Module 4: Duality Theory (Geometry of Duality)

## **Recap:** Strong Duality

$$\max c^T x \qquad (\mathsf{P}) \qquad \min b^T y \qquad (\mathsf{D})$$
  
s.t.  $Ax \le b \qquad \qquad \text{s.t. } A^T y = c$   
 $y \ge 0$ 

#### Strong Duality Theorem

For the above primal-dual pair of LPs, (P) and (D), if (P) has an optimal solution, then (D) has one and their objective values equal.

- In Module 2, we saw that
  - The feasible region of an LP is a polyhedron.
  - Basic solutions correspond to extreme points of this polyhedron.



- In Module 2, we saw that
  - The feasible region of an LP is a polyhedron.
  - Basic solutions correspond to extreme points of this polyhedron.



### Question

When is an extreme point optimal?

- In Module 2, we saw that
  - The feasible region of an LP is a polyhedron.
  - Basic solutions correspond to extreme points of this polyhedron.



### Question

When is an extreme point optimal?

Module 2 and strong duality told us that Simplex computes

- a basic solution (if it exists), and
- a certificate of optimality.

In Module 2, we saw that

- The feasible region of an LP is a polyhedron.
- Basic solutions correspond to extreme points of this polyhedron.



### Question

When is an extreme point optimal?

Module 2 and strong duality told us that Simplex computes

- a basic solution (if it exists), and
- a certificate of optimality.

Today we will investigate these certificates using geometry.

We can rewrite (P) using slack variables s:  

$$\max c^{T}x \qquad (P)$$
s.t.  $Ax \le b$ 
s.t.  $Ax + s = b$ 
 $s \ge 0$ 

$$\min b^{T}y \qquad (D)$$
s.t.  $A^{T}y = c$ 
 $y \ge 0$ 

We can rewrite (P) using slack variables s:  

$$\max c^{T}x \qquad (P)$$
s.t.  $Ax \le b$ 
s.t.  $Ax + s = b$ 
 $s \ge 0$ 
Note:  
Note:  
 $y \ge 0$ 

• (x,s) feasible for (P')  $\longrightarrow x$  feasible for (P)

We can rewrite (P) using slack variables s:

$$\max c^{T} x \qquad (\mathsf{P}')$$
  
s.t.  $Ax + s = b$   
 $s \ge 0$ 

$$\max c^T x \qquad (\mathsf{P})$$
  
s.t.  $Ax \le b$ 

$$\min b^T y \qquad (D)$$
s.t.  $A^T y = c$ 
 $y \ge 0$ 

Note:

- (x, s) feasible for (P') → x feasible for (P)
- x feasible for (P)  $\longrightarrow (x, b Ax)$  feasible for (P')

Suppose  $\bar{x}$  is feasible for (P), and  $\bar{y}$  is feasible for (D)

$$\max c^T x \qquad (\mathsf{P})$$
  
s.t.  $Ax \le b$ 

$$\max c^T x \qquad (\mathsf{P}')$$
  
s.t.  $Ax + s = b$   
 $s \ge 0$ 

$$\min b^T y \qquad (D)$$
s.t.  $A^T y = c$ 
 $y \ge 0$ 

Suppose  $\bar{x}$  is feasible for (P), and  $\bar{y}$  is feasible for (D)

$$\longrightarrow$$
  $(\bar{x}, b - A\bar{x})$  feasible for (P')

$$\max c^T x \qquad (\mathsf{P}')$$
  
s.t.  $Ax + s = b$   
 $s \ge 0$ 

$$\min b^T y \qquad (D)$$
s.t.  $A^T y = c$ 
 $y \ge 0$ 

Suppose  $\bar{x}$  is feasible for (P), and  $\bar{y}$  is feasible for (D)

$$\longrightarrow (\bar{x}, \underbrace{b-A\bar{x}}_{\bar{s}})$$
 feasible for (P')

$$\max c^T x \qquad (\mathsf{P}')$$
  
s.t.  $Ax + s = b$   
 $s \ge 0$ 

$$\min b^T y \qquad (D)$$
s.t.  $A^T y = c$ 
 $y \ge 0$ 

Suppose  $\bar{x}$  is feasible for (P), and  $\bar{y}$  is feasible for (D)

$$\longrightarrow (\bar{x}, \underbrace{b-A\bar{x}}_{\bar{s}})$$
 feasible for (P')

