrow y$

Example 2:

min $c^T x$ (P) s.t. $Ax > b$ $x > 0$

To compute dual LP, check right-hand side of table:

max $b^T x$ (D) s.t. $A^T y \leq c$ $y \geq 0$

Substitute:

- $d \rightarrow c$
- $e \rightarrow b$
- $y \rightarrow x$
- $W^T \longrightarrow A$
- $x \longrightarrow y$

Example 2:

min $c^T x$ (P) s.t. $Ax > b$ $x > 0$

To compute dual LP, check right-hand side of table:

max $b^T x$ (D) s.t. $A^T y \leq c$ $y \geq 0$

Substitute:

- $d \rightarrow c$
- \bullet e \longrightarrow b
- $y \rightarrow x$
- $W^T \longrightarrow A$
- $x \rightarrow y$

This is consistent with the earlier discussion we had!

The following table shows how constraints and variables in primal and dual LPs correspond:

Example 3:

max (12, 26, 20)
$$
x
$$
 (P)
s.t. $\begin{pmatrix} 1 & 2 & 1 \\ 4 & 6 & 5 \\ 2 & -1 & -3 \end{pmatrix} x \stackrel{\ge}{=} \begin{pmatrix} -2 \\ 2 \\ 13 \end{pmatrix}$
 $x_1 \ge 0, x_2$ free, $x_3 \ge 0$

The following table shows how constraints and variables in primal and dual LPs correspond:

Example 3:

$$
\max (12, 26, 20)x
$$
\n
$$
\text{(P)} \quad \min (-2, 2, 13)y
$$
\n
$$
\text{s.t.} \begin{pmatrix} 1 & 2 & 1 \\ 4 & 6 & 5 \\ 2 & -1 & -3 \end{pmatrix} x \leq \begin{pmatrix} -2 \\ 2 \\ 13 \end{pmatrix}
$$
\n
$$
\text{s.t.} \begin{pmatrix} 1 & 4 & 2 \\ 2 & 6 & -1 \\ 1 & 5 & -3 \end{pmatrix} y ? \begin{pmatrix} 12 \\ 26 \\ 20 \end{pmatrix}
$$
\n
$$
x_1 \geq 0, x_2 \text{ free}, x_3 \geq 0
$$
\n
$$
y ? 0
$$
\n
$$
(D)
$$

The following table shows how constraints and variables in primal and dual LPs correspond:

Example 3:

$$
\max (12, 26, 20)x
$$
 (P)
s.t. $\begin{pmatrix} 1 & 2 & 1 \\ 4 & 6 & 5 \\ 2 & -1 & -3 \end{pmatrix} x \leq \begin{pmatrix} -2 \\ 2 \\ 13 \end{pmatrix}$
 $x_1 \geq 0, x_2 \text{ free}, x_3 \geq 0$

min (-2, 2, 13)*y* (D)
s.t.
$$
\begin{pmatrix} 1 & 4 & 2 \\ 2 & 6 & -1 \\ 1 & 5 & -3 \end{pmatrix}
$$
 y ? $\begin{pmatrix} 12 \\ 26 \\ 20 \end{pmatrix}$
*y*₁ \leq 0, *y*₂ \geq 0, *y*₃ free

The following table shows how constraints and variables in primal and dual LPs correspond:

Example 3:

$$
\max (12, 26, 20)x
$$
 (P)
s.t. $\begin{pmatrix} 1 & 2 & 1 \\ 4 & 6 & 5 \\ 2 & -1 & -3 \end{pmatrix} x \leq \begin{pmatrix} -2 \\ 2 \\ 13 \end{pmatrix}$
 $x_1 \geq 0, x_2 \text{ free}, x_3 \geq 0$

min (-2, 2, 13)*y* (D)
\ns.t.
$$
\begin{pmatrix} 1 & 4 & 2 \\ 2 & 6 & -1 \\ 1 & 5 & -3 \end{pmatrix}
$$
 $y = \begin{pmatrix} 12 \\ 26 \\ 20 \end{pmatrix}$
\n*y*₁ \leq 0, *y*₂ \geq 0, *y*₃ free

The following table shows how constraints and variables in primal and dual LPs correspond:

Theorem Let (P_{max}) and (P_{min}) represent the above.

