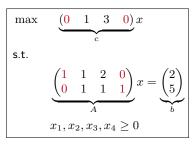
Module 2: Linear Programs (Formalizing the Simplex)



$$\max_{c} \underbrace{\begin{pmatrix} 0 & 1 & 3 & 0 \end{pmatrix}}_{c} x$$
s.t.
$$\underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2 \\ 5 \end{pmatrix}}_{b}$$

$$x_{1}, x_{2}, x_{3}, x_{4} \geq 0$$

Consider
$$B = \{1, 4\}$$
.

ullet A_B is square and non-singular

Consider $B = \{1, 4\}$.

• A_B is square and non-singular \longrightarrow B is a basis

- A_B is square and non-singular \longrightarrow B is a basis
- $A_B = I$ and $c_B = \mathbf{0}$

$$\max_{c} \underbrace{\begin{pmatrix} 0 & 1 & 3 & 0 \end{pmatrix}}_{c} x$$
s.t.
$$\underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2 \\ 5 \end{pmatrix}}_{b}$$

$$x_{1}, x_{2}, x_{3}, x_{4} \geq 0$$

- A_B is square and non-singular \longrightarrow B is a basis
- $A_B = I$ and $c_B = 0$ \Longrightarrow LP is in canonical form for B

$$\max_{c} \underbrace{\begin{pmatrix} 0 & 1 & 3 & 0 \\ & 1 & 3 & 0 \end{pmatrix}}_{c} x$$
s.t.
$$\underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2 \\ 5 \end{pmatrix}}_{b}$$

$$x_{1}, x_{2}, x_{3}, x_{4} \geq 0$$

- A_B is square and non-singular \implies B is a basis
- $A_B = I$ and $c_B = 0$ \longrightarrow LP is in canonical form for B
- $\bar{x} = (2,0,0,5)^{\top}$ is a the basic solution for B.

- A_B is square and non-singular \longrightarrow B is a basis
- $A_B = I$ and $c_B = 0$ \Longrightarrow LP is in canonical form for B
- $\bar{x} = (2,0,0,5)^{\top}$ is a the basic solution for B.
- $\bar{x} \geq \mathbf{0}$

- A_B is square and non-singular \longrightarrow B is a basis
- $A_B = I$ and $c_B = 0$ \Longrightarrow LP is in canonical form for B
- $\bar{x} = (2,0,0,5)^{\top}$ is a the basic solution for B.
- $\bar{x} \ge \mathbf{0}$ \Longrightarrow \bar{x} is feasible, i.e., B is feasible

$$\max \qquad \underbrace{\begin{pmatrix} 0 & 1 & 3 & 0 \end{pmatrix}}_{c} x$$
s.t.
$$\underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1$$

$$\underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 5 \\ 5 \\ b \end{pmatrix}}_{b}$$

$$x_{1}, x_{2}, x_{3}, x_{4} \ge 0$$

$$B=\{1,4\}$$
 is a feasible basis

Canonical form for B

Canonical form for B

$$(2,0,0,5)^\top$$
 is a basic solution

$$B = \{1, 4\}$$
 is a feasible basis

Canonical form for ${\cal B}$

$$(2,0,0,5)^\top$$
 is a basic solution

Question

How do we find a better feasible solution?

$$\max \underbrace{ \begin{pmatrix} 0 & 1 & 3 & 0 \end{pmatrix} x}_{c}$$
s.t.
$$\underbrace{ \begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{ \begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} x}_{c}$$

$$B = \{1,4\}$$
 is a feasible basis

Canonical form for
$${\cal B}$$

$$(2,0,0,5)^\top$$
 is a basic solution

Idea

Pick $k \notin B$ such that $c_k > 0$.

 $x_1, x_2, x_3, x_4 \ge 0$

max
$$\underbrace{\begin{pmatrix} 0 & 1 & 3 & 0 \end{pmatrix}}_{c} x$$
s.t. $\underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1$

 $B=\{1,4\}$ is a feasible basis

Canonical form for ${\cal B}$

 $(2,0,0,5)^{\top}$ is a basic solution

$$\underbrace{\begin{pmatrix} 0 & 1 & 1 & 1 \\ A & & & \\ x_1, x_2, x_3, x_4 \ge 0 \end{pmatrix}}_{A}$$

Idea

Pick $k \notin B$ such that $c_k > 0$.

Set $x_k = t \ge 0$ as large as possible.

 $B=\{1,4\}$ is a feasible basis

Canonical form for ${\cal B}$

 $(2,0,0,5)^{\top}$ is a basic solution

Idea

Pick $k \notin B$ such that $c_k > 0$.

Set $x_k = t \ge 0$ as large as possible.

Keep all other non-basic variables at 0.

 $B=\{1,4\}$ is a feasible basis Canonical form for B

 $(2,0,0,5)^\top$ is a basic solution

Idea

Pick $k \notin B$ such that $c_k > 0$.

Set $x_k = t \ge 0$ as large as possible.

Keep all other non-basic variables at 0.

Pick k=2. Set $x_2=t\geq 0$.

$$B = \{1,4\}$$
 is a feasible basis Canonical form for B

$$(2,0,0,5)^\top$$
 is a basic solution

Idea

Pick $k \notin B$ such that $c_k > 0$.

 $x_1, x_2, x_3, x_4 \geq 0$

Set $x_k = t \ge 0$ as large as possible.

Keep all other non-basic variables at 0.

Pick k=2. Set $x_2=t\geq 0$.

Keep $x_3 = 0$.

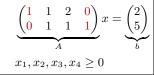
$$\max_{c} \quad \underbrace{\begin{pmatrix} 0 & 1 & 3 & 0 \end{pmatrix}}_{c} s$$
s.t.

 $x_1, x_2, x_3, x_4 \ge 0$

$$\underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{} x = \underbrace{\begin{pmatrix} 2 \\ 5 \end{pmatrix}}_{} \qquad \qquad B = \{1, 4\} \text{ is a basis}$$

$$x_2 = t \ge 0, \ x_3 = 0$$

$$\max \qquad \underbrace{\begin{pmatrix} 0 & 1 & 3 & 0 \end{pmatrix}}_{c}$$
s.t.



$$B=\{1,4\}$$
 is a basis $x_2=t\geq 0$, $x_3=0$

Idea

$$\max \qquad \underbrace{\begin{pmatrix} \mathbf{0} & 1 & 3 & \mathbf{0} \end{pmatrix}}_{c}$$

s.t.

$$\underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2 \\ 5 \end{pmatrix}}_{b}$$
$$x_1, x_2, x_3, x_4 \ge 0$$

 $B=\{1,4\}$ is a basis $x_2=t\geq 0$, $x_3=0$

Idea

$$\begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} x$$

$$\max_{c} \quad \underbrace{\begin{pmatrix} 0 & 1 & 3 & 0 \end{pmatrix}}_{c} x$$
s.t.

$$\underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 5 \\ 5 \end{pmatrix}}_{b}$$

$$x_{1}, x_{2}, x_{3}, x_{4} \ge 0$$

 $B=\{1,4\}$ is a basis $x_2=t\geq 0,\ x_3=0$

Idea

$$\max \qquad \underbrace{\begin{pmatrix} 0 & 1 & 3 & 0 \end{pmatrix}}_{c} a$$
s.t.

$$\underbrace{\begin{pmatrix} 0 & 1 & 1 & 1 \end{pmatrix}}_{A} x - \underbrace{\begin{pmatrix} 5 \\ b \end{pmatrix}}_{b}$$

$$x_{1}, x_{2}, x_{3}, x_{4} \ge 0$$

 $B=\{1,4\} \text{ is a basis}$ $x_2=t\geq 0,\ x_3=0$

Idea

$$\begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} x$$

$$= \mathbf{x}_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \mathbf{x}_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \mathbf{x}_3 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + \mathbf{x}_4 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{x}_1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 0 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ \mathbf{x}_4 \end{pmatrix}$$

$$\max \quad \underbrace{\begin{pmatrix} 0 & 1 & 3 & 0 \end{pmatrix}}_{c}$$

s.t.

$$\underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2 \\ 5 \end{pmatrix}}_{b}$$
$$x_{1}, x_{2}, x_{3}, x_{4} \ge 0$$

 $B = \{1, 4\}$ is a basis $x_2 = t > 0$, $x_3 = 0$

Idea

$$\begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} x$$

$$= x_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + x_3 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + x_4 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} x_1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 0 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ x_4 \end{pmatrix}$$

$$= t \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} x_1 \\ x_4 \end{pmatrix}$$

$$\max \qquad \underbrace{\begin{pmatrix} 0 & 1 & 3 & 0 \end{pmatrix}}_{c} x$$

s.t.

$$\underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2 \\ 5 \end{pmatrix}}_{b}$$
$$x_{1}, x_{2}, x_{3}, x_{4} > 0$$

 $B=\{1,4\}$ is a basis $x_2=t\geq 0,\ x_3=0$

Idea

$$\underbrace{\begin{pmatrix} x_1 \\ x_4 \end{pmatrix}}_{x_B} = \underbrace{\begin{pmatrix} 2 \\ 5 \end{pmatrix}}_{b} - t \underbrace{\begin{pmatrix} 1 \\ 1 \end{pmatrix}}_{A_2}$$

$$\max \underbrace{\begin{pmatrix} 0 & 1 & 3 & 0 \end{pmatrix}}_{c} x$$
s.t.
$$\underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 &$$

 $x_1, x_2, x_3, x_4 \ge 0$

s.t.
$$\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 5 \end{pmatrix} \qquad \begin{pmatrix} x_1 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 \\ x_4 \end{pmatrix} x = \begin{pmatrix} x_1 \\ x_4 \end{pmatrix}$$

$$B = \{1, 4\}$$
 is a basis $x_2 = t \ge 0, x_3 = 0$
$$\binom{x_1}{t} = \binom{2}{t} - t \binom{1}{t}$$

max
$$\underbrace{\begin{pmatrix} 0 & 1 & 3 & 0 \end{pmatrix}}_{c} x$$
s.t. $\underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2 \\ 5 \\ b \end{pmatrix}}_{b}$

