
CO 250: Introduction to Optimization
Module 2: Linear Programs (Formalizing the Simplex)



Finding an Optimal Solution

max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

Consider B = , .

• B is square and non-singular B is a basis

• B = I and cB = LP is in canonical form for B

• x = (2, , , 5)⊤ is a the basic solution for B.

• x ≥ x is feasible, i.e., B is feasible
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max (0 1 3 0)
︸ ︷︷ ︸

c

x

s.t.
(
1 1 2 0
0 1 1 1

)

︸ ︷︷ ︸
A

x =

(
2
5

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {1, 4} is a basis

x2 = t ≥ 0, x3 = 0
(
x1

x4

)

︸ ︷︷ ︸
xB

=

(
2
5

)

︸︷︷︸
b

−t

(
1
1

)

︸︷︷︸
A2

Choose t ≥ 0 as large as possible.

Basic variables must remain non-negative.

x1 = 2− t ≥ 0 t ≤ 2

1

x4 = 5− t ≥ 0 t ≤ 5

1

Thus, the largest possible t = min
{

2

1
, 5

1

}
.

The new feasible solution is x = (0, 2, 0, 3)⊤. It has value 2 > 0.



max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

Remark

The new feasible solution x = (0, , , 3)⊤ is a basic solution.

Question

F r what basis B is x = (0, , , 3)⊤ a basic solution?

x2 = ∈ B
x4 = ∈ B

As |B| = , B = , .
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As |B| = , B = , .
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x1, x2, x3, x4 ≥ 0

Remark

The new feasible solution x = (0, 2, 0, 3)⊤ is a basic solution.

Question

For what basis B is x = (0, 2, 0, 3)⊤ a basic solution?

x2 = ∈ B
x4 = ∈ B

As |B| = , B = , .
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(
2
5

)

x1, x2, x3, x4 ≥ 0

Remark

The new feasible solution x = (0, 2, 0, 3)⊤ is a basic solution.

Question

For what basis B is x = (0, 2, 0, 3)⊤ a basic solution?

x2 6= 0 2 ∈ B

x4 = ∈ B

As |B| = , B = , .
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x =
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x1, x2, x3, x4 ≥ 0
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For what basis B is x = (0, 2, 0, 3)⊤ a basic solution?

x2 6= 0 2 ∈ B
x4 6= 0 4 ∈ B

As |B| = , B = , .
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s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

Remark

The new feasible solution x = (0, 2, 0, 3)⊤ is a basic solution.

Question

For what basis B is x = (0, 2, 0, 3)⊤ a basic solution?

x2 6= 0 2 ∈ B
x4 6= 0 4 ∈ B

As |B| = 2, B = {2, 4}.



max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

OLD

, is a feasible basis

Canonical form for ,

max (−1 0 1 0)x+ 2

s.t.
(

1 1 2 0
−1 0 −1 1

)

x =

(
2
3

)

x1, x2, x3, x4 ≥ 0

NEW

, is a feasible basis

Canonical form for ,

Remark

We only need to know how to from the OLD basis to a NEW basis!
• entered the basis.

• left the basis.
WHY?
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max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

OLD

{1, 4} is a feasible basis

Canonical form for {1, 4}

Pick ∈ B and set x2 = t ≥ .

enters the basis

Set

(
x1

x4

)

=

( )

− t

( )

and t = min
{

2

1
, 5

1

}
= .

x1 = and leaves the basis

The NEW basis is , .



max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

OLD

{1, 4} is a feasible basis

Canonical form for {1, 4}

Pick 2 /∈ B and set x2 = t ≥ 0.

enters the basis

Set

(
x1

x4

)

=

( )

− t

( )

and t = min
{

2

1
, 5

1

}
= .

x1 = and leaves the basis

The NEW basis is , .



max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

OLD

{1, 4} is a feasible basis

Canonical form for {1, 4}

Pick 2 /∈ B and set x2 = t ≥ 0.

2 enters the basis

Set

(
x1

x4

)

=

( )

− t

( )

and t = min
{

2

1
, 5

1

}
= .

x1 = and leaves the basis

The NEW basis is , .



max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

OLD

{1, 4} is a feasible basis

Canonical form for {1, 4}

Pick 2 /∈ B and set x2 = t ≥ 0.

2 enters the basis

Set

(
x1

x4

)

=

(
2
5

)

− t

(
1
1

)

and

t = min
{

2

1
, 5

1

}
= .

x1 = and leaves the basis

The NEW basis is , .



max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

OLD

{1, 4} is a feasible basis

Canonical form for {1, 4}

Pick 2 /∈ B and set x2 = t ≥ 0.

2 enters the basis

Set

(
x1

x4

)

=

(
2
5

)

− t

(
1
1

)

and t = min
{

2

1
, 5

1

}
= 2.

x1 = and leaves the basis

The NEW basis is , .



max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

OLD

{1, 4} is a feasible basis

Canonical form for {1, 4}

Pick 2 /∈ B and set x2 = t ≥ 0.

2 enters the basis

Set

(
x1

x4

)

=

(
2
5

)

− t

(
1
1

)

and t = min
{

2

1
, 5

1

}
= 2.

x1 = 0 and 1 leaves the basis

The NEW basis is , .



max (0 1 3 0)x

s.t.
(
1 1 2 0
0 1 1 1

)

x =

(
2
5

)

x1, x2, x3, x4 ≥ 0

OLD

{1, 4} is a feasible basis

Canonical form for {1, 4}

Pick 2 /∈ B and set x2 = t ≥ 0.