The following table shows how constraints and variables in primal and dual LPs correspond:

Theorem

Let (P_{max}) and (P_{min}) represent the above. If \bar{x} and \bar{y} are feasible for the two LPs, then

$$
c^T \bar{x} \leq b^T \bar{y}
$$

If $c^T\bar{x} = b^T\bar{y}$, then \bar{x} is optimal for (P_{max}), and \bar{y} is optimal for (P_{min}).

Theorem

Let (P_{max}) and (P_{min}) represent the above. If \bar{x} and \bar{y} are feasible for the two LPs, then

$$
c^T \bar{x} \leq b^T \bar{y}
$$

If $c^T \bar{x} = b^T \bar{y}$, then \bar{x} is optimal for (P_{max}), and \bar{y} is optimal for (P_{min}).

Example 3 (continued):

Its dual LP:

max $(12, 26, 20)x$ (P) s.t. $\sqrt{ }$ \mathcal{L} 1 2 1 4 6 5 2 -1 -3 \setminus $\int x^2$ ≥ ≤ = $\sqrt{ }$ \mathcal{L} −2 2 13 \setminus \int s.t. $x_1 > 0, x_2$ free, $x_3 > 0$ min $(-2, 2, 13)y$ (D) $\sqrt{ }$ \mathcal{L} 1 4 2 2 6 −1 1 5 −3 \setminus $\vert y \vert$ ≥ = ≥ $\sqrt{ }$ \mathcal{L} 12 26 20 \setminus $\overline{1}$ $y_1 < 0, y_2 > 0, y_3$ free

Feasible solutions: $\bar{x} = (5, -3, 0)^T$ and $\bar{y} = (0, 4, -2)^T$.

Theorem

Let (P_{max}) and (P_{min}) represent the above. If \bar{x} and \bar{y} are feasible for the two LPs, then

$$
c^T \bar{x} \leq b^T \bar{y}
$$

If $c^T \bar{x} = b^T \bar{y}$, then \bar{x} is optimal for (P_{max}), and \bar{y} is optimal for (P_{min}).

Example 3 (continued):

Its dual LP:

max $(12, 26, 20)x$ (P) s.t. $\sqrt{ }$ \mathcal{L} 1 2 1 4 6 5 2 -1 -3 \setminus $\int x^2$ ≥ ≤ = $\sqrt{ }$ \mathcal{L} −2 2 13 \setminus \int s.t. $x_1 > 0, x_2$ free, $x_3 > 0$ min $(-2, 2, 13)y$ (D) $\sqrt{ }$ \mathcal{L} 1 4 2 2 6 −1 1 5 −3 \setminus $\vert y \vert$ ≥ = ≥ $\sqrt{ }$ \mathcal{L} 12 26 20 \setminus $\overline{1}$ $y_1 < 0, y_2 > 0, y_3$ free

Feasible solutions: $\bar{x} = (5, -3, 0)^T$ and $\bar{y} = (0, 4, -2)^T$. Since $(12, 26, 20)\overline{x} = (-2, 2, 13)\overline{y} = -18 \rightarrow$ both are optimal!

General Primal LP:

 $\max c^T x$ s.t. row_i $(A)x \leq b_i$ ($i \in R_1$) row_i $(A)x \geq b_i$ $(i \in R_2)$ row_i $(A)x = b_i$ ($i \in R_3$) $x_j \ge 0 \ (j \in C_1)$ $x_i \le 0 \ (j \in C_2)$ x_i free $(i \in C_3)$

General Primal LP:

 $\max c^T x$ s.t. row_i $(A)x \leq b_i$ $(i \in R_1)$ row_i $(A)x \geq b_i$ $(i \in R_2)$ row_i $(A)x = b_i$ ($i \in R_3$) $x_i \geq 0$ $(i \in C_1)$ $x_i \leq 0$ ($i \in C_2$) x_i free $(i \in C_3)$

