
CO 250: Introduction to Optimization
Module 3: Duality through examples



Recap: Shortest Paths

In an instance of the shortest path
problem, we are given

• a graph G = (V,E), a
non-negative length ce for each
edge e ∈ E, and

• a pair of vertices s and t in V .
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Recap: Shortest Paths

In an instance of the shortest path
problem, we are given

• a graph G = (V,E), a
non-negative length ce for each
edge e ∈ E, and

• a pair of vertices s and t in V .

Our goal is to compute an s, t-path
P of smallest total length.

Recall: an s, t-path is a sequence

P := u1u2, u2u3, . . . , uk−1uk

where

• uiui+1 ∈ E for all i, and

• u1 = s, uk = t, and ui 6= uj for
all i 6= j.
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Recap: Shortest Paths

In an instance of the shortest path
problem, we are given

• a graph G = (V,E), a
non-negative length ce for each
edge e ∈ E, and

• a pair of vertices s and t in V .

Our goal is to compute an s, t-path
P of smallest total length.

Recall: an s, t-path is a sequence

P := u1u2, u2u3, . . . , uk−1uk

where

• uiui+1 ∈ E for all i, and

• u1 = s, uk = t, and ui 6= uj for
all i 6= j.
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Its length is given by

c(P ) = cu1u2
+ cu2u3

+ . . .+ cuk−1uk



In the example, we see by inspection
that

P = sa, ac, cb, bt

is a shortest path and that its length
is 9.

Question

1. Given a shortest-path instance
and a candidate shortest
s, t-path P , is there a short
proof of its optimality?

2. How can we find a shortest
s, t-path?
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In the example, we see by inspection
that

P = sa, ac, cb, bt

is a shortest path and that its length
is 9.

Question

1. Given a shortest-path instance
and a candidate shortest
s, t-path P , is there a short
proof of its optimality?

2. How can we find a shortest
s, t-path?
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We will answer both questions in
this module. This lecture focus on
question 1.



Shortest Paths: Finding an Intuitive Lower Bound



Cardinality Case

To make our lives easier, we will first
consider the cardinality special case
of the shortest path problem.
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Cardinality Case

To make our lives easier, we will first
consider the cardinality special case
of the shortest path problem.

We consider shortest path instances
where...

• each edge e ∈ E has length 1,
and

• we are therefore looking for an
s, t-path with the smallest
number of edges.
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Cardinality Case

To make our lives easier, we will first
consider the cardinality special case
of the shortest path problem.

We consider shortest path instances
where...

• each edge e ∈ E has length 1,
and

• we are therefore looking for an
s, t-path with the smallest
number of edges.
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Example: In the diagram above, one
easily sees that

P = sj, ji, ig, gt

is a shortest s, t-path.

How can we prove this fact?
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To make our lives easier, we will first
consider the cardinality special case
of the shortest path problem.

We consider shortest path instances
where...

• each edge e ∈ E has length 1,
and

• we are therefore looking for an
s, t-path with the smallest
number of edges.
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Example: In the diagram above, one
easily sees that

P = sj, ji, ig, gt

is a shortest s, t-path.

How can we prove this fact?
−→The answer lies in s,t-cuts!



s, t-cuts

Definition

For U ⊆ V , we define

δ(U) = {uv ∈ E : u ∈ U, v 6∈ U}

and call it an s, t-cut if s ∈ U , and
t 6∈ U .

Recall:

• If P is an s, t-path and δ(U) an
s, t-cut, then P contains an
edge of δ(U).

• If S ⊆ E contains an edge from
every s, t-cut, then S contains
an s, t-path.

Example

Let U = {s, a, j}. It follows that

δ(U) = {ab, ah, ji}

is an s, t-cut.
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From Cuts to Lower-Bounds

The example on the right shows 4
s, t-cuts, δ(U1), δ(U2), δ(U3), δ(U4).
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δ(U1) = {sa, sj}
δ(U2) = {ab, ah, ji}
δ(U3) = {bc, hc, ig}
δ(U4) = {dt, gt}



From Cuts to Lower-Bounds

The example on the right shows 4
s, t-cuts, δ(U1), δ(U2), δ(U3), δ(U4).

Two important notes:

(1) δ(Ui) ∩ δ(Uj) = ∅ for i 6= j and

(2) an s, t-path must contain an
edge from δ(Ui) for all i.
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From Cuts to Lower-Bounds

The example on the right shows 4
s, t-cuts, δ(U1), δ(U2), δ(U3), δ(U4).

Two important notes:

(1) δ(Ui) ∩ δ(Uj) = ∅ for i 6= j and

(2) an s, t-path must contain an
edge from δ(Ui) for all i.

−→ Every s, t-path must have at
least 4 edges.
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From Cuts to Lower-Bounds

The example on the right shows 4
s, t-cuts, δ(U1), δ(U2), δ(U3), δ(U4).

Two important notes:

(1) δ(Ui) ∩ δ(Uj) = ∅ for i 6= j and

(2) an s, t-path must contain an
edge from δ(Ui) for all i.