 $B = \{1, 4\}$ is a basis

$$x_2 = t \ge 0, x_3 = 0$$

$$\underbrace{\begin{pmatrix} x_1 \\ x_4 \end{pmatrix}}_{x_B} = \underbrace{\begin{pmatrix} 2 \\ 5 \end{pmatrix}}_{b} - t \underbrace{\begin{pmatrix} 1 \\ 1 \end{pmatrix}}_{A_2}$$

$$\begin{array}{c} -t \geq 0, \ x_3 = 0 \\ \hline \begin{pmatrix} 1 \\ 4 \end{pmatrix} \\ B \end{array} = \underbrace{\begin{pmatrix} 2 \\ 5 \end{pmatrix}}_{b} -t \underbrace{\begin{pmatrix} 1 \\ 1 \end{pmatrix}}_{A_2}$$

Choose $t \geq 0$ as large as possible.

max
$$\underbrace{\begin{pmatrix} 0 & 1 & 3 & 0 \end{pmatrix}}_{c} x$$
s.t. $\underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2 \\ 5 \end{pmatrix}}_{b}$
 $x_1, x_2, x_3, x_4 \ge 0$

$$B = \{1, 4\}$$
 is a basis $x_2 = t \ge 0$, $x_3 = 0$
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} - t \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$x_2 = t \ge 0, \ x_3 = 0$$

$$\underbrace{\begin{pmatrix} x_1 \\ x_4 \end{pmatrix}}_{x_B} = \underbrace{\begin{pmatrix} 2 \\ 5 \end{pmatrix}}_{b} - t \underbrace{\begin{pmatrix} 1 \\ 1 \end{pmatrix}}_{A_2}$$

max
$$\underbrace{\begin{pmatrix} 0 & 1 & 3 & 0 \end{pmatrix}}_{c} x$$
s.t.
$$\underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1$$

$$\underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2 \\ 5 \end{pmatrix}}_{b}$$

$$\underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2 \\ 5 \end{pmatrix}}_{b}$$

$$x_1 = 2 - t \ge 0$$
 $t \le \frac{2}{1}$

$$B = \{1, 4\}$$
 is a basis $x_2 = t \ge 0, x_3 = 0$
$$\begin{pmatrix} x_1 \\ \end{pmatrix} \begin{pmatrix} 2 \\ \end{pmatrix} \begin{pmatrix} 1 \\ \end{pmatrix}$$

$$x = t \ge 0, x_3 = 0$$

$$\begin{cases} x_1 \\ x_4 \\ x_3 \\ x_4 \\ x_4 \\ x_5 \\ x_6 \\$$

max
$$\underbrace{\begin{pmatrix} 0 & 1 & 3 & 0 \end{pmatrix}}_{c} x$$
s.t. $\underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2 \\ 5 \\ b \end{pmatrix}}_{b}$
 $x_{1}, x_{2}, x_{3}, x_{4} \geq 0$

$$B = \{1, 4\}$$
 is a basis $x_2 = t \ge 0, x_3 = 0$

$$x_1 = 2 - t \ge 0 \implies t \le \frac{2}{1}$$

$$x_4 = 5 - t \ge 0 \implies t \le \frac{5}{1}$$

max
$$(0 \ 1 \ 3 \ 0) x$$
s.t.
$$\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} x = ($$

$$\underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2 \\ 5 \end{pmatrix}}_{b}$$
$$x_{1}, x_{2}, x_{3}, x_{4} \ge 0$$

$$B = \{1, 4\}$$
 is a basis $x_2 = t \ge 0, x_3 = 0$

$$\underbrace{\begin{pmatrix} x_1 \\ x_4 \end{pmatrix}}_{x_B} = \underbrace{\begin{pmatrix} 2 \\ 5 \end{pmatrix}}_{b} - t \underbrace{\begin{pmatrix} 1 \\ 1 \end{pmatrix}}_{A_2}$$

$$x_1 = 2 - t \ge 0 \qquad \qquad t \le \frac{2}{1}$$
$$x_4 = 5 - t \ge 0 \qquad \qquad t \le \frac{5}{1}$$

Thus, the largest possible
$$t = \min \left\{ \frac{2}{1}, \frac{5}{1} \right\}$$
.

$$\begin{array}{cccc}
 & \max & \underbrace{\begin{pmatrix} 0 & 1 & 3 & 0 \end{pmatrix}}_{c} x \\
 & \text{s.t.} & \\
 & \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{c} x = \underbrace$$

$$\underbrace{\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2 \\ 5 \end{pmatrix}}_{b}$$
$$x_1, x_2, x_3, x_4 \ge 0$$

 $B = \{1, 4\}$ is a basis $x_2 = t > 0$, $x_3 = 0$

$$\underbrace{\begin{pmatrix} x_1 \\ x_4 \end{pmatrix}}_{x_B} = \underbrace{\begin{pmatrix} 2 \\ 5 \end{pmatrix}}_{b} - t \underbrace{\begin{pmatrix} 1 \\ 1 \\ A_2 \end{pmatrix}}_{A_2}$$

Choose $t \geq 0$ as large as possible.

Basic variables must remain non-negative.

$$x_1 = 2 - t \ge 0 \qquad \qquad t \le \frac{2}{1}$$
$$x_4 = 5 - t \ge 0 \qquad \qquad t \le \frac{5}{1}$$

Thus, the largest possible $t = \min \left\{ \frac{2}{1}, \frac{5}{1} \right\}$.

The new feasible solution is $x = (0, 2, 0, 3)^{T}$. It has value 2 > 0.

s.t.
$$\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$
$$x_1, x_2, x_3, x_4 \ge 0$$

Remark

The new feasible solution $x=(0,2,0,3)^{\top}$ is a basic solution.

Remark

The new feasible solution $x=(0,2,0,3)^{\top}$ is a basic solution.

Question

For what basis B is $x=(0,2,0,3)^{\top}$ a basic solution?

Remark

The new feasible solution $\boldsymbol{x} = (0,2,0,3)^{\top}$ is a basic solution.

Question

For what basis B is $x = (0, 2, 0, 3)^{\top}$ a basic solution?

$$x_2 \neq 0 \implies 2 \in B$$

Remark

The new feasible solution $x=(0,2,0,3)^{\top}$ is a basic solution.

Question

For what basis B is $x = (0, 2, 0, 3)^{\top}$ a basic solution?

$$\begin{array}{ccc} x_2 \neq 0 & \longrightarrow & 2 \in I \\ x_4 \neq 0 & \longrightarrow & 4 \in I \end{array}$$

max
$$(0 \ 1 \ 3 \ 0)x$$
s.t.
$$\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Remark

The new feasible solution $x = (0, 2, 0, 3)^{\top}$ is a basic solution.

Question

For what basis B is $x = (0, 2, 0, 3)^{\top}$ a basic solution?

$$x_2 \neq 0 \qquad \Longrightarrow \qquad 2 \in I$$

$$x_4 \neq 0 \qquad \Longrightarrow \qquad 4 \in I$$

As
$$|B| = 2$$
, $B = \{2, 4\}$.

t.
$$\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

 $\max \quad \begin{array}{ccc} & (0 & 1 & 3 & 0)x \\ \text{s.t.} & & \\ & \begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 5 \end{pmatrix} \\ & x_1, x_2, x_3, x_4 \geq 0 \end{array}$

OLD

 $\{1,4\}$ is a feasible basis

Canonical form for $\{1,4\}$

OLD

 $\{1,4\}$ is a feasible basis

Canonical form for $\{1,4\}$

$$\max_{\mathsf{s.t.}} \quad \begin{array}{ccc} (0 & 1 & 3 & 0)x \\ \text{s.t.} \\ & \begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 5 \end{pmatrix} \\ & x_1, x_2, x_3, x_4 \geq 0 \end{array}$$

OLD

 $\{1,4\}$ is a feasible basis Canonical form for $\{1,4\}$

NEW

 $\{2,4\}$ is a feasible basis

Canonical form for $\{2,4\}$

max
$$(0 \ 1 \ 3 \ 0)x$$

s.t.
$$\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 > 0$$

$$\max (-1 \ 0 \ 1 \ 0)x + 2$$
 s.t.

$$\begin{pmatrix} 1 & 1 & 2 & 0 \\ -1 & 0 & -1 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 2 & 0 \\ -1 & 0 & -1 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
$$x_1, x_2, x_3, x_4 \ge 0$$

OLD

 $\{1,4\}$ is a feasible basis

Canonical form for $\{1,4\}$

NEW

 $\{2,4\}$ is a feasible basis

Canonical form for $\{2,4\}$

 $\max_{\cdot} \quad (0 \quad 1 \quad 3 \quad 0)x$

s.t.

$$\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$
$$x_1, x_2, x_3, x_4 \ge 0$$

OLD

 $\{1,4\}$ is a feasible basis

Canonical form for $\{1,4\}$

 $\max (-1 \ 0 \ 1 \ 0)x + 2$

s.t.

$$\begin{pmatrix} 1 & 1 & 2 & 0 \\ -1 & 0 & -1 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
$$x_1, x_2, x_3, x_4 \ge 0$$

NEW

 $\{2,4\}$ is a feasible basis

Canonical form for $\{2,4\}$

Remark

We only need to know how to go from the OLD basis to a NEW basis!

 $\max_{\cdot} \quad (0 \quad 1 \quad 3 \quad 0)x$

s.t.

$$\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$
$$x_1, x_2, x_3, x_4 \ge 0$$

OLD

 $\{1,4\}$ is a feasible basis

Canonical form for $\{1,4\}$

 $\max (-1 \ 0 \ 1 \ 0)x + 2$

s.t.

$$\begin{pmatrix} 1 & 1 & 2 & 0 \\ -1 & 0 & -1 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
$$x_1, x_2, x_3, x_4 \ge 0$$

NEW

 $\{2,4\}$ is a feasible basis

Canonical form for $\{2,4\}$

Remark

We only need to know how to go from the OLD basis to a NEW basis!

• 2 <u>entered</u> the basis.