Its dual according to the table:

```
\min b^T ys.t. \mathsf{col}_j(A)^T y \geq c_j \ (j \in C_1)\mathsf{col}_j(A)^{T} y \leq c_j \ (j \in C_2)\mathsf{col}_j(A)^{T} y = c_j \ (j \in C_3)y_i > 0 (i \in R_1)y_i \leq 0 \ (i \in R_2)y_i free (i \in R_3)
```
General Primal LP:

 $\max c^T x$ s.t. row_i $(A)x \leq b_i$ $(i \in R_1)$ row_i $(A)x > b$ _i $(i \in R_2)$ row_i $(A)x = b$ _i $(i \in R_3)$ $x_i \geq 0$ $(i \in C_1)$ $x_i \leq 0$ ($i \in C_2$) x_i free $(j \in C_3)$

Its dual according to the table:

```
\min b^T ys.t. \mathsf{col}_j(A)^T y \geq c_j \ (j \in C_1)\mathsf{col}_j(A)^{T} y \leq c_j \ (j \in C_2)\mathsf{col}_j(A)^{T} y = c_j \ (j \in C_3)y_i > 0 (i \in R_1)y_i \leq 0 \ (i \in R_2)y_i free (i \in R_3)
```
We can rewrite the above LPs using slack variables!

General Primal LP:

$$
\max c^T x
$$
\n
$$
\text{s.t. } Ax + s = b
$$
\n
$$
s_i \ge 0 \ (i \in R_1)
$$
\n
$$
s_i \le 0 \ (i \in R_2)
$$
\n
$$
s_i = 0 \ (i \in R_3)
$$
\n
$$
x_j \ge 0 \ (j \in C_1)
$$
\n
$$
x_j \le 0 \ (j \in C_2)
$$
\n
$$
x_j \text{ free } (j \in C_3)
$$

Its dual according to the table:

$$
\min b^T y
$$
\n
$$
\text{s.t. } A^T y + w = c \qquad (*)
$$
\n
$$
w_j \le 0 \ (j \in C_1)
$$
\n
$$
w_j \ge 0 \ (j \in C_2)
$$
\n
$$
w_j = 0 \ (j \in C_3)
$$
\n
$$
y_i \ge 0 \ (i \in R_1)
$$
\n
$$
y_i \le 0 \ (i \in R_2)
$$
\n
$$
y_i \text{ free } (i \in R_3)
$$

General Primal LP:

Its dual according to the table:

$$
\begin{array}{ll}\n\max\limits_{c} c^{T}x & \min\limits_{b} b^{T}y \\
\text{s.t. } Ax + s = b & \text{s.t. } A^{T}y + w = c & (*) \\
s_{i} \geq 0 \ (i \in R_{1}) & \text{if } w_{j} \leq 0 \ (j \in C_{1}) \\
s_{i} \leq 0 \ (i \in R_{2}) & \text{if } w_{j} \geq 0 \ (j \in C_{2}) \\
s_{i} = 0 \ (i \in R_{3}) & \text{if } w_{j} = 0 \ (j \in C_{3}) \\
x_{j} \leq 0 \ (j \in C_{2}) & \text{if } w_{i} \geq 0 \ (i \in R_{1}) \\
x_{j} \leq 0 \ (j \in C_{2}) & \text{if } w_{i} \leq 0 \ (i \in R_{2}) \\
x_{j} \text{ free } (j \in C_{3}) & \text{if } w_{i} \text{ free } (i \in R_{3})\n\end{array}
$$
\n
$$
\begin{array}{ll}\n\text{(*)} & \text{if } x \geq 0 \ (i \in R_{1}) \\
\text{(*)} & \text{if } x = 0 \ (j \in R_{2}) \\
\text{(*)} & \text{if } x = 0 \ (j \in R_{3}) \\
\text{(*)} & \text{if } x = 0 \ (j \in R_{1})\n\end{array}
$$

Suppose \bar{x} and \bar{y} are feasible for the original primal and dual LPs

General Primal LP:

Its dual according to the table:

$$
\begin{array}{ll}\n\max\limits_{c} c^{T}x & \min\limits_{b} b^{T}y \\
\text{s.t. } Ax + s = b & \text{s.t. } A^{T}y + w = c & (*) \\
s_{i} \geq 0 \ (i \in R_{1}) & \text{if } w_{j} \leq 0 \ (j \in C_{1}) \\
s_{i} \leq 0 \ (i \in R_{2}) & \text{if } w_{j} \geq 0 \ (j \in C_{2}) \\
s_{i} = 0 \ (i \in R_{3}) & \text{if } w_{j} = 0 \ (j \in C_{3}) \\
x_{j} \leq 0 \ (j \in C_{2}) & \text{if } w_{i} \geq 0 \ (i \in R_{1}) \\
x_{j} \leq 0 \ (j \in C_{2}) & \text{if } w_{i} \leq 0 \ (i \in R_{2}) \\
x_{j} \text{ free } (j \in C_{3}) & \text{if } w_{i} \text{ free } (i \in R_{3})\n\end{array}
$$
\n
$$
\begin{array}{ll}\n\text{(*)} & \text{if } x \geq 0 \ (i \in R_{1}) \\
\text{(*)} & \text{if } x = 0 \ (j \in R_{2}) \\
\text{(*)} & \text{if } x = 0 \ (j \in R_{3}) \\
\text{(*)} & \text{if } x = 0 \ (j \in R_{1})\n\end{array}
$$

Suppose \bar{x} and \bar{y} are feasible for the original primal and dual LPs Let $\bar{s} = b - A\bar{x}$ and $\bar{w} = c - A^T \bar{y}$.

General Primal LP:

Its dual according to the table:

$$
\begin{array}{ll}\n\max\limits_{c} c^{T}x & \min\limits_{s_i} b^{T}y \\
\text{s.t. } Ax + s = b & \text{s.t. } A^{T}y + w = c & (*) \\
s_i \geq 0 \ (i \in R_1) & \text{if } w_j \leq 0 \ (j \in C_1) \\
s_i \leq 0 \ (i \in R_2) & \text{if } w_j \geq 0 \ (j \in C_2) \\
s_i = 0 \ (i \in R_3) & \text{if } w_j = 0 \ (j \in C_3) \\
x_j \leq 0 \ (j \in C_2) & \text{if } w_i \geq 0 \ (i \in R_1) \\
x_j \leq 0 \ (j \in C_2) & \text{if } w_i \leq 0 \ (i \in R_2) \\
x_j \text{ free } (j \in C_3) & \text{if } w_i \text{ free } (i \in R_3)\n\end{array}
$$

Suppose \bar{x} and \bar{y} are feasible for the original primal and dual LPs Let $\bar{s} = b - A\bar{x}$ and $\bar{w} = c - A^T \bar{y}$. It follows that

$$
\bar{y}^T b = \bar{y}^T (A\bar{x} + \bar{s}) = (\bar{y}^T A)\bar{x} + \bar{y}^T \bar{s}
$$

General Primal LP:

Its dual according to the table:

$$
\begin{array}{ll}\n\max\limits_{c} c^{T}x & \min\limits_{b} b^{T}y \\
\text{s.t. } Ax + s = b & \text{s.t. } A^{T}y + w = c & (*) \\
s_{i} \geq 0 \ (i \in R_{1}) & \text{if } w_{j} \leq 0 \ (j \in C_{1}) \\
s_{i} \leq 0 \ (i \in R_{2}) & \text{if } w_{j} \geq 0 \ (j \in C_{2}) \\
s_{i} = 0 \ (i \in R_{3}) & \text{if } w_{j} = 0 \ (j \in C_{3}) \\
x_{j} \leq 0 \ (j \in C_{2}) & \text{if } w_{j} \leq 0 \ (i \in R_{1}) \\
x_{j} \leq 0 \ (j \in C_{2}) & \text{if } w_{j} \leq 0 \ (i \in R_{2}) \\
x_{j} \text{ free } (j \in C_{3}) & \text{if } w_{j} \text{ free } (i \in R_{3})\n\end{array}
$$
\n
$$
\begin{array}{ll}\n\text{(*)} & \text{if } x \geq 0 \\
\text{(*)} & \text{if } x = 0 \\
s_{i} \geq 0 \ (i \in R_{1}) & \text{if } w_{j} \geq 0 \ (j \in C_{2}) \\
s_{i} \geq 0 \ (j \in C_{3}) & \text{if } w_{j} \leq 0 \ (i \in R_{3})\n\end{array}
$$

