
CO 250: Introduction to Optimization
Module 1: Formulations (Optimization on Graphs)

Shortest Paths

Columbia Ave

Victoria St

Erb St A
lb

er
t S

t

W
es

tm
ou

nt
 R

d

K
in

g
St

Fi
sh

er
 R

d

s

t

a

d

b f g

c

• Familiar problem: Starting at location s, we wish to travel to t.
What is the best (i.e., shortest) route?

• In the figure above, such a route is indicated in bold.

Shortest Paths

Columbia Ave

Victoria St

Erb St A
lb

er
t S

t

W
es

tm
ou

nt
 R

d

K
in

g
St

Fi
sh

er
 R

d

s

t

a

d

b f g

c

• Familiar problem: Starting at location s, we wish to travel to t.
What is the best (i.e., shortest) route?

• In the figure above, such a route is indicated in bold.

Shortest Paths

Columbia Ave

Victoria St

Erb St A
lb

er
t S

t

W
es

tm
ou

nt
 R

d

K
in

g
St

Fi
sh

er
 R

d

s

t

a

d

b f g

c

• Goal: Write the problem of finding the shortest route between s and
t as an integer program!

Shortest Paths

Columbia Ave

Victoria St

Erb St A
lb

er
t S

t

W
es

tm
ou

nt
 R

d

K
in

g
St

Fi
sh

er
 R

d

s

t

a

d

b f g

c

• Goal: Write the problem of finding the shortest route between s and
t as an integer program!
... How?

Graph Theory 101

Rephrasing this problem in the language of
graph theory helps!

• vertices u,w, . . . ∈ V

• edges uw,wz, . . . ∈ E

Graph Theory 101

Rephrasing this problem in the language of
graph theory helps!

A graph G consists of ...

• vertices u,w, . . . ∈ V

• edges uw,wz, . . . ∈ E

Graph Theory 101

Rephrasing this problem in the language of
graph theory helps!

A graph G consists of ...

• vertices u,w, . . . ∈ V

• edges uw,wz, . . . ∈ E

u

v

w

Graph Theory 101

Rephrasing this problem in the language of
graph theory helps!

A graph G consists of ...

• vertices u,w, . . . ∈ V
(drawn as filled circles)

• edges uw,wz, . . . ∈ E

u

v

w

Graph Theory 101

Rephrasing this problem in the language of
graph theory helps!

A graph G consists of ...

• vertices u,w, . . . ∈ V
(drawn as filled circles)

• edges uw,wz, . . . ∈ E

u

v

w

Graph Theory 101

Rephrasing this problem in the language of
graph theory helps!

A graph G consists of ...

• vertices u,w, . . . ∈ V
(drawn as filled circles)

• edges uw,wz, . . . ∈ E
(drawn as lines connecting circles)

u

v

w

Graph Theory 101

Rephrasing this problem in the language of
graph theory helps!

A graph G consists of ...

• vertices u,w, . . . ∈ V
(drawn as filled circles)

• edges uw,wz, . . . ∈ E
(drawn as lines connecting circles)

Two vertices u and v are adjacent if
uv ∈ E.

y

u

v

t

x

z

w

Graph Theory 101

Rephrasing this problem in the language of
graph theory helps!

A graph G consists of ...

• vertices u,w, . . . ∈ V
(drawn as filled circles)

• edges uw,wz, . . . ∈ E
(drawn as lines connecting circles)

Two vertices u and v are adjacent if
uv ∈ E. Vertices u and v are the
endpoints of edge uv ∈ E,

y

u

v

t

x

z

w

Graph Theory 101

Rephrasing this problem in the language of
graph theory helps!

A graph G consists of ...

• vertices u,w, . . . ∈ V
(drawn as filled circles)

• edges uw,wz, . . . ∈ E
(drawn as lines connecting circles)

Two vertices u and v are adjacent if
uv ∈ E. Vertices u and v are the
endpoints of edge uv ∈ E, and edge e ∈ E
is incident to u ∈ V if u is an endpoint of e.

y

u

v

t

x

z

w

Graphs – Why do we care?