 $\max \quad (0 \quad 1 \quad 3 \quad 0)x$

s.t.

$$\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$
$$x_1, x_2, x_3, x_4 \ge 0$$

OLD

 $\{1,4\}$ is a feasible basis

Canonical form for $\{1,4\}$

 $\max (-1 \ 0 \ 1 \ 0)x + 2$

s.t.

$$\begin{pmatrix} 1 & 1 & 2 & 0 \\ -1 & 0 & -1 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
$$x_1, x_2, x_3, x_4 \ge 0$$

NEW

 $\{2,4\}$ is a feasible basis

Canonical form for $\{2,4\}$

Remark

We only need to know how to go from the OLD basis to a NEW basis!

- 2 entered the basis.
- 1 left the basis.

 $(0 \ 1 \ 3 \ 0)x$ max

s.t.

$$\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$
$$x_1, x_2, x_3, x_4 \ge 0$$

OLD

 $\{1,4\}$ is a feasible basis

Canonical form for $\{1,4\}$

 $(-1 \quad 0 \quad 1 \quad 0)x + 2$ max

s.t.

$$\begin{pmatrix} 1 & 1 & 2 & 0 \\ -1 & 0 & -1 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
$$x_1, x_2, x_3, x_4 \ge 0$$

NEW

 $\{2,4\}$ is a feasible basis

Canonical form for $\{2,4\}$

Remark

We only need to know how to go from the OLD basis to a NEW basis!

- 2 entered the basis.
- WHY? • 1 left the basis.

$$\max (0 \ 1 \ 3 \ 0)x$$
 s.t.

$$\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

$$\{1,4\}$$
 is a feasible basis

Canonical form for $\{1,4\}$

Pick $2 \notin B$ and set $x_2 = t \ge 0$.

$$\{1,4\}$$
 is a feasible basis Canonical form for $\{1,4\}$

max
$$(0 \ 1 \ 3 \ 0)x$$

s.t.
$$\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Pick $2 \notin B$ and set $x_2 = t \ge 0$.

→ 2 enters the basis

OLD

- $\{1,4\}$ is a feasible basis
- Canonical form for $\{1,4\}$

$$\max \quad \begin{array}{cccc} & (0 & 1 & 3 & 0)x \\ \text{s.t.} & & \\ & \begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 5 \end{pmatrix} \\ & x_1, x_2, x_3, x_4 > 0 \end{array}$$

Pick
$$2 \notin B$$
 and set $x_2 = t \ge 0$.

$$\implies$$
 2 enters the basis

Set
$$\begin{pmatrix} x_1 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \end{pmatrix} - t \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and

OLD

$$\{1,4\}$$
 is a feasible basis

Canonical form for
$$\{1,4\}$$

$$\max \quad \begin{array}{cccc} & (0 & 1 & 3 & 0)x \\ \text{s.t.} & & \\ & \begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 5 \end{pmatrix} \\ & x_1, x_2, x_3, x_4 \geq 0 \end{array}$$

OLD

$$\{1,4\}$$
 is a feasible basis

Canonical form for $\{1,4\}$

Pick
$$2 \notin B$$
 and set $x_2 = t \ge 0$.

Set
$$\begin{pmatrix} x_1 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \end{pmatrix} - t \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $t = \min\left\{\frac{2}{1}, \frac{5}{1}\right\} = 2$.

$$\max (0 \ 1 \ 3 \ 0)x$$
 s.t.

$$\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$
$$x_1, x_2, x_3, x_4 > 0$$

$$\{1,4\}$$
 is a feasible basis Canonical form for $\{1,4\}$

Pick $2 \notin B$ and set $x_2 = t \ge 0$.

Set
$$\begin{pmatrix} x_1 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \end{pmatrix} - t \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $t = \min\left\{\frac{2}{1}, \frac{5}{1}\right\} = 2$.

$$\longrightarrow$$
 $x_1 = 0$ and 1 leaves the basis

$$\max (0 \ 1 \ 3 \ 0)x$$
 s.t.

$$\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$
$$x_1, x_2, x_3, x_4 > 0$$

OLD

$$\{1,4\}$$
 is a feasible basis

Canonical form for $\{1,4\}$

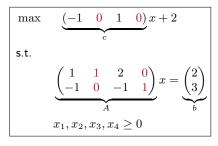
Pick
$$2 \notin B$$
 and set $x_2 = t \ge 0$.

$$\longrightarrow$$
 2 enters the basis

Set
$$\begin{pmatrix} x_1 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \end{pmatrix} - t \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $t = \min \left\{ \frac{2}{1}, \frac{5}{1} \right\} = 2$.

$$\longrightarrow$$
 $x_1 = 0$ and 1 leaves the basis

The NEW basis is $\{2,4\}$.



 $B = \{2,4\}$ is a feasible basis Canonical form for B

$$\max \underbrace{ \begin{array}{cccc} \left(-1 & 0 & 1 & 0\right)}_{c} x + 2 \\ \text{s.t.} \\ \underbrace{ \begin{pmatrix} 1 & 1 & 2 & 0 \\ -1 & 0 & -1 & 1 \\ A & & & b \end{pmatrix}}_{A} x = \underbrace{ \begin{pmatrix} 2 \\ 3 \\ b \\ & &$$

 $B = \{2,4\} \mbox{ is a feasible basis}$ Canonical form for B

$$\max \underbrace{ \left(-1 \quad 0 \quad 1 \quad 0 \right)}_{c} x + 2$$
s.t.
$$\underbrace{ \left(\begin{array}{ccc} 1 & 1 & 2 & 0 \\ -1 & 0 & -1 & 1 \end{array} \right)}_{A} x = \underbrace{ \left(\begin{array}{ccc} 2 \\ 3 \end{array} \right)}_{b}$$

$$x_{1}, x_{2}, x_{3}, x_{4} \geq 0$$

 $B = \{2,4\}$ is a feasible basis Canonical form for B

$$x_3 = t$$

 $B = \{2,4\}$ is a feasible basis Canonical form for B

$$x_3 = t$$
 \longrightarrow 3 enters the basis

$$\max \underbrace{ \underbrace{ \begin{pmatrix} -1 & \mathbf{0} & 1 & \mathbf{0} \end{pmatrix}}_{c} x + 2}_{s.t.}$$

$$\underbrace{ \begin{pmatrix} 1 & 1 & 2 & \mathbf{0} \\ -1 & \mathbf{0} & -1 & 1 \end{pmatrix}}_{A} x = \underbrace{ \begin{pmatrix} 2 \\ 3 \end{pmatrix}}_{b}$$

$$x_{1}, x_{2}, x_{3}, x_{4} \geq 0$$

 $B=\{2,4\} \mbox{ is a feasible basis}$ Canonical form for B

$$x_3 = t$$
 \longrightarrow 3 enters the basis

Pick
$$x_B = b - tA_k$$
:

$$\max \underbrace{ (-1 \quad 0 \quad 1 \quad 0)}_{c} x + 2$$
s.t.
$$\underbrace{ \begin{pmatrix} 1 & 1 & 2 & 0 \\ -1 & 0 & -1 & 1 \end{pmatrix}}_{A} x = \underbrace{ \begin{pmatrix} 2 \\ 3 \end{pmatrix}}_{b}$$

$$x_{1}, x_{2}, x_{3}, x_{4} \geq 0$$

 $B=\{2,4\}$ is a feasible basis

Canonical form for ${\cal B}$

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

$$x_3 = t$$
 \longrightarrow 3 enters the basis

Pick $x_B = b - tA_k$:

$$\begin{pmatrix} x_2 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} - t \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

 $B = \{2,4\}$ is a feasible basis

Canonical form for B

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

$$x_3 = t$$
 \longrightarrow 3 enters the basis

Pick $x_B = b - tA_k$:

$$\begin{pmatrix} x_2 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} - t \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$t=\min\left\{\frac{2}{2},-\right\}=2$$
 thus $x_2=0$

$$\max \underbrace{ \frac{\left(-1 \quad 0 \quad 1 \quad 0\right)}{c} x + 2}_{c}$$
 s.t.
$$\underbrace{ \frac{\left(1 \quad 1 \quad 2 \quad 0\right)}{-1 \quad 0 \quad -1 \quad 1}}_{A} x = \underbrace{\left(\frac{2}{3}\right)}_{b}$$

$$x_{1}, x_{2}, x_{3}, x_{4} \geq 0$$

 $B=\{2,4\}$ is a feasible basis

Canonical form for B

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

$$x_3 = t$$
 \longrightarrow 3 enters the basis

Pick $x_B = b - tA_k$:

$$\begin{pmatrix} x_2 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} - t \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$t = \min\left\{\frac{2}{2}, -\right\} = 2$$
 thus $x_2 = 0$ \longrightarrow 2 leaves the basis

$$\max \underbrace{ \left(-1 \quad 0 \quad 1 \quad 0 \right)}_{c} x + 2$$
s.t.
$$\underbrace{ \left(\begin{array}{ccc} 1 & 1 & 2 & 0 \\ -1 & 0 & -1 & 1 \end{array} \right)}_{A} x = \underbrace{ \left(\begin{array}{ccc} 2 \\ 3 \end{array} \right)}_{b}$$

$$x_{1}, x_{2}, x_{3}, x_{4} \geq 0$$

 $B=\{2,4\}$ is a feasible basis

Canonical form for ${\cal B}$

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

$$x_3 = t$$
 \longrightarrow 3 enters the basis

Pick $x_B = b - tA_k$:

$$\begin{pmatrix} x_2 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} - t \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$t = \min\left\{\frac{2}{2}, -\right\} = 2$$
 thus $x_2 = 0$ \longrightarrow 2 leaves the basis

The NEW basis is $B = \{3, 4\}$.