Suppose \bar{x} and \bar{y} are feasible for the original primal and dual LPs Let $\bar{s} = b - A\bar{x}$ and $\bar{w} = c - A^T \bar{y}$. It follows that

$$
\overline{y}^T b = \overline{y}^T (A\overline{x} + \overline{s}) = (\overline{y}^T A)\overline{x} + \overline{y}^T \overline{s} \stackrel{(*)}{=} (c - \overline{w})^T \overline{x} + \overline{y}^T \overline{s} = c^T \overline{x} - \overline{w}^T \overline{x} + \overline{y}^T \overline{s}.
$$

General Primal LP:

Its dual according to the table:

$$
\begin{array}{ll}\n\max\limits_{c} c^{T}x & \min\limits_{s_{i}} b^{T}y \\
\text{s.t. } Ax + s = b & \text{s.t. } A^{T}y + w = c & (*) \\
s_{i} \geq 0 \ (i \in R_{1}) & \text{if } w_{j} \leq 0 \ (j \in C_{1}) \\
s_{i} \leq 0 \ (i \in R_{2}) & \text{if } w_{j} \geq 0 \ (j \in C_{2}) \\
s_{i} = 0 \ (i \in R_{3}) & \text{if } w_{j} = 0 \ (j \in C_{3}) \\
x_{j} \leq 0 \ (j \in C_{2}) & \text{if } w_{i} \geq 0 \ (i \in R_{1}) \\
x_{j} \leq 0 \ (j \in C_{2}) & \text{if } w_{i} \leq 0 \ (i \in R_{2}) \\
x_{j} \text{ free } (j \in C_{3}) & \text{if } w_{i} \text{ free } (i \in R_{3})\n\end{array}
$$

Suppose \bar{x} and \bar{y} are feasible for the original primal and dual LPs Let $\bar{s} = b - A\bar{x}$ and $\bar{w} = c - A^T \bar{y}$. It follows that

$$
\bar{y}^T b = \bar{y}^T (A\bar{x} + \bar{s}) = (\bar{y}^T A)\bar{x} + \bar{y}^T \bar{s} \overset{(*)}{=} (c - \bar{w})^T \bar{x} + \bar{y}^T \bar{s} = c^T \bar{x} - \bar{w}^T \bar{x} + \bar{y}^T \bar{s}.
$$

We can show that $\bar w^T\bar x\leq 0$ and $\bar y^T\bar s\geq 0$

General Primal LP:

Its dual according to the table:

$$
\begin{array}{ll}\n\max\limits_{c} c^{T}x & \min\limits_{b} b^{T}y \\
\text{s.t. } Ax + s = b & \text{s.t. } A^{T}y + w = c & (*) \\
s_{i} \geq 0 \ (i \in R_{1}) & \text{if } w_{j} \leq 0 \ (j \in C_{1}) \\
s_{i} \leq 0 \ (i \in R_{2}) & \text{if } w_{j} \geq 0 \ (j \in C_{2}) \\
s_{i} = 0 \ (i \in R_{3}) & \text{if } w_{j} = 0 \ (j \in C_{3}) \\
x_{j} \leq 0 \ (j \in C_{2}) & \text{if } w_{j} \leq 0 \ (i \in R_{1}) \\
x_{j} \leq 0 \ (j \in C_{2}) & \text{if } w_{j} \leq 0 \ (i \in R_{2}) \\
x_{j} \text{ free } (j \in C_{3}) & \text{if } w_{j} \text{ free } (i \in R_{3})\n\end{array}
$$
\n
$$
\begin{array}{ll}\n\text{(*)} & \text{if } x \geq 0 \\
\text{(*)} & \text{if } x = 0 \\
s_{i} \geq 0 \ (i \in R_{1}) & \text{if } w_{j} \geq 0 \ (j \in C_{2}) \\
s_{i} \geq 0 \ (j \in C_{3}) & \text{if } w_{j} \leq 0 \ (i \in R_{3})\n\end{array}
$$