2 enters the basis

Set

(
x1

x4

)

=

(
2
5

)

− t

(
1
1

)

and t = min
{

2

1
, 5

1

}
= 2.

x1 = 0 and 1 leaves the basis

The NEW basis is {2, 4}.



Example – Continued

max (−1 0 1 0)

c

x+ 2

s.t.
(

1 1 2 0
−1 0 −1 1

)

A

x =

(
2
3

)

b

x1, x2, x3, x4 ≥ 0

B = , is a feasible basis

Canonical form for B

Pick k ∈ B such that ck > and set xk = t:

x3 = t enters the basis

Pick xB = b− tAk:
(
x2

x4

)

=

( )

− t

(

−

)

t = min
{

2

2
,−
}
= thus x2 = leaves the basis

The NEW basis is B = , .
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3

)
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2
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}
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)
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)
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Example – Continued

max (−1 0 1 0)
︸ ︷︷ ︸

c

x+ 2

s.t.
(

1 1 2 0
−1 0 −1 1

)
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A

x =

(
2
3
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︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {2, 4} is a feasible basis

Canonical form for B

Pick k /∈ B such that ck > 0 and set xk = t:
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(
x2

x4

)

=

(
2
3

)

− t

(
2
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2

2
,−
}
= 2 thus x2 = 0 2 leaves the basis
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max (−1.5 − 0.5 0 0)
︸ ︷︷ ︸

c

x+ 3

s.t.
(

0.5 0.5 1 0
−0.5 0.5 0 1

)

︸ ︷︷ ︸
A

x =

(
1
4

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = , is a feasible basis

Canonical form for B

(0, , , 4)⊤ is a basic
solution

Pick k ∈ B such that ck > and set xk = t: ???

Claim

(0, , , 4)⊤ has value . It is optimal because is an upper bound.

Proof

Let x be a feasible solution. Then

(− . , . , , 0)

≤0

x

≥0

+3 ≤ .
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c
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s.t.
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)

︸ ︷︷ ︸
A

x =

(
1
4

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {3, 4} is a feasible basis

Canonical form for B

(0, 0, 1, 4)⊤ is a basic
solution

Pick k ∈ B such that ck > and set xk = t: ???

Claim

(0, , , 4)⊤ has value . It is optimal because is an upper bound.

Proof

Let x be a feasible solution. Then

(− . , . , , 0)

≤0

x

≥0

+3 ≤ .
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A
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(
1
4

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {3, 4} is a feasible basis

Canonical form for B

(0, 0, 1, 4)⊤ is a basic
solution

Pick k /∈ B such that ck > 0 and set xk = t: ???

Claim

(0, , , 4)⊤ has value . It is optimal because is an upper bound.

Proof

Let x be a feasible solution. Then

(− . , . , , 0)

≤0

x

≥0

+3 ≤ .
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A
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(
1
4

)

︸︷︷︸
b

x1, x2, x3, x4 ≥ 0

B = {3, 4} is a feasible basis

Canonical form for B

(0, 0, 1, 4)⊤ is a basic
solution

Pick k /∈ B such that ck > 0 and set xk = t: ???

Claim
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−
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,−,−

}
= thus x1 = leaves the basis
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−
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Claim
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

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





r

• x(t) is feasible for all t ≥ .

• z when t .
(x, r: certificate of unboundedness.)
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Input: a feasible basis B.

Output: an optimal solution OR it detects that the LP is unbounded.

Step 1. Rewrite in canonical form for the basis B.

Step 2. Find a better basis B r get required outcome.
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Trying to Find a Better Basis

max z = c⊤NxN + z̄

s.t.

xB +ANxN = b

x ≥ 0

B is a feasible basis, N = j ∈ B

Canonical form for B

x is a basic solution

If cN ≤ , then STOP. The basic solution x is optimal.

Pick k ∈ B such that ck > and set xk = t.

Pick xB = b− tAk.

If k ≤ , then STOP. The LP is unbounded.

Choose t = min
{

bi
Aik

: for all i such that ik >
}

.

Let xr be a basic variable forced to .

The new basis is obtained by having k enter and r leave.
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Proposition

Simplex tells the truth:

• If it claims the LP is unbounded, it is unbounded.

• If it claims the solution is optimal, it is optimal.

Question

Is the Simplex a correct algorithm?

NOT AS STATED! IT MAY NOT TERMINATE!

Potential problem: Start with a feasible basis B1,

B1 B2 B3 . . . Bk−1 Bk = B1

Cycling

Theorem

If we use Bland’s Rule, then the Simplex algorithm always terminates.
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Bland’s rule

Theorem

If we use Bland’s Rule, then the Simplex algorithm always terminates.

Definition

Bland’s rule is as follows:

• If we have a choice for the element entering the basis,
pick the smallest one.

• If we have a choice for the element leaving the basis,
pick the smallest one.

Let us see an example...
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Canonical form for {1, 2}

Pick k ∈ B such that ck > and set xk = t:
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Bland’s rule says pick k = (entering element).
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=

( )
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6
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, 12
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Bland’s rule says pick r = (leaving element).
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Recap

• We have seen a formal description of the Simplex algorithm.

• We showed that if the algorithm terminates, then it is correct.

• We defined Bland’s rule and asserted, without pr of, that Simplex
terminates as long as we are usin Bland’s rule.

• T get started, we need to get a feasible basis.

T do: Find a procedure to find a feasible basis.
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