Module 5: Integer Programs (Cutting Planes)
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Using Simplex, we find that = = (§ é) is optimal. NOT INTEGER!
We now search for a constraint o'z < [ that

e s satisfied for all feasible solutions to the IP, and

e is not satisfied for .

We will call this constraint a cutting plane for Z.

Example:
x1 4 3z9 < 6. (*)
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After adding (x) to our relaxation, we get

Using Simplex, we get: o’ = (3, 1)T is optimal. INTEGER!
Since ' is optimal for the IP relaxation, z’ is also optimal for the IP!

We have now solved our first IP.
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Let (P) denote max{c'z : Az < b}.
If (P) is infeasible, then STOP. (IP) is also infeasible.

Let Z be the optimal solution to (P).

If Z is integral, then STOP. Z is also optimal for (IP).

Find a cutting plane a 'z < 3 for Z.

Add constraint a "z < 8 to the system Az < b.
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Question

How can we find cutting planes?

SIMPLEX DOES THIS FOR US!

Definition
Let a € R, then the floor of a, denoted |a], is the largest integer < a.

Example
13.7] = 3
62] = 62

|-2.1] = -3
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Add a slack variable, 3 > 0, and rewrite (1) as
x1 + 4xs + x3 = 8.
Add another slack variable, z4 > 0, and rewrite (2) as
1+ 22 + x4 = 4.

Since x1,x2 are integers, x3 = 8 —x1 — 42 and x4 = 4 — 1 — x2 are integers.

Thus, we can rewrite the IP as
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We will now relax the integer program.
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We will use the Simplex algorithm to solve this

Get an optimal basis B = {1,2} and rewrite in canonical form for B

max

-1 —1)z+12

(
NaE
z>0

- (35)

The basic solution is Z = (8/3,4/3,0,0) "

. NOT INTEGER
Let us use the canonical form to get a cutting plane for Z
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The basic solution is Z = (8/3,4/3,0,0) .
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Solve the relaxation and get the LP in a canonical form for B.

e N=1{j:j¢B)

S. T. _ . — —_

25+ Ay = b Z basic (zy = 0,Zp =b)
x>0 7(i) index of i*" basic variable

Suppose Z is NOT INTEGER. Then, b; is fractional for some value 3.

Every feasible solution to IP satisfies

Tri) + Z | Aij] zj < [b]

JEN

However, T does not satisfy (x) as

Ty + > LAl @ =bi> [bi).
b, SN =0

=) (%) is a cutting plane for Z.






The Good and the Bad

THE GOoOD NEWS:

e The Simplex based cutting plane algorithm eventually will terminate.



The Good and the Bad

THE GOoOD NEWS:

e The Simplex based cutting plane algorithm eventually will terminate.

THE BAD NEwWS

o If implemented in this way, it will be terribly slow.



The Good and the Bad

THE GOoOD NEWS:

e The Simplex based cutting plane algorithm eventually will terminate.

THE BAD NEwWS

o If implemented in this way, it will be terribly slow.

WAYS WE CAN IMPROVE THE ALGORITHM



The Good and the Bad

THE GOoOD NEWS:

e The Simplex based cutting plane algorithm eventually will terminate.

THE BAD NEwWS

o If implemented in this way, it will be terribly slow.

WAYS WE CAN IMPROVE THE ALGORITHM

e Do not use the 2-phase Simplex to reoptimize; work with the dual.



The Good and the Bad

THE GOoOD NEWS:

e The Simplex based cutting plane algorithm eventually will terminate.

THE BAD NEwWS

o If implemented in this way, it will be terribly slow.

WAYS WE CAN IMPROVE THE ALGORITHM

e Do not use the 2-phase Simplex to reoptimize; work with the dual.

e Add more than one cutting plane at at time.



The Good and the Bad

THE GOoOD NEWS:

e The Simplex based cutting plane algorithm eventually will terminate.

THE BAD NEwWS

o If implemented in this way, it will be terribly slow.

WAYS WE CAN IMPROVE THE ALGORITHM
e Do not use the 2-phase Simplex to reoptimize; work with the dual.
e Add more than one cutting plane at at time.

e Combine it with a divide and conquer strategy (branch and bound).
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Recap

o We solve the LP relaxation of an integer program and get a solution;

If the solution is integer, it is optimal for the integer program;

Otherwise, we add a cutting plane.

Cutting planes can be obtained from the final canonical form.

Careful implementation is key to success.
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