$$\underbrace{ (-1.5 \quad -0.5 \quad 0 \quad 0)}_{c} x + 3$$
 s.t.
$$\underbrace{ \begin{pmatrix} 0.5 \quad 0.5 \quad 1 \quad 0 \\ -0.5 \quad 0.5 \quad 0 \quad 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 1 \\ 4 \end{pmatrix}}_{b}$$

$$x_{1}, x_{2}, x_{3}, x_{4} \geq 0$$

$$\underbrace{ (-1.5 \quad -0.5 \quad 0 \quad 0)}_{c} x + 3$$
 s.t.
$$\underbrace{ \begin{pmatrix} 0.5 \quad 0.5 \quad 1 \quad 0 \\ -0.5 \quad 0.5 \quad 0 \quad 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 1 \\ 4 \end{pmatrix}}_{b}$$

$$x_{1}, x_{2}, x_{3}, x_{4} \geq 0$$

 $B=\{3,4\}$ is a feasible basis

Canonical form for B

 $(0,0,1,4)^\top$ is a basic solution

$$\max \underbrace{ (-1.5 \quad -0.5 \quad 0 \quad 0)}_{c} x + 3$$
s.t.
$$\underbrace{ \begin{pmatrix} 0.5 \quad 0.5 \quad 1 \quad 0 \\ -0.5 \quad 0.5 \quad 0 \quad 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 1 \\ 4 \end{pmatrix}}_{b}$$

$$x_{1}, x_{2}, x_{3}, x_{4} \ge 0$$

 $B = \{3, 4\}$ is a feasible basis Canonical form for B

 $(0,0,1,4)^{\top}$ is a basic solution

Pick
$$k \notin B$$
 such that $c_k > 0$ and set $x_k = t$: ????

$$\max \underbrace{ \underbrace{ \begin{pmatrix} -1.5 & -0.5 & 0 & 0 \end{pmatrix}}_{c} x + 3}_{s.t.}$$
 s.t.
$$\underbrace{ \begin{pmatrix} 0.5 & 0.5 & 1 & 0 \\ -0.5 & 0.5 & 0 & 1 \end{pmatrix}}_{A} x = \underbrace{ \begin{pmatrix} 1 \\ 4 \end{pmatrix}}_{b}$$

$$x_{1}, x_{2}, x_{3}, x_{4} \geq 0$$

 $B = \{3,4\}$ is a feasible basis

Canonical form for B

 $(0,0,1,4)^{\top}$ is a basic solution

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$: ???

Claim

 $(0,0,1,4)^{\top}$ has value 3. It is optimal because 3 is an upper bound.

$$\max \underbrace{ \underbrace{ (-1.5 \quad -0.5 \quad 0 \quad 0)}_{c} x + 3}_{c}$$
 s.t.
$$\underbrace{ \underbrace{ \begin{pmatrix} 0.5 \quad 0.5 \quad 1 \quad 0 \\ -0.5 \quad 0.5 \quad 0 \quad 1 \end{pmatrix}}_{A} x = \underbrace{ \begin{pmatrix} 1 \\ 4 \end{pmatrix}}_{b}$$

$$x_{1}, x_{2}, x_{3}, x_{4} \geq 0$$

 $B = \{3,4\}$ is a feasible basis Canonical form for B

 $(0,0,1,4)^{\top}$ is a basic solution

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$: ???

Claim

 $(0,0,1,4)^\top$ has value 3. It is optimal because 3 is an upper bound.

Proof

$$\max \underbrace{ \underbrace{ \begin{pmatrix} -1.5 & -0.5 & 0 & 0 \end{pmatrix}}_{c} x + 3}_{s.t.}$$
 s.t.
$$\underbrace{ \begin{pmatrix} 0.5 & 0.5 & 1 & 0 \\ -0.5 & 0.5 & 0 & 1 \end{pmatrix}}_{A} x = \underbrace{ \begin{pmatrix} 1 \\ 4 \end{pmatrix}}_{b}$$

$$x_{1}, x_{2}, x_{3}, x_{4} \geq 0$$

 $B = \{3,4\}$ is a feasible basis Canonical form for B $(0,0,1,4)^{\top}$ is a basic

solution

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$: ???

Claim

 $(0,0,1,4)^\top$ has value 3. It is optimal because 3 is an upper bound.

Proof

Let x be a feasible solution.

 $B = \{3,4\} \mbox{ is a feasible basis}$ Canonical form for B

 $(0,0,1,4)^\top$ is a basic solution

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$: ???

Claim

 $(0,0,1,4)^\top$ has value 3. It is optimal because 3 is an upper bound.

Proof

Let x be a feasible solution. Then

$$\underbrace{(-1.5, \ 0.5, \ 0, \ 0)}_{\leq \mathbf{0}} \underbrace{x}_{\geq \mathbf{0}} + 3$$

$$\max \underbrace{(-1.5 \quad -0.5 \quad 0 \quad 0)}_{c} x + 3$$
s.t.
$$\underbrace{\begin{pmatrix} 0.5 \quad 0.5 \quad 1 \quad 0 \\ -0.5 \quad 0.5 \quad 0 \quad 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 1 \\ 4 \\ b \end{pmatrix}}_{b}$$

$$x_{1}, x_{2}, x_{3}, x_{4} \ge 0$$

 $B = \{3,4\} \mbox{ is a feasible basis}$ Canonical form for B

 $(0,0,1,4)^{\top}$ is a basic solution

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$: ???

Claim

 $(0,0,1,4)^\top$ has value 3. It is optimal because 3 is an upper bound.

Proof

Let x be a feasible solution. Then

$$\underbrace{(-1.5, \ 0.5, \ 0, \ 0)}_{<\mathbf{0}} \underbrace{x}_{\geq \mathbf{0}} + 3 \leq 3.$$

```
\max \quad \begin{pmatrix} 0 & -4 & 3 & 0 & 0 \end{pmatrix} x s.t. \begin{pmatrix} 1 & -2 & 1 & 0 & 0 \\ 0 & 5 & -3 & 1 & 0 \\ 0 & 4 & -2 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} x_1, x_2, x_3, x_4 \ge 0
```

```
\max \quad (0 \quad -4 \quad 3 \quad 0 \quad 0)x
s.t.
\begin{pmatrix} 1 & -2 & 1 & 0 & 0 \\ 0 & 5 & -3 & 1 & 0 \\ 0 & 4 & -2 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}
x_1, x_2, x_3, x_4 \ge 0
```

 $\{1,4,5\}$ is a feasible basis Canonical form for $\{1,4,5\}$

$$\max \quad (0 \quad -4 \quad 3 \quad 0 \quad 0)x$$
s.t.
$$\begin{pmatrix} 1 & -2 & 1 & 0 & 0 \\ 0 & 5 & -3 & 1 & 0 \\ 0 & 4 & -2 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

$$\{1,4,5\}$$
 is a feasible basis
Canonical form for $\{1,4,5\}$

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

 $\{1,4,5\}$ is a feasible basis Canonical form for $\{1,4,5\}$

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

$$x_3 = t$$

$$\max \quad (0 \quad -4 \quad 3 \quad 0 \quad 0)x$$
s.t.
$$\begin{pmatrix} 1 & -2 & 1 & 0 & 0 \\ 0 & 5 & -3 & 1 & 0 \\ 0 & 4 & -2 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

 $\{1,4,5\}$ is a feasible basis Canonical form for $\{1,4,5\}$

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

$$x_3 = t$$
 \longrightarrow 3 enters the basis

$$\max (0 - 4 \ 3 \ 0 \ 0)x$$
s.t.
$$\begin{pmatrix} 1 & -2 & 1 & 0 & 0 \\ 0 & 5 & -3 & 1 & 0 \\ 0 & 4 & -2 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

 $\{1,4,5\}$ is a feasible basis Canonical form for $\{1,4,5\}$

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

$$x_3 = t$$
 \longrightarrow 3 enters the basis

$$\max \quad (0 \quad -4 \quad 3 \quad 0 \quad 0)x$$
s.t.
$$\begin{pmatrix} 1 & -2 & 1 & 0 & 0 \\ 0 & 5 & -3 & 1 & 0 \\ 0 & 4 & -2 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

 $\{1,4,5\}$ is a feasible basis

Canonical form for $\{1,4,5\}$

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

$$x_3 = t$$
 \longrightarrow 3 enters the basis

$$\begin{pmatrix} x_1 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} - t \begin{pmatrix} 1 \\ -3 \\ -2 \end{pmatrix}$$

$$\max (0 -4 \ 3 \ 0 \ 0)x$$
s.t.
$$\begin{pmatrix} 1 & -2 & 1 & 0 & 0 \\ 0 & 5 & -3 & 1 & 0 \\ 0 & 4 & -2 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

 $\{1,4,5\}$ is a feasible basis Canonical form for $\{1,4,5\}$

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

$$x_3 = t$$
 \longrightarrow 3 enters the basis

$$\begin{pmatrix} x_1 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} - t \begin{pmatrix} 1 \\ -3 \\ -2 \end{pmatrix}$$
$$t = \min\left\{ \frac{1}{1}, -, - \right\} = 1$$

 $\{1,4,5\}$ is a feasible basis

Canonical form for $\{1,4,5\}$

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

$$x_3 = t$$
 \longrightarrow 3 enters the basis

$$\begin{pmatrix} x_1 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} - t \begin{pmatrix} 1 \\ -3 \\ -2 \end{pmatrix}$$

$$t=\min\left\{\frac{1}{1},-,-\right\}=1$$
 thus $x_1=0$

$$\max \quad (0 \quad -4 \quad 3 \quad 0 \quad 0)x$$
s.t.
$$\begin{pmatrix} 1 & -2 & 1 & 0 & 0 \\ 0 & 5 & -3 & 1 & 0 \\ 0 & 4 & -2 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

 $\{1,4,5\}$ is a feasible basis

Canonical form for $\{1, 4, 5\}$

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

$$x_3 = t$$
 \longrightarrow 3 enters the basis

Pick $x_B = b - tA_k$:

$$\begin{pmatrix} x_1 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} - t \begin{pmatrix} 1 \\ -3 \\ -2 \end{pmatrix}$$

$$t = \min\left\{\frac{1}{1}, -, -\right\} = 1 \text{ thus } x_1 = 0$$

1 leaves the basis

max
$$(0 - 4 \ 3 \ 0 \ 0)x$$

s.t.
$$\begin{pmatrix} 1 & -2 & 1 & 0 & 0 \\ 0 & 5 & -3 & 1 & 0 \\ 0 & 4 & -2 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

 $\{1,4,5\}$ is a feasible basis

Canonical form for $\{1,4,5\}$

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

$$x_3 = t$$
 \longrightarrow 3 enters the basis

Pick $x_B = b - tA_k$:

$$\begin{pmatrix} x_1 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} - t \begin{pmatrix} 1 \\ -3 \\ -2 \end{pmatrix}$$

$$t = \min\left\{\frac{1}{1}, -, -\right\} = 1 \text{ thus } x_1 = 0 \longrightarrow 1 \text{ leaves the basis}$$

The NEW basis is $B = \{3, 4, 5\}$.