Suppose \bar{x} and \bar{y} are feasible for the original primal and dual LPs Let $\bar{s} = b - A\bar{x}$ and $\bar{w} = c - A^T \bar{y}$. It follows that

$$
\bar{y}^T b = \bar{y}^T (A\bar{x} + \bar{s}) = (\bar{y}^T A)\bar{x} + \bar{y}^T \bar{s} \overset{(*)}{=} (c - \bar{w})^T \bar{x} + \bar{y}^T \bar{s} = c^T \bar{x} - \bar{w}^T \bar{x} + \bar{y}^T \bar{s}.
$$

We can show that $\bar w^T\bar x\leq 0$ and $\bar y^T\bar s\geq 0\longrightarrow \ \ \bar y^Tb\geq c^T\bar x$

Theorem

Let (P_{max}) and (P_{min}) represent the above table. If \bar{x} and \bar{y} are feasible for the two LPs, then

$$
c^T\bar{x}\leq b^T\bar{y}
$$

If $c^T\bar{x}=b^T\bar{y}$, then \bar{x} is optimal for (P_{max}), and \bar{y} is optimal for (P_{min}) .

Theorem

Let (P_{max}) and (P_{min}) represent the above table. If \bar{x} and \bar{y} are feasible for the two LPs, then

 $c^T \bar{x} \leq b^T \bar{y}$

If $c^T\bar{x}=b^T\bar{y}$, then \bar{x} is optimal for (P_{max}), and \bar{y} is optimal for (P_{min}) .

(i) (P_{max}) is unbounded \longrightarrow (P_{min}) infeasible

Theorem

Let (P_{max}) and (P_{min}) represent the above table. If \bar{x} and \bar{y} are feasible for the two LPs, then

$$
c^T\bar{x}\leq b^T\bar{y}
$$

If $c^T\bar{x}=b^T\bar{y}$, then \bar{x} is optimal for (P_{max}), and \bar{y} is optimal for (P_{min}) .

- (i) (P_{max}) is unbounded \longrightarrow (P_{min}) infeasible
- (ii) (P_{min}) is unbounded \rightarrow (Pmax) infeasible

Theorem

Let (P_{max}) and (P_{min}) represent the above table. If \bar{x} and \bar{y} are feasible for the two LPs, then

 $c^T \bar{x} \leq b^T \bar{y}$

If $c^T\bar{x}=b^T\bar{y}$, then \bar{x} is optimal for (P_{max}), and \bar{y} is optimal for (P_{min}) .

- (i) (P_{max}) is unbounded \longrightarrow (P_{min}) infeasible
- (ii) (P_{min}) is unbounded \longrightarrow (Pmax) infeasible
- (iii) (P_{max}) and (P_{min}) feasible \longrightarrow both must have optimal solutions

Theorem

Let (P_{max}) and (P_{min}) represent the above table. If \bar{x} and \bar{y} are feasible for the two LPs, then

 $c^T \bar{x} \leq b^T \bar{y}$

If $c^T\bar{x}=b^T\bar{y}$, then \bar{x} is optimal for (P_{max}), and \bar{y} is optimal for (P_{min}) .

- (i) (P_{max}) is unbounded \longrightarrow (P_{min}) infeasible
- (ii) (P_{min}) is unbounded \longrightarrow (Pmax) infeasible
- (iii) (P_{max}) and (P_{min}) feasible \longrightarrow both must have optimal solutions

Proof: (i) Suppose, for a contradiction, that \bar{y} is feasible for (P_{min}) .

Theorem

Let (P_{max}) and (P_{min}) represent the above table. If \bar{x} and \bar{y} are feasible for the two LPs, then

 $c^T \bar{x} \leq b^T \bar{y}$

If $c^T\bar{x}=b^T\bar{y}$, then \bar{x} is optimal for (P_{max}), and \bar{y} is optimal for (P_{min}) .