Graphs are useful to
compactly model
many real-world
entities.

• Modeling circuits
in chip design

• Social networks

• Trade networks

• and many
more!

Graphs – Why do we care?

Graphs are useful to
compactly model
many real-world
entities. For example:

• Modeling circuits
in chip design

• Social networks

• Trade networks

• and many
more!

Eyematrix/iStock/Thinkstock

Graphs – Why do we care?

Graphs are useful to
compactly model
many real-world
entities. For example:

• Modeling circuits
in chip design

• Social networks

• Trade networks

• and many
more!

VLADGRIN/iStock/Thinkstock

Graphs – Why do we care?

Graphs are useful to
compactly model
many real-world
entities. For example:

• Modeling circuits
in chip design

• Social networks

• Trade networks

• and many
more!

Lampman, 2008 [Online Image]. Late Medieval Trade Routes. Wikimedia Commons.
http://commons.wikimedia.org/wiki/File:Late Medieval Trade Routes.jpg

Graphs – Why do we care?

Graphs are useful to
compactly model
many real-world
entities. For example:

• Modeling circuits
in chip design

• Social networks

• Trade networks

• and many
more!

Lampman, 2008 [Online Image]. Late Medieval Trade Routes. Wikimedia Commons.
http://commons.wikimedia.org/wiki/File:Late Medieval Trade Routes.jpg

The Map of Water Town

Columbia Ave

Victoria St

Erb St A
lb

er
t S

t

W
es

tm
ou

nt
 R

d

K
in

g
St

Fi
sh

er
 R

d

s

t

a

d

b f g

c

• We can think of the street map as a graph, G.

• Vertices: Road intersections

• Edges: Road segments connecting adjacent intersections

The Map of Water Town

Columbia Ave

Victoria St

Erb St A
lb

er
t S

t

W
es

tm
ou

nt
 R

d

K
in

g
St

Fi
sh

er
 R

d

s

t

a

d

b f g

c

• We can think of the street map as a graph, G.

• Vertices: Road intersections

• Edges: Road segments connecting adjacent intersections

The Map of Water Town

Columbia Ave

Victoria St

Erb St A
lb

er
t S

t

W
es

tm
ou

nt
 R

d

K
in

g
St

Fi
sh

er
 R

d

s

t

a

d

b f g

c

• We can think of the street map as a graph, G.

• Vertices: Road intersections

• Edges: Road segments connecting adjacent intersections

The Map of Water Town

830

800

830

72
0

s

t

a

d

b f g

c

600650

70
0

90

45
0

25
0 61
0

80
59
0

600

610

70
0

35
0

33
0

650

325
325

50
0

415

900
630

• Each edge e ∈ E is labelled by its length ce ≥ 0.

• We are looking for a path connecting s and t of smallest total length!

The Map of Water Town

830

800

830

72
0

s

t

a

d

b f g

c

600650

70
0

90

45
0

25
0 61
0

80
59
0

600

610

70
0

35
0

33
0

650

325
325

50
0

415

900
630

• Each edge e ∈ E is labelled by its length ce ≥ 0.

• We are looking for a path connecting s and t of smallest total length!

Paths

830

800

830

72
0

s

t

a

d

b f g

c

600650

70
0

90

45
0

25
0 61
0

80
59
0

600

610

70
0

35
0

33
0

650

325
325

50
0

415

900
630

An s, t-path in G = (V,E) is a sequence

v1v2, v2v3, v3v4, . . . , vk−2vk−1, vk−1vk

where

• vi ∈ V and vivi+1 ∈ E for all i, and

• v1 = s, vk = t, and vi 6= vj for all i 6= j.