−→ Every s, t-path must have at
least 4 edges.
−→ sj, ji, ig, gt is a shortest
s, t-path!
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From Cuts to Lower-Bounds

Question

Notice: hi is not in any of the
δ(Ui). Does this mean that hi is not
on any shortest s, t-path?
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From Cuts to Lower-Bounds

Question

Notice: hi is not in any of the
δ(Ui). Does this mean that hi is not
on any shortest s, t-path?

Yes!

An s, t-path that contains hi must
also contain an edge from each of
the s, t-cuts δ(Ui).
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From Cuts to Lower-Bounds

Question

Notice: hi is not in any of the
δ(Ui). Does this mean that hi is not
on any shortest s, t-path?

Yes!

An s, t-path that contains hi must
also contain an edge from each of
the s, t-cuts δ(Ui). −→ It must
contain at least 5 edges!
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Back to the General Case

In general instances, we assign a
non-negative width yU to every
s, t-cut δ(U).

Definition

A width assignment
{yU : δ(U) s, t-cut} is feasible if,
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Using math: y is feasible if for all e∑
(yU : δ(U) s, t-cut and e ∈ E) ≤ ce
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Back to the General Case

In general instances, we assign a
non-negative width yU to every
s, t-cut δ(U).

Definition

A width assignment
{yU : δ(U) s, t-cut} is feasible if,
for every edge e ∈ E,
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In general instances, we assign a
non-negative width yU to every
s, t-cut δ(U).

Definition

A width assignment
{yU : δ(U) s, t-cut} is feasible if,
for every edge e ∈ E, the total
width of all cuts containing e is no
more than ce.
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Back to the General Case

Consider the example on the right
with 4 s, t-cuts.
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Back to the General Case

Consider the example on the right
with 4 s, t-cuts.

The width assignment

yU1
= 3

yU2
= 1

yU3
= 2

yU4
= 1

is easily checked to be feasible.
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Back to the General Case

Proposition

If y is a feasible width assignment,
then any s, t-path must have length
at least∑

(yU : U s, t-cut).
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Back to the General Case

Proposition

If y is a feasible width assignment,
then any s, t-path must have length
at least∑

(yU : U s, t-cut).

Example:

yU1
+ yU2

+ yU3
+ yU4

= 7

s

a b

c d

t
3

1

4
3

2

1

4

2

U1 = {s}
U2 = {s, a}
U3 = {s, a, c}
U4 = {s, a, b, c, d}



Back to the General Case

Proposition

If y is a feasible width assignment,
then any s, t-path must have length
at least∑

(yU : U s, t-cut).

Example:

yU1
+ yU2

+ yU3
+ yU4

= 7

−→ Path sa, ac, cb, bt is a shortest
path!
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Back to the General Case

Proposition

If y is a feasible width
assignment, then any
s, t-path must have length at
least∑

(yU : U s, t-cut).

Example:

yU1
+ yU2

+ yU3
+ yU4

= 7

−→ Path sa, ac, cb, bt is a
shortest path!

Proof: Consider an s, t-path P . It follows
that

c(P ) =
∑

(ce : e ∈ P )

≥
∑(∑

(yU : e ∈ δ(U)) : e ∈ P
)

≥
∑

(yU : δ(U) s, t-cut)

where the first inequality follows from the
feasibility of y.
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Note: if δ(U) is an s, t-cut, then P contains
at least one edge from δ(U).
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Note: if δ(U) is an s, t-cut, then P contains
at least one edge from δ(U).
−→ Variable yU appears at least once on
the right-hand side above, and hence we
obtain the 2nd inequality
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One More Example

Question: Can you spot a shortest
s, t-path?
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One More Example

Question: Can you spot a shortest
s, t-path?
−→ P = sa, ac, cd, dt of length 7.
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One More Example

Question: Can you spot a shortest
s, t-path?
−→ P = sa, ac, cd, dt of length 7.

Question: Can you prove your
guess?
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One More Example

Question: Can you spot a shortest
s, t-path?
−→ P = sa, ac, cd, dt of length 7.

Question: Can you prove your
guess?
−→ Yes! There is a feasible dual
width assignment of value 7:

y{s} = 2

y{s,a} = 1

y{s,a,c} = 1

y{s,a,c,e} = 1

y{s,a,c,d,e} = 1

y{s,a,b,c,d,e} = 1
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One More Example

Question

(A) In an instance with a shortest
path, can we always find feasible
widths to prove optimality?
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One More Example

Question

(A) In an instance with a shortest
path, can we always find feasible
widths to prove optimality?

(B) If so, how do we find a path and
these widths?
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One More Example

Question

(A) In an instance with a shortest
path, can we always find feasible
widths to prove optimality?

(B) If so, how do we find a path and
these widths?

We will answer (A) affirmatively,
and provide an efficient algorithm
for (B) shortly.
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Recap

• A shortest path instance is given by a graph G = (V,E) and
non-negative lengths ce for all e ∈ E.

• A width assignment yU ≥ 0 for all s, t-cuts δ(U) is feasible if∑
(yU : e ∈ δ(U)) ≤ ce

for all e ∈ E.

• If y is a feasible width assignment and P an s, t-path, then

c(P ) ≥
∑

yU
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