Module 1: Formulations (Optimization on Graphs)
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e Familiar problem: Starting at location s, we wish to travel to .
What is the best (i.e., shortest) route?
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e Familiar problem: Starting at location s, we wish to travel to .
What is the best (i.e., shortest) route?

o In the figure above, such a route is indicated in bold.
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e Goal: Write the problem of finding the shortest route between s and
t as an integer program!
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e Goal: Write the problem of finding the shortest route between s and
t as an integer program!
... How?
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Graph Theory 101

Rephrasing this problem in the language of
graph theory helps!

A graph G consists of ...

e vertices u,w,... €V
(drawn as filled circles)

o edges uw,wz,... € B
(drawn as lines connecting circles)

Two vertices u and v are adjacent if

uv € E. Vertices u and v are the
endpoints of edge uv € E, and edge e € F
is incident to u € V if u is an endpoint of e.
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Graphs — Why do we care?

Graphs are useful to
compactly model
many real-world
entities. For example:

e Modeling circuits
in chip design

e Social networks

e Trade networks

e .... and many
more!

Lampman, 2008 [Online Image]. Late Medieval Trade Routes. Wikimedia Commons
http://commons.wikimedia.org/wiki/File:Late_Medieval-Trade_Routes.jpg
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e We can think of the street map as a graph, G.
e V\ertices: Road intersections

o Edges: Road segments connecting adjacent intersections
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o Each edge e € E is labelled by its length ¢, > 0.
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o Each edge e € E is labelled by its length ¢, > 0.

e We are looking for a path connecting s and ¢ of smallest total length!
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An s, t-path in G = (V, E) is a sequence
V1V2, U2V3,V3V4, . . ., Vg—2Vk—1, Vk—1Vk

where
e v; € V and vv;41 € E for all 4, and
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An s, t-path in G = (V, E) is a sequence
V1V2, U2V3,V3V4, . . ., Vg—2Vk—1, Vk—1Vk

where
e v; € V and vv;41 € E for all 4, and

e vy =5, vy =1, and v; # v; for all i # j.
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An s, t-path in G = (V, E) is a sequence
V1V2, U2V3,V3V4, . . ., Vg—2Vk—1, Vk—1Vk

where
e v; € V and vv;41 € E for all 4, and

e vy =5, vy =1, and v; # v; for all i # j.
(Without this, it is called an s, t-walk)
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An s,t-path in G = (V, E) is a sequence

V1V2, U2V3,U3V4, - - -, Vg—2Vk—1, Vk—1Vk

where

e v; € V and vv;41 € E for all 4, and

e vy =35, v =1, and v; # v; for all ¢ # j.
(Without this, it is called an s, t-walk)
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P=sa, ad, db, bf, fg, gt

The length of a path P = vy, ..., vp_1vk is the sum of the lengths of
the edges on P:

co(P):=) (cc: e€P).
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The length of a path P = vyv,, .
the edges on P:

C(P) = Csa + Cad + Cap + Cbf + Crg + Cgt

= 650 + 490 + 250 + 830 + 600 + 700
= 3520

.., Ug—1v is the sum of the lengths of

c(P) = (ce:

e € P).
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Shortest Path Problem

e Given: Graph G = (V,E), lengths ¢, > 0 foralle € E, s,t €V
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Shortest Path Problem
e Given: Graph G = (V,E), lengths ¢, > 0 foralle € E, s,t €V

e Find: Minimum-length s, t-path P
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Shortest Path Problem
e Given: Graph G = (V,E), lengths ¢, > 0 foralle € E, s,t €V

e Find: Minimum-length s, t-path P

Goal: Write an IP whose solutions are the shortest s, t-paths!
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Shortest Path Problem
e Given: Graph G = (V,E), lengths ¢, > 0 foralle € E, s,t €V
e Find: Minimum-length s, t-path P

Goal: Write an IP whose solutions are the shortest s, t-paths!

— Later!