Paths

830

800

830

72
0

s

t

a

d

b f g

c

600650

70
0

90

45
0

25
0 61
0

80
59
0

600

610

70
0

35
0

33
0

650

325
325

50
0

415

900
630

An s, t-path in G = (V,E) is a sequence

v1v2, v2v3, v3v4, . . . , vk−2vk−1, vk−1vk

where

• vi ∈ V and vivi+1 ∈ E for all i, and

• v1 = s, vk = t, and vi 6= vj for all i 6= j.

Paths

830

800

830

72
0

s

t

a

d

b f g

c

600650

70
0

90

45
0

25
0 61
0

80
59
0

600

610

70
0

35
0

33
0

650

325
325

50
0

415

900
630

An s, t-path in G = (V,E) is a sequence

v1v2, v2v3, v3v4, . . . , vk−2vk−1, vk−1vk

where

• vi ∈ V and vivi+1 ∈ E for all i, and

• v1 = s, vk = t, and vi 6= vj for all i 6= j.
(Without this, it is called an s, t-walk)

Paths

830

s

t

a

d

b f g

650

45
0

25
0

600

70
0

An s, t-path in G = (V,E) is a sequence

v1v2, v2v3, v3v4, . . . , vk−2vk−1, vk−1vk

where

• vi ∈ V and vivi+1 ∈ E for all i, and

• v1 = s, vk = t, and vi 6= vj for all i 6= j.
(Without this, it is called an s, t-walk)

Paths

830

s

t

a

d

b f g

650
45
0

25
0

600

70
0

P= sa, ad, db, bf, fg, gt

Paths

830

s

t

a

d

b f g

650
45
0

25
0

600

70
0

P= sa, ad, db, bf, fg, gt

The length of a path P = v1v2, . . . , vk−1vk is the sum of the lengths of
the edges on P :

c(P) :=
∑

(ce : e ∈ P).

Paths

830

s

t

a

d

b f g

650
45
0

25
0

600

70
0

P= sa, ad, db, bf, fg, gt

c(P) = csa + cad + cdb + cbf + cfg + cgt

= 650 + 490 + 250 + 830 + 600 + 700

= 3520

The length of a path P = v1v2, . . . , vk−1vk is the sum of the lengths of
the edges on P :

c(P) :=
∑

(ce : e ∈ P).

830

800

830

72
0

s

t

a

d

b f g

c

600650

70
0

90

45
0

25
0 61
0

80
59
0

600

610

70
0

35
0

33
0

650

325
325

50
0

415

900
630

Shortest Path Problem

• Given: Graph G = (V,E), lengths ce ≥ 0 for all e ∈ E, s, t ∈ V

• Find: Minimum-length s, t-path P

830

800

830

72
0

s

t

a

d

b f g

c

600650

70
0

90

45
0

25
0 61
0

80
59
0

600

610

70
0

35
0

33
0

650

325
325

50
0

415

900
630

Shortest Path Problem

• Given: Graph G = (V,E), lengths ce ≥ 0 for all e ∈ E, s, t ∈ V

• Find: Minimum-length s, t-path P

830

800

830

72
0

s

t

a

d

b f g

c

600650

70
0

90

45
0

25
0 61
0

80
59
0

600

610

70
0

35
0

33
0

650

325
325

50
0

415

900
630

Shortest Path Problem

• Given: Graph G = (V,E), lengths ce ≥ 0 for all e ∈ E, s, t ∈ V

• Find: Minimum-length s, t-path P

Goal: Write an IP whose solutions are the shortest s, t-paths!

830

800

830

72
0

s

t

a

d

b f g

c

600650

70
0

90

45
0

25
0 61
0

80
59
0

600

610

70
0

35
0

33
0

650

325
325

50
0

415

900
630

Shortest Path Problem

• Given: Graph G = (V,E), lengths ce ≥ 0 for all e ∈ E, s, t ∈ V

• Find: Minimum-length s, t-path P

Goal: Write an IP whose solutions are the shortest s, t-paths!

