
CO 250: Introduction to Optimization
Module 4: Duality Theory (Weak Duality)
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• A has a row for every s, t-cut
δ(U), and a column for every
edge e; and

• AUe = 1 if e ∈ δ(U) and
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Theorem

If x̄ is feasible for (P) and ȳ is
feasible for (D), then bT ȳ ≤ cT x̄.

Equivalent: y feasible widths and P
an s, t-path −→ 1T y ≤ c(P )
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This is consistent with the earlier
discussion we had!



Primal-Dual Pairs

The following table shows how constraints and variables in primal and
dual LPs correspond:

Example 3:

max (12, 26, 20)x (P)

s.t.

1 2 1
4 6 5
2 −1 −3

x
≥
≤
=

−2
2
13


x1 ≥ 0, x2 free, x3 ≥ 0



Primal-Dual Pairs

The following table shows how constraints and variables in primal and
dual LPs correspond:

Example 3:

max (12, 26, 20)x (P)

s.t.

1 2 1
4 6 5
2 −1 −3

x
≥
≤
=

−2
2
13


x1 ≥ 0, x2 free, x3 ≥ 0

Its dual LP:

min (−2, 2, 13)y (D)

s.t.

1 4 2
2 6 −1
1 5 −3

 y ?

12
26
20


y ? 0



Primal-Dual Pairs

The following table shows how constraints and variables in primal and
dual LPs correspond:

Example 3:

max (12, 26, 20)x (P)

s.t.

1 2 1
4 6 5
2 −1 −3

x
≥
≤
=

−2
2
13


x1 ≥ 0, x2 free, x3 ≥ 0

Its dual LP:

min (−2, 2, 13)y (D)

s.t.

1 4 2
2 6 −1
1 5 −3

 y ?

12
26
20


y1 ≤ 0, y2 ≥ 0, y3 free



Primal-Dual Pairs

The following table shows how constraints and variables in primal and
dual LPs correspond:

Example 3:

max (12, 26, 20)x (P)

s.t.

1 2 1
4 6 5
2 −1 −3

x
≥
≤
=

−2
2
13


x1 ≥ 0, x2 free, x3 ≥ 0

Its dual LP:

min (−2, 2, 13)y (D)

s.t.

1 4 2
2 6 −1
1 5 −3

 y
≥
=
≥

12
26
20


y1 ≤ 0, y2 ≥ 0, y3 free



Primal-Dual Pairs

The following table shows how constraints and variables in primal and
dual LPs correspond:

Theorem

Let (Pmax) and (Pmin) represent the above.



Primal-Dual Pairs

The following table shows how constraints and variables in primal and
dual LPs correspond:

Theorem

Let (Pmax) and (Pmin) represent the above. If x̄ and ȳ are feasible for
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If cT x̄ = bT ȳ, then x̄ is optimal for (Pmax), and ȳ is optimal for (Pmin).
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Feasible solutions: x̄ = (5,−3, 0)T and ȳ = (0, 4,−2)T .
Since (12, 26, 20)x̄ = (−2, 2, 13)ȳ = −18 −→ both are optimal!
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We can show that w̄T x̄ ≤ 0 and ȳT s̄ ≥ 0
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Consequences of Weak Duality

Theorem

Let (Pmax) and (Pmin) represent
the above table. If x̄ and ȳ are
feasible for the two LPs, then

cT x̄ ≤ bT ȳ

If cT x̄ = bT ȳ, then x̄ is optimal for
(Pmax), and ȳ is optimal for
(Pmin).

(i) (Pmax) is unbounded −→
(Pmin) infeasible

(ii) (Pmin) is unbounded −→
(Pmax) infeasible

(iii) (Pmax) and (Pmin) feasible
−→ both must have optimal
solutions

Proof: (i) Suppose, for a contradiction, that ȳ is feasible for (Pmin).
By weak duality −→ cT x̄ ≤ bT ȳ for all x̄ feasible for (Pmax), and hence
the latter is bounded.

(ii) Similar to (i)

(iii) weak duality −→ both (Pmax) and (Pmin) bounded

Fundamental Theorem of LP −→ Both LPs must have an optimal
solution!
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If cT x̄ = bT ȳ, then x̄ is optimal for
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feasible for the two LPs, then

cT x̄ ≤ bT ȳ
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Recap

• We can use the above table to compute duals of general LPs

• Weak duality theorem: if x̄ and ȳ are feasible for (Pmax) and
(Pmin), then:

cT x̄ ≤ bT ȳ
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(Pmin), then:
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Both are optimal if equality holds!