Recall the Weak Duality proof:

$$\bar{y}^T b = \bar{y}^T (A\bar{x} + \bar{s})$$
$$= (\bar{y}^T A)\bar{x} + \bar{y}^T \bar{s}$$

$$\max c^T x \qquad (\mathsf{P})$$
  
s.t.  $Ax \le b$ 

$$\max c^T x \qquad (\mathsf{P}')$$
  
s.t.  $Ax + s = b$   
 $s \ge 0$ 

$$\min b^T y \qquad (D)$$
s.t.  $A^T y = c$ 
 $y \ge 0$ 

Suppose  $\bar{x}$  is feasible for (P), and  $\bar{y}$  is feasible for (D)

$$\longrightarrow (\bar{x}, \underbrace{b-A\bar{x}}_{\bar{s}})$$
 feasible for (P')

Recall the Weak Duality proof:

$$\bar{y}^T b = \bar{y}^T (A\bar{x} + \bar{s})$$
$$= (\bar{y}^T A)\bar{x} + \bar{y}^T \bar{s}$$
$$= c^T \bar{x} + \bar{y}^T \bar{s}$$

$$\max c^T x \qquad (\mathsf{P})$$
  
s.t.  $Ax \le b$ 

$$\max c^T x \qquad (\mathsf{P}')$$
  
s.t.  $Ax + s = b$   
 $s \ge 0$ 

$$\min b^T y \qquad (D)$$
s.t.  $A^T y = c$ 
 $y \ge 0$ 

Suppose  $\bar{x}$  is feasible for (P), and  $\bar{y}$  is feasible for (D)

$$\longrightarrow (\bar{x}, \underbrace{b-A\bar{x}}_{\bar{s}})$$
 feasible for (P')

Recall the Weak Duality proof:

$$\begin{split} \bar{y}^T b &= \bar{y}^T (A \bar{x} + \bar{s}) \\ &= (\bar{y}^T A) \bar{x} + \bar{y}^T \bar{s} \\ &= c^T \bar{x} + \bar{y}^T \bar{s} \end{split}$$

Strong Duality tells us that:

 $ar{x}, \ ar{y}$  both optimal  $\iff c^T ar{x} = ar{y}^T b$ 

$$\max c^T x \qquad (\mathsf{P}')$$
  
s.t.  $Ax + s = b$   
 $s \ge 0$ 

$$\min b^T y \qquad (D) \\ \text{s.t. } A^T y = c \\ y \ge 0$$

Suppose  $\bar{x}$  is feasible for (P), and  $\bar{y}$  is feasible for (D)

$$\longrightarrow (\bar{x}, \underbrace{b-A\bar{x}}_{\bar{s}})$$
 feasible for (P')

Recall the Weak Duality proof:

$$\begin{split} \bar{y}^T b &= \bar{y}^T (A \bar{x} + \bar{s}) \\ &= (\bar{y}^T A) \bar{x} + \bar{y}^T \bar{s} \\ &= c^T \bar{x} + \bar{y}^T \bar{s} \end{split}$$

Strong Duality tells us that:

$$ar{x}, \ ar{y}$$
 both optimal  $\iff c^T ar{x} = ar{y}^T b$   
 $\iff ar{y}^T ar{s} = 0$ 

$$\max c^T x \qquad (\mathsf{P}')$$
  
s.t.  $Ax + s = b$   
 $s \ge 0$ 

$$\min b^T y \qquad (\mathsf{D}) \\ \text{s.t. } A^T y = c \\ y \ge 0$$

Recall the Weak Duality proof:

$$\begin{split} \bar{y}^T b &= \bar{y}^T (A \bar{x} + \bar{s}) \\ &= (\bar{y}^T A) \bar{x} + \bar{y}^T \bar{s} \\ &= c^T \bar{x} + \bar{y}^T \bar{s} \end{split}$$