−→ Later!

Example: Matchings

WaterTech - Job Assignment

WaterTech has a collection of
important jobs:

J = {1′, 2′, 3′, 4′}

that it needs to handle urgently.

WaterTech - Job Assignment

WaterTech has a collection of
important jobs:

J = {1′, 2′, 3′, 4′}

that it needs to handle urgently.

It also has 4 employees:

E = {1, 2, 3, 4}

that need to handle these jobs.

WaterTech - Job Assignment

WaterTech has a collection of
important jobs:

J = {1′, 2′, 3′, 4′}

that it needs to handle urgently.

It also has 4 employees:

E = {1, 2, 3, 4}

that need to handle these jobs.

Employees have different skill-sets
and may take different amounts of
time to execute a job.

WaterTech - Job Assignment

WaterTech has a collection of
important jobs:

J = {1′, 2′, 3′, 4′}

that it needs to handle urgently.

It also has 4 employees:

E = {1, 2, 3, 4}

that need to handle these jobs.

Employees have different skill-sets
and may take different amounts of
time to execute a job.

Employees
Jobs

1′ 2′ 3′ 4′

1 - 5 - 7
2 8 - 2 -
3 - 1 - -
4 8 - 3 -

WaterTech - Job Assignment

WaterTech has a collection of
important jobs:

J = {1′, 2′, 3′, 4′}

that it needs to handle urgently.

It also has 4 employees:

E = {1, 2, 3, 4}

that need to handle these jobs.

Employees have different skill-sets
and may take different amounts of
time to execute a job.

Employees
Jobs

1′ 2′ 3′ 4′

1 - 5 - 7
2 8 - 2 -
3 - 1 - -
4 8 - 3 -

Note: Some workers are not able to
handle certain jobs!

WaterTech - Job Assignment

WaterTech has a collection of
important jobs:

J = {1′, 2′, 3′, 4′}

that it needs to handle urgently.

It also has 4 employees:

E = {1, 2, 3, 4}

that need to handle these jobs.

Employees have different skill-sets
and may take different amounts of
time to execute a job.

Employees
Jobs

1′ 2′ 3′ 4′

1 - 5 - 7
2 8 - 2 -
3 - 1 - -
4 8 - 3 -

Note: Some workers are not able to
handle certain jobs!

Goal: Assign each worker to exactly
one task so that the total execution
time is smallest!

WaterTech - Job Assignment

WaterTech has a collection of
important jobs:

J = {1′, 2′, 3′, 4′}

that it needs to handle urgently.

It also has 4 employees:

E = {1, 2, 3, 4}

that need to handle these jobs.

Employees have different skill-sets
and may take different amounts of
time to execute a job.

Employees
Jobs

1′ 2′ 3′ 4′

1 - 5 - 7
2 8 - 2 -
3 - 1 - -
4 8 - 3 -

Note: Some workers are not able to
handle certain jobs!

Goal: Assign each worker to exactly
one task so that the total execution
time is smallest!

−→ We will rephrase this in the
language of graphs

Matchings

Create a graph with one vertex for
each employee and job.

Matchings

Create a graph with one vertex for
each employee and job.

1

4

2

3

1’

4’

2’

3’

E J

Matchings

Create a graph with one vertex for
each employee and job.

1

4

2

3

1’

4’

2’

3’

E J

Employees
Jobs

1′ 2′ 3′ 4′

1 - 5 - 7
2 8 - - 4
3 - 1 - -
4 8 - 3 -

Matchings

Create a graph with one vertex for
each employee and job.

Add an edge ij for i ∈ E and j ∈ J
if employee i can handle job j.

1

4

2

3

1’

4’

2’

3’

E J

Employees
Jobs

1′ 2′ 3′ 4′

1 - 5 - 7
2 8 - - 4
3 - 1 - -
4 8 - 3 -

Matchings

Create a graph with one vertex for
each employee and job.