Example: Matchings
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WaterTech - Job Assignment

WaterTech has a collection of
important jobs:

J={1,2"3, 4"}
that it needs to handle urgently.
It also has 4 employees:

E={1,2,3,4}

that need to handle these jobs.

Employees have different skill-sets
and may take different amounts of
time to execute a job.

Employees Jobs
1 \ 2/ \ 3 \ 4’
1 - |5 -7
2 8| -12| -
3 -1 - -
4 8| -13 |-

Note: Some workers are not able to
handle certain jobs!

Goal: Assign each worker to exactly
one task so that the total execution
time is smallest!

— We will rephrase this in the
language of graphs
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Create a graph with one vertex for
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Add an edge ij fori € F and j € J
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Matchings

Create a graph with one vertex for
each employee and job.

Add an edge ij fori € F and j € J
if employee i can handle job j.

Let the cost ¢;; of edge ij be the
amount of time needed by i to
complete j.

E J
Employees Jobs
ploy T ‘ 57 ‘ 37 ‘ Y
1 - 5 - 7
2 8 | - - 4
3 - 1 - -
4 8 | - 3| -
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Matchings

Definition

A collection M C FE is a matching if no two
edges ij,i'j’ € M (ij # i'j") share an
endpoint; i.e., {i,j} N{¢,j'} = 0.

Examples
1. M ={14',21’,32',43'} is a matching.

2. M ={14/,32',41’,43'} is not a
matching.
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Matchings

The cost of a matching M is the 1 %5 84. r

sum of costs of its edges:

c(M):Z(ce ceeM)

e.g., M = {14’ 21,32 43}

— (M) =19 E J
Definition
A matching M is perfect if every E.g., matching in figure is perfect,
vertex v in the graph is incident to and this one is not!

an edge in M.
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Definition
A matching M is perfect if every vertex v in
the graph is incident to an edge in M.

Note: Perfect matchings correspond to
feasible assignments of workers to jobs!
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Restating the Assighment Problem

o _onc 1 1
Definition %5 884.
A matching M is perfect if every vertex v in 2
the graph is incident to an edge in M.

Note: Perfect matchings correspond to

feasible assignments of workers to jobs! 4 4
E.g., the matching shown corresponds to E J
the following assignment:
154951359 and4— 3 Restatement of original
’ ’ ’ question:
whose execution time equals ¢(M) = 19! Find a perfect matching M

in our graph of smallest cost.
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A Little More Notation...

Notation: Use (v) to denote the set of
edges incident to v; i.e.,

d(v)={e€ E : e=wvu for some u € V}.

Definition
E J
Given G = (V,E), M C E'is a perfect
matching iff M N d(v) contains a single
edge for all v e V.
Examples

o §5(2) = {21',24'}
o §(3') = {43}
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An IP for Perfect Matchings

Definition

Given G = (V,E), M C E is a perfect
matching iff M N §(v) contains a single
edge for all v e V.

The IP will have a binary variable x, for
every edge e € E. |dea: E J

Te=1 < eeM
Objective:

Z(cexe :e€F)

Constraints: For all v € V, need

D (xe : e€6(v) =1



An IP for Perfect Matchings

min Zcexe e € k)
stz ce€dw)=1(weV)

x > 0, x integer



An IP for Perfect Matchings

min Z Cele 1 €€ E) 2
5/?
stz ce€d(w)=1(@weV) 1K 4
x > 0, x integer 3 1\(5

min (5,1,3,4)x 4
12 13 14 23
1 1 1 1 0
s.t. 2100t =1
3lo 1 0 1
4\0 0 1 0

xz >0 integer
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Recap

e Graphs consist of vertices V' and edges E ... and are very useful in
modeling many practical problems.

o In particular, graphs can be used to model road networks, where
roads are edges and street intersections are vertices.

o In the shortest path problem, each edge e € E has an associated
weight c., and we are looking for a path connecting two specific
vertices of smallest total weight.

e A matching is a collection of edges, no two of which share an
endpoint. A perfect matching is a matching that covers all vertices
in V.