$$0 = \bar{y}^T \bar{s} = \sum_{i=1}^m \bar{y}_i \bar{s}_i \qquad (\star)$$

$$\max c^T x \qquad (\mathsf{P}')$$
  
s.t.  $Ax + s = b$   
 $s \ge 0$ 

$$\min b^T y \qquad (D)$$
s.t.  $A^T y = c$ 
 $y \ge 0$ 

Recall the Weak Duality proof:

$$\bar{y}^T b = \bar{y}^T (A\bar{x} + \bar{s})$$
$$= (\bar{y}^T A)\bar{x} + \bar{y}^T \bar{s}$$
$$= c^T \bar{x} + \bar{y}^T \bar{s}$$

$$\max c^T x \qquad (\mathsf{P})$$
  
s.t.  $Ax \le b$ 

$$\max c^T x \qquad (\mathsf{P}')$$
  
s.t.  $Ax + s = b$   
 $s \ge 0$ 

$$0 = \bar{y}^T \bar{s} = \sum_{i=1}^m \bar{y}_i \bar{s}_i \qquad (\star)$$

By feasibility,  $\bar{y} \geq \mathbb{0}$  and  $\bar{s} \geq \mathbb{0}$ 

$$\min b^T y \qquad (D)$$
s.t.  $A^T y = c$ 
 $y \ge 0$ 

Recall the Weak Duality proof:

$$\bar{y}^T b = \bar{y}^T (A\bar{x} + \bar{s})$$

$$= (\bar{y}^T A)\bar{x} + \bar{y}^T \bar{s}$$

$$= c^T \bar{x} + \bar{y}^T \bar{s}$$

$$\max c^T x \qquad (\mathsf{P})$$
  
s.t.  $Ax \le b$ 

$$\max c^T x \qquad (\mathsf{P}')$$
  
s.t.  $Ax + s = b$   
 $s \ge 0$ 

$$0 = \bar{y}^T \bar{s} = \sum_{i=1}^m \bar{y}_i \bar{s}_i \qquad (\star)$$

By feasibility,  $\bar{y} \ge 0$  and  $\bar{s} \ge 0$  and hence (\*) holds if and only if  $\bar{y}_i = 0$  or  $\bar{s}_i = 0$ , for every  $1 \le i \le m$ .

 $\min b^T y \qquad (D)$ s.t.  $A^T y = c$  $y \ge 0$ 

Given:  $\bar{x}$  and  $\bar{y}$  feasible solutions for (P) and (D)

$$\max c^T x \qquad (\mathsf{P}')$$
  
s.t.  $Ax + s = b$   
 $s \ge 0$ 

$$\min b^T y \qquad (D)$$
s.t.  $A^T y = c$ 
 $y \ge 0$ 

Given:  $\bar{x}$  and  $\bar{y}$  feasible solutions for (P) and (D)

**Define**:  $\bar{s} = b - A\bar{x}$ 

$$\max c^T x \qquad (\mathsf{P}')$$
  
s.t.  $Ax + s = b$   
 $s \ge 0$ 

$$\min b^T y \qquad (\mathsf{D}) \\ \text{s.t.} \ A^T y = c \\ y \ge 0$$

Given:  $\bar{x}$  and  $\bar{y}$  feasible solutions for (P) $\max c^T x$ (P)and (D)s.t.  $Ax \le b$ 

**Define**:  $\bar{s} = b - A\bar{x}$ 

Then:

 $\bar{x}$  and  $\bar{y}$  optimal  $\iff \bar{y}_i = 0$  or  $\bar{s}_i = 0$ 

for all  $1 \leq i \leq m$ .

$$\max c^T x \qquad (\mathsf{P}')$$
  
s.t.  $Ax + s = b$   
 $s \ge 0$ 

$$\min b^T y \qquad (D)$$
s.t.  $A^T y = c$ 
 $y \ge 0$ 

Given:  $\bar{x}$  and  $\bar{y}$  feasible solutions for (P) and (D)