Add an edge ij for i ∈ E and j ∈ J
if employee i can handle job j.

1

4

2

3

1’

4’

2’

3’

E J

Employees
Jobs

1′ 2′ 3′ 4′

1 - 5 - 7
2 8 - - 4
3 - 1 - -
4 8 - 3 -

Matchings

Create a graph with one vertex for
each employee and job.

Add an edge ij for i ∈ E and j ∈ J
if employee i can handle job j.

Let the cost cij of edge ij be the
amount of time needed by i to
complete j.

1

4

2

3

1’

4’

2’

3’

E J

Employees
Jobs

1′ 2′ 3′ 4′

1 - 5 - 7
2 8 - - 4
3 - 1 - -
4 8 - 3 -

Matchings

Create a graph with one vertex for
each employee and job.

Add an edge ij for i ∈ E and j ∈ J
if employee i can handle job j.

Let the cost cij of edge ij be the
amount of time needed by i to
complete j.

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Employees
Jobs

1′ 2′ 3′ 4′

1 - 5 - 7
2 8 - - 4
3 - 1 - -
4 8 - 3 -

Matchings

Definition

A collection M ⊆ E is a matching if no two
edges ij, i′j′ ∈M (ij 6= i′j′) share an
endpoint;

Examples

1. M = {14′, 21′, 32′, 43′} is a matching.

2. M = {14′, 32′, 41′, 43′} is not a
matching.

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Matchings

Definition

A collection M ⊆ E is a matching if no two
edges ij, i′j′ ∈M (ij 6= i′j′) share an
endpoint; i.e., {i, j} ∩ {i′, j′} = ∅.

Examples

1. M = {14′, 21′, 32′, 43′} is a matching.

2. M = {14′, 32′, 41′, 43′} is not a
matching.

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Matchings

Definition

A collection M ⊆ E is a matching if no two
edges ij, i′j′ ∈M (ij 6= i′j′) share an
endpoint; i.e., {i, j} ∩ {i′, j′} = ∅.

Examples

1. M = {14′, 21′, 32′, 43′} is a matching.

2. M = {14′, 32′, 41′, 43′} is not a
matching.

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Matchings

Definition

A collection M ⊆ E is a matching if no two
edges ij, i′j′ ∈M (ij 6= i′j′) share an
endpoint; i.e., {i, j} ∩ {i′, j′} = ∅.

Examples

1. M = {14′, 21′, 32′, 43′} is a matching.

2. M = {14′, 32′, 41′, 43′} is not a
matching.

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Matchings

The cost of a matching M is the
sum of costs of its edges:

c(M) =
∑

(ce : e ∈M)

e.g., M = {14′, 21′, 32′, 43′}
−→ c(M) = 19

Definition

A matching M is perfect if every
vertex v in the graph is incident to
an edge in M .

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

E.g., matching in figure is perfect,
and this one is not!

Matchings

The cost of a matching M is the
sum of costs of its edges:

c(M) =
∑

(ce : e ∈M)

e.g., M = {14′, 21′, 32′, 43′}
−→ c(M) = 19

Definition

A matching M is perfect if every
vertex v in the graph is incident to
an edge in M .

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

E.g., matching in figure is perfect,
and this one is not!

Matchings

The cost of a matching M is the
sum of costs of its edges:

c(M) =
∑

(ce : e ∈M)

e.g., M = {14′, 21′, 32′, 43′}
−→ c(M) = 19

Definition

A matching M is perfect if every
vertex v in the graph is incident to
an edge in M .

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

E.g., matching in figure is perfect,
and this one is not!

Matchings

The cost of a matching M is the
sum of costs of its edges:

c(M) =
∑

(ce : e ∈M)

e.g., M = {14′, 21′, 32′, 43′}
−→ c(M) = 19

Definition

A matching M is perfect if every
vertex v in the graph is incident to
an edge in M .