 $\max (-3 \ 2 \ 0 \ 0 \ 0)x + 3$

s.t.

$$\begin{pmatrix} 1 & -2 & 1 & 0 & 0 \\ 3 & -1 & 0 & 1 & 0 \\ 2 & 0 & 0 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix}$$
$$x_1, x_2, x_3, x_4 \ge 0$$

 $\{3,4,5\}$ is a feasible basis

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

 $\{3, 4, 5\}$ is a feasible basis

 $\{3,4,5\}$ is a feasible basis

Pick
$$k \notin B$$
 such that $c_k > 0$ and set $x_k = t$:

$$x_2 = t$$

 $\{3,4,5\}$ is a feasible basis

Pick
$$k \notin B$$
 such that $c_k > 0$ and set $x_k = t$:

$$c_2 = t$$
 \longrightarrow 2 enters the basis

 $x_1, x_2, x_3, x_4 \ge 0$

 $\{3,4,5\}$ is a feasible basis

Pick
$$k \notin B$$
 such that $c_k > 0$ and set $x_k = t$:

$$x_2 = t$$
 \longrightarrow 2 enters the basis

Pick
$$x_B = b - tA_k$$
:

$$\begin{pmatrix} x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix} - t \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$$

 $x_1, x_2, x_3, x_4 \ge 0$

 $\{3,4,5\}$ is a feasible basis

Canonical form for $\{3,4,5\}$

Pick
$$k \notin B$$
 such that $c_k > 0$ and set $x_k = t$:

$$x_2 = t$$
 \longrightarrow 2 enters the basis

$$\begin{pmatrix} x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix} - t \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$$
 Choose $t = ???$

$$\max (-3 \ 2 \ 0 \ 0 \ 0)x + 3$$

s.t.

$$\begin{pmatrix} 1 & -2 & 1 & 0 & 0 \\ 3 & -1 & 0 & 1 & 0 \\ 2 & 0 & 0 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix}$$
$$x_1, x_2, x_3, x_4 \ge 0$$

 $\{3,4,5\}$ is a feasible basis

Canonical form for $\{3,4,5\}$

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

$$x_2 = t$$
 \longrightarrow 2 enters the basis

Pick $x_B = b - tA_k$:

$$\begin{pmatrix} x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix} - t \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$$
 Choose $t = ???$

Claim

The linear program is unbounded.

max
$$z = (-3 \ 2 \ 0 \ 0 \ 0)x + 3$$
 $x_2 = t$ s.t. $x_1 = 0$

$$\begin{pmatrix} 1 & -2 & 1 & 0 & 0 \\ 3 & -1 & 0 & 1 & 0 \\ 2 & 0 & 0 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix} \qquad \begin{pmatrix} x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix} - t \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 > 0$$

Claim

The linear program is unbounded.

max
$$z = (-3 \ 2 \ 0 \ 0 \ 0)x + 3$$

s.t.
$$\begin{pmatrix} 1 & -2 & 1 & 0 & 0 \\ 2 & 1 & 0 & 1 & 0 \\ \end{pmatrix}$$

$$\begin{pmatrix} 1 & -2 & 1 & 0 & 0 \\ 3 & -1 & 0 & 1 & 0 \\ 2 & 0 & 0 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix}$$
$$\begin{pmatrix} x_1 = 0 \\ \begin{pmatrix} x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix} - t \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$$
$$x_1, x_2, x_3, x_4 > 0$$

 $x_2 = t$

Claim

The linear program is unbounded.

Proof

$$x_{2} = t$$

$$x_{1} = 0$$

$$\begin{pmatrix} x_{3} \\ x_{4} \\ x_{5} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix} - t \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$$

Claim

The linear program is unbounded.

 $x_1, x_2, x_3, x_4 \ge 0$

$$x(t) = \begin{pmatrix} 0 \\ t \\ 1+2t \\ 4+t \\ 4 \end{pmatrix} =$$

$$\max z = (-3 \quad 2 \quad 0 \quad 0 \quad 0)x + 3$$
 s.t.

$$\begin{pmatrix} 1 & -2 & 1 & 0 & 0 \\ 3 & -1 & 0 & 1 & 0 \\ 2 & 0 & 0 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix}$$
$$x_1, x_2, x_3, x_4 \ge 0$$
$$\begin{pmatrix} x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix} - t \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$$

$x_2 = t$ $x_1 = 0$

Claim

The linear program is unbounded.

Froof
$$x(t) = \begin{pmatrix} 0 \\ t \\ 1+2t \\ 4+t \\ 4 \end{pmatrix} = \underbrace{\begin{pmatrix} 0 \\ 0 \\ 1 \\ 4 \\ 4 \end{pmatrix}}_{=\bar{x}} + t \underbrace{\begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}}_{=r}$$

$$\underbrace{\begin{pmatrix} 0 \\ 0 \\ 1 \\ 4 \\ 4 \end{pmatrix}}_{=\bar{x}} + t \underbrace{\begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}}_{=r}$$

$$\max \quad z = (-3 \quad 2 \quad 0 \quad 0 \quad 0) x + 3$$
 s.t.

$$\begin{pmatrix} 1 & -2 & 1 & 0 & 0 \\ 3 & -1 & 0 & 1 & 0 \\ 2 & 0 & 0 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix}$$
$$x_1, x_2, x_3, x_4 \ge 0$$
$$\begin{pmatrix} x_1 \\ x_2 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix} - t \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$$

$x_2 = t$ $x_1 = 0$

Claim

The linear program is unbounded.

Proof

$$x(t) = \begin{pmatrix} 0 \\ t \\ 1+2t \\ 4+t \\ 4 \end{pmatrix} = \underbrace{\begin{pmatrix} 0 \\ 0 \\ 1 \\ 4 \\ 4 \end{pmatrix}}_{=\overline{x}} + t \underbrace{\begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}}_{=r}$$

•
$$x(t)$$
 is feasible for all $t \ge 0$.

$$\max \quad z = (-3 \quad 2 \quad 0 \quad 0 \quad 0) x + 3$$
 s.t.

$$\begin{pmatrix} 1 & -2 & 1 & 0 & 0 \\ 3 & -1 & 0 & 1 & 0 \\ 2 & 0 & 0 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix}$$
$$x_1, x_2, x_3, x_4 \ge 0$$
$$\begin{pmatrix} x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix} - t \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$$

$$x_{2} = t$$

$$x_{1} = 0$$

$$\begin{pmatrix} x_{3} \\ x_{4} \\ x_{5} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix} - t \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$$

Claim

The linear program is unbounded.

Proof

$$x(t) = \begin{pmatrix} 0 \\ t \\ 1+2t \\ 4+t \\ 4 \end{pmatrix} = \underbrace{\begin{pmatrix} 0 \\ 0 \\ 1 \\ 4 \\ 4 \end{pmatrix}}_{=\bar{x}} + t \underbrace{\begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}}_{=r}$$

- x(t) is feasible for all t > 0.
- $z \to \infty$ when $t \to \infty$.

 $\max \quad z = (-3 \quad 2 \quad 0 \quad 0 \quad 0)x + 3$ s.t.

$$\begin{pmatrix} 1 & -2 & 1 & 0 & 0 \\ 3 & -1 & 0 & 1 & 0 \\ 2 & 0 & 0 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix}$$
$$x_1, x_2, x_3, x_4 \ge 0$$

$$x_{2} = t$$

$$x_{1} = 0$$

$$\begin{pmatrix} x_{3} \\ x_{4} \\ x_{5} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix} - t \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$$

Claim

The linear program is unbounded.

Proof

$$x(t) = \begin{pmatrix} 0 \\ t \\ 1+2t \\ 4+t \\ 4 \end{pmatrix} = \underbrace{\begin{pmatrix} 0 \\ 0 \\ 1 \\ 4 \\ 4 \end{pmatrix}}_{=\bar{x}} + t \underbrace{\begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}}_{=r}$$

- x(t) is feasible for all $t \ge 0$.
- $z \to \infty$ when $t \to \infty$.

 (\bar{x}, r) : certificate of unboundedness.)

 $\begin{aligned} & \max & & c^\top x \\ & \text{s.t.} & & \\ & & & Ax = b \\ & & & x \geq \mathbf{0} \end{aligned}$

 $\begin{aligned} &\max & c^\top x\\ &\text{s.t.} &\\ &Ax = b\\ &x \geq \mathbf{0} \end{aligned}$

INPUT:

$$\begin{aligned} & \max & c^\top x \\ & \text{s.t.} & \\ & & Ax = b \\ & & x \geq \mathbf{0} \end{aligned}$$

 $\underline{\text{INPUT:}}$ a feasible basis B.

$$\begin{aligned} &\max & c^{\top}x\\ &\text{s.t.} &\\ &Ax = b\\ &x \geq \mathbf{0} \end{aligned}$$

 $\underline{\text{INPUT:}} \qquad \text{a feasible basis } B.$

Output:

$$\max \quad c^{\top}x$$
 s.t.
$$Ax = b$$

$$x \ge \mathbf{0}$$

 $\underline{\text{INPUT:}}$ a feasible basis B.

 $\underline{\mathrm{OUTPUT:}}$ $\,$ an optimal solution OR

$$\begin{aligned} & \max \quad c^\top x \\ & \text{s.t.} & \\ & & Ax = b \\ & & x \geq \mathbf{0} \end{aligned}$$

 $\underline{\text{INPUT:}}$ a feasible basis B.