- (i) (P_{max}) is unbounded \longrightarrow (P_{\min}) infeasible
- (ii) (P_{min}) is unbounded \longrightarrow (Pmax) infeasible
- (iii) (P_{max}) and (P_{min}) feasible \longrightarrow both must have optimal solutions

Proof: (i) Suppose, for a contradiction, that \bar{y} is feasible for (P_{min}) . By weak duality $\longrightarrow\, c^T \bar{x}\leq b^T \bar{y}$ for all \bar{x} feasible for (P $_{\mathsf{max}}$), and hence the latter is bounded.

Theorem

Let (P_{max}) and (P_{min}) represent the above table. If \bar{x} and \bar{y} are feasible for the two LPs, then

 $c^T \bar{x} \leq b^T \bar{y}$

If $c^T\bar{x}=b^T\bar{y}$, then \bar{x} is optimal for (P_{max}), and \bar{y} is optimal for (P_{min}) .

- (i) (P_{max}) is unbounded \longrightarrow (P_{\min}) infeasible
- (ii) (P_{min}) is unbounded \longrightarrow (Pmax) infeasible
- (iii) (P_{max}) and (P_{min}) feasible \longrightarrow both must have optimal solutions

Proof: (i) Suppose, for a contradiction, that \bar{y} is feasible for (P_{min}) . By weak duality $\longrightarrow\, c^T \bar{x}\leq b^T \bar{y}$ for all \bar{x} feasible for (P $_{\mathsf{max}}$), and hence the latter is bounded.

(ii) Similar to (i)

Theorem

Let (P_{max}) and (P_{min}) represent the above table. If \bar{x} and \bar{y} are feasible for the two LPs, then

 $c^T \bar{x} \leq b^T \bar{y}$

If $c^T\bar{x}=b^T\bar{y}$, then \bar{x} is optimal for (P_{max}), and \bar{y} is optimal for (P_{min}) .

- (i) (P_{max}) is unbounded \longrightarrow (P_{\min}) infeasible
- (ii) (P_{min}) is unbounded \longrightarrow (Pmax) infeasible
- (iii) (P_{max}) and (P_{min}) feasible \longrightarrow both must have optimal solutions

Proof: (i) Suppose, for a contradiction, that \bar{y} is feasible for (P_{min}) . By weak duality $\longrightarrow\, c^T \bar{x}\leq b^T \bar{y}$ for all \bar{x} feasible for (P $_{\mathsf{max}}$), and hence the latter is bounded.

(ii) Similar to (i)

(iii) weak duality \longrightarrow both (P_{max}) and (P_{min}) bounded

Theorem

Let (P_{max}) and (P_{min}) represent the above table. If \bar{x} and \bar{y} are feasible for the two LPs, then

 $c^T \bar{x} \leq b^T \bar{y}$

If $c^T\bar{x}=b^T\bar{y}$, then \bar{x} is optimal for (P_{max}), and \bar{y} is optimal for (P_{min}) .

- (i) (P_{max}) is unbounded \longrightarrow (P_{min}) infeasible
- (ii) (P_{min}) is unbounded \rightarrow (Pmax) infeasible
- (iii) (P_{max}) and (P_{min}) feasible \longrightarrow both must have optimal solutions

Proof: (i) Suppose, for a contradiction, that \bar{y} is feasible for (P_{min}) . By weak duality $\longrightarrow\, c^T \bar{x}\leq b^T \bar{y}$ for all \bar{x} feasible for (P $_{\mathsf{max}}$), and hence the latter is bounded.

(ii) Similar to (i)

(iii) weak duality \longrightarrow both (P_{max}) and (P_{min}) bounded

Fundamental Theorem of $LP \longrightarrow$ Both LPs must have an optimal solution!

Recap

• We can use the above table to compute duals of general LPs

Recap

- We can use the above table to compute duals of general LPs
- Weak duality theorem: if \bar{x} and \bar{y} are feasible for (P_{max}) and (P_{min}) , then:

$$
c^T\bar{x}\leq b^T\bar{y}
$$

Recap

- We can use the above table to compute duals of general LPs
- Weak duality theorem: if \bar{x} and \bar{y} are feasible for (P_{max}) and (P_{min}) , then:

$$
c^T\bar{x}\leq b^T\bar{y}
$$

Both are optimal if equality holds!