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

E.g., matching in figure is perfect,

and this one is not!

Matchings

The cost of a matching M is the
sum of costs of its edges:

c(M) =
∑

(ce : e ∈M)

e.g., M = {14′, 21′, 32′, 43′}
−→ c(M) = 19

Definition

A matching M is perfect if every
vertex v in the graph is incident to
an edge in M .

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

E.g., matching in figure is perfect,
and this one is not!

Restating the Assignment Problem

Definition

A matching M is perfect if every vertex v in
the graph is incident to an edge in M .

Note: Perfect matchings correspond to
feasible assignments of workers to jobs!

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Restating the Assignment Problem

Definition

A matching M is perfect if every vertex v in
the graph is incident to an edge in M .

Note: Perfect matchings correspond to
feasible assignments of workers to jobs!

E.g., the matching shown corresponds to
the following assignment:

1→ 4′, 2→ 1′, 3→ 2′, and 4→ 3′

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Restating the Assignment Problem

Definition

A matching M is perfect if every vertex v in
the graph is incident to an edge in M .

Note: Perfect matchings correspond to
feasible assignments of workers to jobs!

E.g., the matching shown corresponds to
the following assignment:

1→ 4′, 2→ 1′, 3→ 2′, and 4→ 3′

whose execution time equals c(M) = 19!

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Restating the Assignment Problem

Definition

A matching M is perfect if every vertex v in
the graph is incident to an edge in M .

Note: Perfect matchings correspond to
feasible assignments of workers to jobs!

E.g., the matching shown corresponds to
the following assignment:

1→ 4′, 2→ 1′, 3→ 2′, and 4→ 3′

whose execution time equals c(M) = 19!

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Restatement of original
question:

Find a perfect matching M
in our graph of smallest cost.

A Little More Notation...

Notation: Use δ(v) to denote the set of
edges incident to v; i.e.,

δ(v) = {e ∈ E : e = vu for some u ∈ V }.

Definition

Given G = (V,E), M ⊆ E is a perfect
matching iff M ∩ δ(v) contains a single
edge for all v ∈ V .

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Examples

• δ(2) = {21′, 24′}
• δ(3′) = {43′}

A Little More Notation...

Notation: Use δ(v) to denote the set of
edges incident to v; i.e.,

δ(v) = {e ∈ E : e = vu for some u ∈ V }.

Definition

Given G = (V,E), M ⊆ E is a perfect
matching iff M ∩ δ(v) contains a single
edge for all v ∈ V .

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Examples

• δ(2) = {21′, 24′}

• δ(3′) = {43′}

A Little More Notation...

Notation: Use δ(v) to denote the set of
edges incident to v; i.e.,

δ(v) = {e ∈ E : e = vu for some u ∈ V }.

Definition

Given G = (V,E), M ⊆ E is a perfect
matching iff M ∩ δ(v) contains a single
edge for all v ∈ V .

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Examples

• δ(2) = {21′, 24′}
• δ(3′) = {43′}

A Little More Notation...

Notation: Use δ(v) to denote the set of
edges incident to v; i.e.,

δ(v) = {e ∈ E : e = vu for some u ∈ V }.

Definition

Given G = (V,E), M ⊆ E is a perfect
matching iff M ∩ δ(v) contains a single
edge for all v ∈ V .

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Examples

• δ(2) = {21′, 24′}
• δ(3′) = {43′}

An IP for Perfect Matchings

Definition

Given G = (V,E), M ⊆ E is a perfect
matching iff M ∩ δ(v) contains a single
edge for all v ∈ V .

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

An IP for Perfect Matchings

Definition

Given G = (V,E), M ⊆ E is a perfect
matching iff M ∩ δ(v) contains a single
edge for all v ∈ V .

The IP will have a binary variable xe for
every edge e ∈ E.