 $\underline{\mathrm{OUTPUT:}}$ an optimal solution OR it detects that the LP is unbounded.

$$\begin{aligned} & \max \quad c^\top x \\ & \text{s.t.} & \\ & & Ax = b \\ & & x \geq \mathbf{0} \end{aligned}$$

 $\underline{\text{INPUT:}}$ a feasible basis B.

OUTPUT: an optimal solution OR it detects that the LP is unbounded.

Step 1. Rewrite in canonical form for the basis B.

$$\begin{aligned} & \max \quad c^\top x \\ & \text{s.t.} & \\ & & Ax = b \\ & & x \geq \mathbf{0} \end{aligned}$$

 $\underline{\text{INPUT:}}$ a feasible basis B.

OUTPUT: an optimal solution OR it detects that the LP is unbounded.

Step 1. Rewrite in canonical form for the basis B.

Step 2. Find a better basis B or get required outcome.

The Simplex Algorithm

$$\max \quad c^{\top}x$$
 s.t.
$$Ax = b$$

$$x \geq \mathbf{0}$$

 $\underline{\text{INPUT:}}$ a feasible basis B.

 $\underline{\mathrm{OUTPUT:}}$ an optimal solution OR it detects that the LP is unbounded.

Step 1. Rewrite in canonical form for the basis B.

Step 2. Find a better basis B or get required outcome.

 $\begin{array}{|c|c|} \hline \max & z = c_N^\top x_N + \bar{z} \\ \text{s.t.} & \\ & x_B + A_N x_N = b \\ & x \geq \mathbf{0} \end{array}$

 $\max \quad z = c_N^\top x_N + \bar{z}$ s.t. $x_B + A_N x_N = b$ $x \geq \mathbf{0}$

 ${\cal B}$ is a feasible basis,

 $\begin{array}{|c|c|} \hline \max & z = c_N^\top x_N + \bar{z} \\ \text{s.t.} \\ & x_B + A_N x_N = b \\ & x \geq \mathbf{0} \end{array}$

B is a feasible basis, $N=\{j\notin B\}$

 $\max \quad z = c_N^\top x_N + \bar{z}$ s.t. $x_B + A_N x_N = b$ $x \ge \mathbf{0}$

B is a feasible basis, $N=\{j\notin B\}$ Canonical form for B

 $\max \quad z = c_N^\top x_N + \bar{z}$ s.t. $x_B + A_N x_N = b$ $x \geq \mathbf{0}$

$$x_B + A_N x_N = b$$
$$x \ge \mathbf{0}$$

B is a feasible basis, $N = \{j \notin B\}$ Canonical form for B

 \bar{x} is a basic solution

 $\max \quad z = c_N^\top x_N + \bar{z}$ s.t. $x_B + A_N x_N = b$ $x \ge \mathbf{0}$

B is a feasible basis, $N=\{j\notin B\}$ Canonical form for B \bar{x} is a basic solution

If $c_N \leq \mathbf{0}$, then STOP. The basic solution \bar{x} is optimal.

$$\max \quad z = c_N^\top x_N + \bar{z}$$
 s.t.
$$x_B + A_N x_N = b$$

$$x \ge \mathbf{0}$$

B is a feasible basis, $N=\{j\notin B\}$ Canonical form for B \bar{x} is a basic solution

If $c_N \leq \mathbf{0}$, then STOP. The basic solution \bar{x} is optimal.

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$.

$$\max \quad z = c_N^\top x_N + \bar{z}$$
 s.t.
$$x_B + A_N x_N = b$$

$$x \ge \mathbf{0}$$

B is a feasible basis, $N=\{j\notin B\}$ Canonical form for B \bar{x} is a basic solution

If $c_N \leq \mathbf{0}$, then STOP. The basic solution \bar{x} is optimal.

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$.

 $\mathsf{Pick}\ x_B = b - tA_k.$

$$\begin{aligned} \max \quad z &= c_N^\top x_N + \bar{z} \\ \text{s.t.} \\ x_B + A_N x_N &= b \\ x &\geq \mathbf{0} \end{aligned}$$

B is a feasible basis, $N=\{j\notin B\}$ Canonical form for B

 \bar{x} is a basic solution

If $c_N \leq \mathbf{0}$, then STOP. The basic solution \bar{x} is optimal.

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$.

Pick $x_B = b - tA_k$.

If $A_k \leq \mathbf{0}$, then STOP. The LP is unbounded.

$$\max \quad z = c_N^\top x_N + \bar{z}$$
 s.t.
$$x_B + A_N x_N = b$$

$$x \geq \mathbf{0}$$

B is a feasible basis, $N = \{j \notin B\}$ Canonical form for B

 \bar{x} is a basic solution

If $c_N \leq \mathbf{0}$, then STOP. The basic solution \bar{x} is optimal.

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$.

Pick $x_B = b - tA_k$.

If $A_k \leq \mathbf{0}$, then STOP. The LP is unbounded.

Choose $t = \min \left\{ \frac{b_i}{A_{ik}} : \text{for all } i \text{ such that } A_{ik} > 0 \right\}.$

$$\max \quad z = c_N^\top x_N + \bar{z}$$
 s.t.
$$x_B + A_N x_N = b$$

$$x \ge \mathbf{0}$$

B is a feasible basis, $N=\{j\notin B\}$ Canonical form for B

 \bar{x} is a basic solution

If $c_N \leq \mathbf{0}$, then STOP. The basic solution \bar{x} is optimal.

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$.

Pick $x_B = b - tA_k$.

If $A_k \leq \mathbf{0}$, then STOP. The LP is unbounded.

Choose $t = \min \left\{ \frac{b_i}{A_{ik}} : \text{for all } i \text{ such that } A_{ik} > 0 \right\}.$

Let x_r be a basic variable forced to 0.

$$\max \quad z = c_N^\top x_N + \bar{z}$$
 s.t.
$$x_B + A_N x_N = b$$

$$x \ge \mathbf{0}$$

B is a feasible basis, $N=\{j \notin B\}$

Canonical form for ${\cal B}$

 \bar{x} is a basic solution

If $c_N \leq \mathbf{0}$, then STOP. The basic solution \bar{x} is optimal.

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$.

Pick $x_B = b - tA_k$.

If $A_k \leq \mathbf{0}$, then STOP. The LP is unbounded.

Choose $t = \min \left\{ \frac{b_i}{A_{ik}} : \text{for all } i \text{ such that } A_{ik} > 0 \right\}.$

Let x_r be a basic variable forced to 0.

The new basis is obtained by having k enter and r leave.

 $\begin{aligned} \max \quad z &= c_N^\top x_N + \bar{z} \\ \text{s.t.} \\ x_B + A_N x_N &= b \end{aligned}$ s.t.

$$x_B + A_N x_N = b$$
$$x \ge \mathbf{0}$$

B is a feasible basis, $N = \{j \notin B\}$ Canonical form for B

 \bar{x} basic solution

If $c_N \leq \mathbf{0}$, then STOP. The basic solution \bar{x} is optimal.

max	<i>z</i> =	$=c_N^{ op}$	c_N +
s.t.			
		. 4	

 \bar{x} basic solution

 $x_B + A_N x_N = b$ $x \ge \mathbf{0}$

If $c_N \leq \mathbf{0}$, then STOP. The basic solution \bar{x} is optimal.

max	$z = c_N^\top x_N + \bar{z}$
s.t.	

Canonical form for B \bar{x} basic solution

B is a feasible basis, $N = \{j \notin B\}$

$$x_B + A_N x_N = b$$
$$x \ge \mathbf{0}$$

If $c_N \leq \mathbf{0}$, then STOP. The basic solution \bar{x} is optimal.

$$\bar{x}_B = b$$
, $\bar{x}_N = \mathbf{0}$.

$$\max \quad z = c_N^\top x_N + \bar{z}$$
 s.t.

$$x_B + A_N x_N = b$$
$$x \ge \mathbf{0}$$

 \bar{x} basic solution

If $c_N \leq \mathbf{0}$, then STOP. The basic solution \bar{x} is optimal.

$$\bar{x}_B = b$$
, $\bar{x}_N = \mathbf{0}$.

$$\bar{x}$$
 has value $z = c_N^\top \bar{x}_N + \bar{z} = \bar{z}.$

$$x_B + A_N x_N = b$$
$$x \ge \mathbf{0}$$

 \bar{x} basic solution

If $c_N \leq \mathbf{0}$, then STOP. The basic solution \bar{x} is optimal.

Proof

$$\bar{x}_B = b$$
, $\bar{x}_N = \mathbf{0}$.

$$\bar{x}$$
 has value $z = c_N^\top \bar{x}_N + \bar{z} = \bar{z}.$

Let x be a feasible solution.

$$z =$$

$$\begin{aligned} \max \quad z &= c_N^\top x_N + \bar{z} \\ \text{s.t.} \\ x_B + A_N x_N &= b \\ x &\geq \mathbf{0} \end{aligned}$$

 \bar{x} basic solution

If $c_N \leq \mathbf{0}$, then STOP. The basic solution \bar{x} is optimal.

Proof

$$\bar{x}_B = b, \ \bar{x}_N = \mathbf{0}.$$

$$\bar{x}$$
 has value $z=c_N^{ op} \bar{x}_N + \bar{z}=\bar{z}.$

Let x be a feasible solution.

$$z = \underbrace{c_N^{\top}}_{\leq \mathbf{0}} \underbrace{x_N}_{\geq \mathbf{0}} +$$

$$\begin{aligned} \max \quad z &= c_N^\top x_N + \bar{z} \\ \text{s.t.} \\ x_B + A_N x_N &= b \\ x &\geq \mathbf{0} \end{aligned}$$

 \bar{x} basic solution

If $c_N \leq \mathbf{0}$, then STOP. The basic solution \bar{x} is optimal.