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

An IP for Perfect Matchings

Definition

Given G = (V,E), M ⊆ E is a perfect
matching iff M ∩ δ(v) contains a single
edge for all v ∈ V .

The IP will have a binary variable xe for
every edge e ∈ E. Idea:

xe = 1 ↔ e ∈M

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

An IP for Perfect Matchings

Definition

Given G = (V,E), M ⊆ E is a perfect
matching iff M ∩ δ(v) contains a single
edge for all v ∈ V .

The IP will have a binary variable xe for
every edge e ∈ E. Idea:

xe = 1 ↔ e ∈M

Constraints: For all v ∈ V , need∑
(xe : e ∈ δ(v)) = 1

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

An IP for Perfect Matchings

Definition

Given G = (V,E), M ⊆ E is a perfect
matching iff M ∩ δ(v) contains a single
edge for all v ∈ V .

The IP will have a binary variable xe for
every edge e ∈ E. Idea:

xe = 1 ↔ e ∈M

Constraints: For all v ∈ V , need∑
(xe : e ∈ δ(v)) = 1

1

4

2

3

1’

4’

2’

3’

E J

3

8

1
4

87 5

Objective:∑
(cexe : e ∈ E)

An IP for Perfect Matchings

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(v)) = 1 (v ∈ V)

x ≥ 0, x integer

1
2

4

3

5
4

1
3

An IP for Perfect Matchings

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(v)) = 1 (v ∈ V)

x ≥ 0, x integer

min (5, 1, 3, 4)x

s.t.



12 13 14 23

1 1 1 1 0

2 1 0 0 1

3 0 1 0 1

4 0 0 1 0

x = 1

x ≥ 0 integer

1
2

4

3

5
4

1
3

Recap

• Graphs consist of vertices V and edges E ... and are very useful in
modeling many practical problems.

• In particular, graphs can be used to model road networks, where
roads are edges and street intersections are vertices.

• In the shortest path problem, each edge e ∈ E has an associated
weight ce, and we are looking for a path connecting two specific
vertices of smallest total weight.

• A matching is a collection of edges, no two of which share an
endpoint.

A perfect matching is a matching that covers all vertices
in V .

Recap

• Graphs consist of vertices V and edges E ... and are very useful in
modeling many practical problems.

• In particular, graphs can be used to model road networks, where
roads are edges and street intersections are vertices.

• In the shortest path problem, each edge e ∈ E has an associated
weight ce, and we are looking for a path connecting two specific
vertices of smallest total weight.

• A matching is a collection of edges, no two of which share an
endpoint.

A perfect matching is a matching that covers all vertices
in V .

Recap

• Graphs consist of vertices V and edges E ... and are very useful in
modeling many practical problems.

• In particular, graphs can be used to model road networks, where
roads are edges and street intersections are vertices.

• In the shortest path problem, each edge e ∈ E has an associated
weight ce, and we are looking for a path connecting two specific
vertices of smallest total weight.

• A matching is a collection of edges, no two of which share an
endpoint.

A perfect matching is a matching that covers all vertices
in V .

Recap

• Graphs consist of vertices V and edges E ... and are very useful in
modeling many practical problems.

• In particular, graphs can be used to model road networks, where
roads are edges and street intersections are vertices.

• In the shortest path problem, each edge e ∈ E has an associated
weight ce, and we are looking for a path connecting two specific
vertices of smallest total weight.

• A matching is a collection of edges, no two of which share an
endpoint.

A perfect matching is a matching that covers all vertices
in V .

Recap

• Graphs consist of vertices V and edges E ... and are very useful in
modeling many practical problems.

• In particular, graphs can be used to model road networks, where
roads are edges and street intersections are vertices.

• In the shortest path problem, each edge e ∈ E has an associated
weight ce, and we are looking for a path connecting two specific
vertices of smallest total weight.

• A matching is a collection of edges, no two of which share an
endpoint. A perfect matching is a matching that covers all vertices
in V .