Proof

$$\bar{x}_B = b, \ \bar{x}_N = \mathbf{0}.$$

$$\bar{x}$$
 has value $z=c_N^{ op} \bar{x}_N + \bar{z}=\bar{z}.$

Let x be a feasible solution.

$$z = \underbrace{c_N^\top}_{\leq \mathbf{0}} \underbrace{x_N}_{\geq \mathbf{0}} + \bar{z} \leq \bar{z}.$$

 $\max_{} \quad z = c_N^\top x_N + \bar{z}$ s.t.

$$x_B + A_N x_N = b$$
$$x \ge \mathbf{0}$$

B is a feasible basis, $N = \{j \notin B\}$ Canonical form for B

 \bar{x} basic solution

If $A_k \leq \mathbf{0}$, then STOP. The LP is unbounded.

max	$z = c_N^\top x_N +$
s.t.	

$$x_B + A_N x_N = b$$
$$x \ge \mathbf{0}$$

 \bar{x} basic solution

If $A_k \leq \mathbf{0}$, then STOP. The LP is unbounded.

\max	$z = c_N^{\top} x_N + \bar{z}$
s.t.	
	$x_B + A_N x_N = b$

 $x \ge \mathbf{0}$

B is a feasible basis, $N=\{j\notin B\}$ Canonical form for B

 \bar{x} basic solution

If $A_k \leq \mathbf{0}$, then STOP. The LP is unbounded.

Proof

max	$z = c_N^\top x_N + \bar{z}$
s.t.	
	$x_B + A_N x_N = b$

 $x \ge \mathbf{0}$

B is a feasible basis, $N=\{j\notin B\}$ Canonical form for B

 $ar{x}$ basic solution

If $A_k \leq \mathbf{0}$, then STOP. The LP is unbounded.

Proof

$$x_k = t \ge 0$$
,

\max	$z = c_N^{\top} x_N +$
s.t.	

$$x_B + A_N x_N = b$$
$$x \ge \mathbf{0}$$

 \bar{x} basic solution

If $A_k \leq \mathbf{0}$, then STOP. The LP is unbounded.

Proof

x is feasible for all $t \geq 0$:

 $x_k=t\geq 0$, all other non-basic variables have value zero.

max	$z = c_N^{\top} x_N +$
s.t.	

$$B$$
 is a feasible basis, $N=\{j\notin B\}$
Canonical form for B
 \bar{x} basic solution

$$x_B + A_N x_N = b$$
$$x \ge \mathbf{0}$$

If $A_k \leq 0$, then STOP. The LP is unbounded.

Proof

$$x_k = t \geq 0$$
, all other non-basic variables have value zero.

$$x_B = b - tA_k =$$

$$\max \quad z = c_N^\top x_N + \bar{z}$$
 s.t.
$$x_B + A_N x_N = b$$

$$x \geq \mathbf{0}$$

$$x_B + A_N x_N = 0$$
$$x \ge \mathbf{0}$$

B is a feasible basis, $N = \{j \notin B\}$

Canonical form for B

 \bar{x} basic solution

If $A_k \leq 0$, then STOP. The LP is unbounded.

Proof

$$x_k = t \ge 0$$
, all other non-basic variables have value zero.

$$x_B = b - tA_k = \underbrace{b}_{\geq \mathbf{0}} - \underbrace{t}_{\geq \mathbf{0}} \underbrace{A_k}_{\leq \mathbf{0}}$$

$$\max \quad z = c_N^\top x_N +$$
s.t.

$$\begin{aligned} \max \quad z &= c_N^\top x_N + \bar{z} \\ \text{s.t.} \\ x_B + A_N x_N &= b \\ x &\geq \mathbf{0} \end{aligned}$$

 \bar{x} basic solution

If $A_k \leq 0$, then STOP. The LP is unbounded.

Proof

$$x_k=t\geq 0$$
, all other non-basic variables have value zero.

$$x_B = b - tA_k = \underbrace{b}_{\geq \mathbf{0}} - \underbrace{t}_{\geq 0} \underbrace{A_k}_{< \mathbf{0}} \geq \mathbf{0}$$

$$\max \quad z = c_N^{\top} x_N +$$
s.t.

$$\begin{aligned} \max \quad z &= c_N^\top x_N + \bar{z} \\ \text{s.t.} \\ x_B + A_N x_N &= b \\ x &\geq \mathbf{0} \end{aligned}$$

B is a feasible basis, $N = \{j \notin B\}$

Canonical form for B \bar{x} basic solution

If $A_k \leq 0$, then STOP. The LP is unbounded.

Proof

x is feasible for all $t \geq 0$:

$$x_k=t\geq 0$$
, all other non-basic variables have value zero.

$$x_B = b - tA_k = \underbrace{b}_{\geq \mathbf{0}} - \underbrace{t}_{\geq 0} \underbrace{A_k}_{\leq \mathbf{0}} \geq \mathbf{0}$$

$$\max \quad z = c_N^\top x_N +$$
s.t.

$$\begin{aligned} \max \quad z &= c_N^\top x_N + \bar{z} \\ \text{s.t.} \\ x_B + A_N x_N &= b \\ x &\geq \mathbf{0} \end{aligned}$$

 \bar{x} basic solution

If $A_k \leq 0$, then STOP. The LP is unbounded.

Proof

x is feasible for all $t \geq 0$:

$$x_k=t\geq 0$$
, all other non-basic variables have value zero.

$$x_B = b - tA_k = \underbrace{b}_{\geq \mathbf{0}} - \underbrace{t}_{\geq 0} \underbrace{A_k}_{\leq \mathbf{0}} \geq \mathbf{0}$$

$$z = \sum_{j \in N} c_j x_j + \bar{z}$$

$$\max_{\mathbf{z} \in c_N^{\top} x_N + \mathbf{z}} z = c_N^{\top} x_N + \mathbf{z}$$
 s.t.

$$\begin{aligned} \max \quad z &= c_N^\top x_N + \bar{z} \\ \text{s.t.} \\ x_B + A_N x_N &= b \\ x &\geq \mathbf{0} \end{aligned}$$

 \bar{x} basic solution

If $A_k \leq 0$, then STOP. The LP is unbounded.

Proof

x is feasible for all $t \geq 0$:

$$x_k=t\geq 0$$
, all other non-basic variables have value zero.

$$x_B = b - tA_k = \underbrace{b}_{\geq \mathbf{0}} - \underbrace{t}_{\geq 0} \underbrace{A_k}_{\leq \mathbf{0}} \geq \mathbf{0}$$

$$z = \sum_{j \in N} c_j x_j + \bar{z} = c_k x_k + \bar{z}$$

$$\max \quad z = c_N^\top x_N +$$

s.t.

$$\begin{aligned} \max \quad z &= c_N^\top x_N + \bar{z} \\ \text{s.t.} \\ x_B + A_N x_N &= b \\ x &\geq \mathbf{0} \end{aligned}$$

 \bar{x} basic solution

If $A_k \leq 0$, then STOP. The LP is unbounded.

Proof

x is feasible for all $t \geq 0$:

$$x_k = t \ge 0$$
, all other non-basic variables have value zero.

$$x_B = b - tA_k = \underbrace{b}_{\geq \mathbf{0}} - \underbrace{t}_{\geq 0} \underbrace{A_k}_{\leq \mathbf{0}} \geq \mathbf{0}$$

$$z = \sum_{j \in N} c_j x_j + \bar{z} = c_k x_k + \bar{z} = \underbrace{c_k}_{z \in Z} t + \bar{x}.$$

Simplex tells the truth:

Simplex tells the truth:

• If it claims the LP is unbounded, it is unbounded.

Simplex tells the truth:

- If it claims the LP is unbounded, it is unbounded.
- If it claims the solution is optimal, it is optimal.

Simplex tells the truth:

- If it claims the LP is unbounded, it is unbounded.
- If it claims the solution is optimal, it is optimal.

Question

Is the Simplex a correct algorithm?

Simplex tells the truth:

- If it claims the LP is unbounded, it is unbounded.
- If it claims the solution is optimal, it is optimal.

Question

Is the Simplex a correct algorithm?

NOT AS STATED!

Simplex tells the truth:

- If it claims the LP is unbounded, it is unbounded.
- If it claims the solution is optimal, it is optimal.

Question

Is the Simplex a correct algorithm?

NOT AS STATED! IT MAY NOT TERMINATE!

Simplex tells the truth:

- If it claims the LP is unbounded, it is unbounded.
- If it claims the solution is optimal, it is optimal.

Question

Is the Simplex a correct algorithm?

NOT AS STATED! IT MAY NOT TERMINATE!

Potential problem:

Simplex tells the truth:

- If it claims the LP is unbounded, it is unbounded.
- If it claims the solution is optimal, it is optimal.

Question

Is the Simplex a correct algorithm?

NOT AS STATED! IT MAY NOT TERMINATE!

Simplex tells the truth:

- If it claims the LP is unbounded, it is unbounded.
- If it claims the solution is optimal, it is optimal.

Question

Is the Simplex a correct algorithm?

NOT AS STATED! IT MAY NOT TERMINATE!

$$B_1 \rightsquigarrow B_2$$

Simplex tells the truth:

- If it claims the LP is unbounded, it is unbounded.
- If it claims the solution is optimal, it is optimal.

Question

Is the Simplex a correct algorithm?

NOT AS STATED! IT MAY NOT TERMINATE!

$$B_1 \rightsquigarrow B_2 \rightsquigarrow B_3$$

Simplex tells the truth:

- If it claims the LP is unbounded, it is unbounded.
- If it claims the solution is optimal, it is optimal.

Question

Is the Simplex a correct algorithm?

NOT AS STATED! IT MAY NOT TERMINATE!

$$B_1 \rightsquigarrow B_2 \rightsquigarrow B_3 \rightsquigarrow \ldots \rightsquigarrow B_{k-1}$$

Simplex tells the truth:

- If it claims the LP is unbounded, it is unbounded.
- If it claims the solution is optimal, it is optimal.

Question

Is the Simplex a correct algorithm?

NOT AS STATED! IT MAY NOT TERMINATE!

$$B_1 \rightsquigarrow B_2 \rightsquigarrow B_3 \rightsquigarrow \ldots \rightsquigarrow B_{k-1} \rightsquigarrow B_k = B_1$$

Simplex tells the truth:

- If it claims the LP is unbounded, it is unbounded.
- If it claims the solution is optimal, it is optimal.

Question

Is the Simplex a correct algorithm?

NOT AS STATED! IT MAY NOT TERMINATE!

Simplex tells the truth:

- If it claims the LP is unbounded, it is unbounded.
- If it claims the solution is optimal, it is optimal.

Question

Is the Simplex a correct algorithm?

NOT AS STATED! IT MAY NOT TERMINATE!

Potential problem: Start with a feasible basis B_1 ,

$$\underbrace{B_1 \rightsquigarrow B_2 \rightsquigarrow B_3 \rightsquigarrow \dots \rightsquigarrow B_{k-1} \rightsquigarrow B_k = B_1}_{\mathsf{Cycling}}$$

Theorem

If we use Bland's Rule, then the Simplex algorithm always terminates.

Theorem

If we use Bland's Rule, then the Simplex algorithm always terminates.

Theorem

If we use Bland's Rule, then the Simplex algorithm always terminates.

Definition

Bland's rule is as follows:

Theorem

If we use Bland's Rule, then the Simplex algorithm always terminates.

Definition

Bland's rule is as follows:

• If we have a choice for the element entering the basis,

Theorem

If we use Bland's Rule, then the Simplex algorithm always terminates.

Definition

Bland's rule is as follows:

• If we have a choice for the element entering the basis, pick the smallest one.

Theorem

If we use Bland's Rule, then the Simplex algorithm always terminates.

Definition

Bland's rule is as follows:

- If we have a choice for the element entering the basis, pick the smallest one.
- If we have a choice for the element leaving the basis,

Theorem

If we use Bland's Rule, then the Simplex algorithm always terminates.

Definition

Bland's rule is as follows:

- If we have a choice for the element entering the basis, pick the smallest one.
- If we have a choice for the element <u>leaving</u> the basis, pick the <u>smallest one</u>.

Theorem

If we use Bland's Rule, then the Simplex algorithm always terminates.

Definition

Bland's rule is as follows:

- If we have a choice for the element entering the basis, pick the smallest one.
- If we have a choice for the element <u>leaving</u> the basis, pick the <u>smallest one</u>.

Let us see an example...

$$\{1,2\}$$
 is a feasible basis Canonical form for $\{1,2\}$

 $\{1,2\}$ is a feasible basis Canonical form for $\{1,2\}$

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

 $\max \quad \begin{pmatrix} 0 & 0 & 2 & 3 \end{pmatrix} x$ s.t. $\begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & 4 & 6 \end{pmatrix} x = \begin{pmatrix} 6 \\ 12 \end{pmatrix}$ $x_1, x_2, x_3, x_4 \ge 0$

 $\{1,2\}$ is a feasible basis Canonical form for $\{1,2\}$

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

Choices
$$k=3$$

$$\{1,2\}$$
 is a feasible basis Canonical form for $\{1,2\}$

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$: Choices k = 3 OR

$$\{1,2\}$$
 is a feasible basis Canonical form for $\{1,2\}$

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$: Choices k = 3 OR k = 4.

Choices k = 3 OK k = 4.

 $\{1,2\}$ is a feasible basis Canonical form for $\{1,2\}$

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

Choices k = 3 OR k = 4.

Bland's rule says

 $\{1,2\}$ is a feasible basis Canonical form for $\{1,2\}$

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

Choices k = 3 OR k = 4.

Bland's rule says pick k=3 (entering element).

max
$$(0 \ 0 \ 2 \ 3)x$$

s.t.
$$\begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & 4 & 6 \end{pmatrix} x = \begin{pmatrix} 6 \\ 12 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

Choices
$$k = 3$$
 OR $k = 4$.

Bland's rule says pick k=3 (entering element).

Pick $x_B = b - tA_k$:

$$\max \quad (0 \quad 0 \quad 2 \quad 3)x$$
 s.t.
$$\begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & 4 & 6 \end{pmatrix} x = \begin{pmatrix} 6 \\ 12 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Pick
$$k \notin B$$
 such that $c_k > 0$ and set $x_k = t$:

Choices
$$k = 3$$
 OR $k = 4$.

Bland's rule says pick k = 3 (entering element).

Pick $x_B = b - tA_k$:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 12 \end{pmatrix} - t \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

Choices
$$k = 3$$
 OR $k = 4$.

Bland's rule says pick k=3 (entering element).

Pick $x_B = b - tA_k$:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 12 \end{pmatrix} - t \begin{pmatrix} 2 \\ 4 \end{pmatrix} \quad \text{and} \quad t = \min\left\{ \frac{6}{2}, \frac{12}{4} \right\} = 3$$

$$\max \quad (0 \quad 0 \quad 2 \quad 3)x$$
 s.t.
$$\begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & 4 & 6 \end{pmatrix} x = \begin{pmatrix} 6 \\ 12 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

Choices
$$k = 3$$
 OR $k = 4$.

Bland's rule says pick k = 3 (entering element).

Pick $x_B = b - tA_k$:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 12 \end{pmatrix} - t \begin{pmatrix} 2 \\ 4 \end{pmatrix} \quad \text{and} \quad t = \min\left\{\frac{6}{2}, \frac{12}{4}\right\} = 3$$

Pick $r \in B$ such that $x_r = 0$:

$$\max \quad (0 \quad 0 \quad 2 \quad 3)x$$
 s.t.
$$\begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & 4 & 6 \end{pmatrix} x = \begin{pmatrix} 6 \\ 12 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

Choices
$$k = 3$$
 OR $k = 4$.

Bland's rule says pick k=3 (entering element).

Pick $x_B = b - tA_k$:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 12 \end{pmatrix} - t \begin{pmatrix} 2 \\ 4 \end{pmatrix} \quad \text{and} \quad t = \min \left\{ \frac{6}{2}, \frac{12}{4} \right\} = 3$$

Pick $r \in B$ such that $x_r = 0$:

Choices
$$r = 1$$

$$\begin{array}{cccc} \max & (\mathbf{0} & \mathbf{0} & 2 & 3)x \\ \text{s.t.} & & & \\ & \left(\begin{matrix} 1 & 0 & 2 & -1 \\ \mathbf{0} & 1 & 4 & 6 \end{matrix}\right)x = \left(\begin{matrix} 6 \\ 12 \end{matrix}\right) \\ & & & \\ x_1, x_2, x_3, x_4 \geq 0 \end{array}$$

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

Choices k = 3 OR k = 4.

Bland's rule says pick k=3 (entering element).

Pick $x_B = b - tA_k$:

Pick $r \in B$ such that $x_r = 0$:

,

Choices r = 1 OR

$$\begin{array}{cccc} \max & (0 & 0 & 2 & 3)x \\ \text{s.t.} & & & \\ & \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & 4 & 6 \end{pmatrix} x = \begin{pmatrix} 6 \\ 12 \end{pmatrix} \\ & x_1, x_2, x_3, x_4 \geq 0 \end{array}$$

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

Choices
$$k = 3$$
 OR $k = 4$.

Bland's rule says pick k = 3 (entering element).

Pick $x_B = b - tA_k$:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 12 \end{pmatrix} - t \begin{pmatrix} 2 \\ 4 \end{pmatrix} \quad \text{and} \quad t = \min\left\{ \frac{6}{2}, \frac{12}{4} \right\} = 3$$

Pick $r \in B$ such that $x_r = 0$:

Choices
$$r = 1$$
 OR $r = 2$.

$$\max \quad (0 \quad 0 \quad 2 \quad 3)x$$
s.t.
$$\begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & 4 & 6 \end{pmatrix} x = \begin{pmatrix} 6 \\ 12 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

Choices
$$k = 3$$
 OR $k = 4$.

Bland's rule says pick k=3 (entering element).

Pick $x_B = b - tA_k$:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 12 \end{pmatrix} - t \begin{pmatrix} 2 \\ 4 \end{pmatrix} \quad \text{and} \quad t = \min\left\{\frac{6}{2}, \frac{12}{4}\right\} = 3$$

Pick $r \in B$ such that $x_r = 0$:

Choices
$$r=1$$
 OR $r=2$.

Bland's rule says

$$\max \quad (0 \quad 0 \quad 2 \quad 3)x$$
s.t.
$$\begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & 4 & 6 \end{pmatrix} x = \begin{pmatrix} 6 \\ 12 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

Choices k = 3 OR k = 4.

Bland's rule says pick k = 3 (entering element).

Pick $x_B = b - tA_k$:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 12 \end{pmatrix} - t \begin{pmatrix} 2 \\ 4 \end{pmatrix} \quad \text{and} \quad t = \min\left\{ \frac{6}{2}, \frac{12}{4} \right\} = 3$$

Pick $r \in B$ such that $x_r = 0$:

Choices
$$r = 1$$
 OR $r = 2$.

Bland's rule says pick r=1 (leaving element).

Pick $k \notin B$ such that $c_k > 0$ and set $x_k = t$:

Choices k = 3 OR k = 4.

Bland's rule says pick k = 3 (entering element).

Pick $x_B = b - tA_k$:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 12 \end{pmatrix} - t \begin{pmatrix} 2 \\ 4 \end{pmatrix} \quad \text{and} \quad t = \min\left\{ \frac{6}{2}, \frac{12}{4} \right\} = 3$$

Pick $r \in B$ such that $x_r = 0$:

Choices r = 1 OR r = 2.

Bland's rule says pick r = 1 (leaving element).

The NEW basis is $B = \{3, 4\}$.

• We have seen a formal description of the Simplex algorithm.

- We have seen a formal description of the Simplex algorithm.
- We showed that if the algorithm terminates, then it is correct.

- We have seen a formal description of the Simplex algorithm.
- We showed that if the algorithm terminates, then it is correct.
- We defined Bland's rule and asserted, without proof, that Simplex terminates as long as we are using Bland's rule.

- We have seen a formal description of the Simplex algorithm.
- We showed that if the algorithm terminates, then it is correct.
- We defined Bland's rule and asserted, without proof, that Simplex terminates as long as we are using Bland's rule.
- To get started, we need to get a feasible basis.

- We have seen a formal description of the Simplex algorithm.
- We showed that if the algorithm terminates, then it is correct.
- We defined Bland's rule and asserted, without proof, that Simplex terminates as long as we are using Bland's rule.
- To get started, we need to get a feasible basis.

To do: Find a procedure to find a feasible basis.