**Define**:  $\bar{s} = b - A\bar{x}$ 

#### Then:

$$\bar{x} \text{ and } \bar{y} \text{ optimal } \iff \underbrace{\bar{y}_i = 0 \text{ or } \bar{s}_i = 0}_{(\star)}$$

for all  $1 \leq i \leq m$ .

$$\max c^T x \qquad (\mathsf{P}')$$
  
s.t.  $Ax + s = b$   
 $s \ge 0$ 

$$\min b^T y \qquad (\mathsf{D}) \\ \text{s.t. } A^T y = c \\ y \ge 0$$

Given:  $\bar{x}$  and  $\bar{y}$  feasible solutions for (P) and (D)

**Define**:  $\bar{s} = b - A\bar{x}$ 

#### Then:

$$\bar{x} \text{ and } \bar{y} \text{ optimal } \iff \underbrace{\bar{y}_i = 0 \text{ or } \bar{s}_i = 0}_{(\star)}$$

for all  $1 \leq i \leq m$ . We can rephrase (\*) equivalently as

 $\bar{y}_i = 0$  or *i*th constraint of (P) holds with equality .

$$\max c^T x \qquad (\mathsf{P}')$$
  
s.t.  $Ax + s = b$   
 $s \ge 0$ 

$$\min b^T y \qquad (\mathsf{D}) \\ \text{s.t.} \ A^T y = c \\ y \ge 0$$

Given:  $\bar{x}$  and  $\bar{y}$  feasible solutions for (P) and (D)

**Define**:  $\bar{s} = b - A\bar{x}$ 

#### Then:

$$\bar{x} \text{ and } \bar{y} \text{ optimal} \iff \underbrace{\bar{y}_i = 0 \text{ or } \bar{s}_i = 0}_{(\star)}$$

for all  $1 \leq i \leq m$ . We can rephrase (\*) equivalently as

 $\bar{y}_i = 0$  or *i*th constraint of (P) holds with equality (is tight).

$$\max c^T x \qquad (\mathsf{P}')$$
  
s.t.  $Ax + s = b$   
 $s \ge 0$ 

$$\min b^T y \qquad (\mathsf{D}) \\ \text{s.t.} \ A^T y = c \\ y \ge 0$$

### Complementary Slackness – Special Case

Let  $\bar{x}$  and  $\bar{y}$  be feasible for (P) and (D).

Then  $\bar{x}$  and  $\bar{y}$  are optimal if and only if (i)  $\bar{y}_i = 0$ , or (ii) the *i*th constraint of (P) is tight for  $\bar{x}$ ,

for every row index i.

$$\max c^T x \qquad (\mathsf{P}')$$
  
s.t.  $Ax + s = b$   
 $s \ge 0$ 

$$\min b^T y \qquad (D)$$
s.t.  $A^T y = c$ 
 $y \ge 0$ 

Consider the following LP:

$$\max (5,3,5)x \qquad (\mathsf{P})$$
  
s.t.  $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$ 

Consider the following LP:

$$\max (5,3,5)x \qquad (\mathsf{P})$$
  
s.t.  $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$ 

Its dual is:

min 
$$(2, 4, -1)y$$
 (D)  
s.t.  $\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$   
 $y \ge 0$ 

Consider the following LP:

$$\max (5,3,5)x \qquad (\mathsf{P})$$
  
s.t.  $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$ 

Its dual is:

min 
$$(2, 4, -1)y$$
 (D)  
s.t.  $\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$   
 $y \ge 0$ 

### Claim

$$\bar{x} = (1, -1, 1)^T$$
 and  $\bar{y} = (0, 2, 1)^T$  are optimal!

Consider the following LP:

$$\max (5,3,5)x \qquad (\mathsf{P})$$
  
s.t.  $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$ 

Its dual is:

min 
$$(2, 4, -1)y$$
 (D)  
s.t.  $\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$   
 $y \ge 0$ 

### Claim

$$\bar{x}=(1,-1,1)^T$$
 and  $\bar{y}=(0,2,1)^T$  are optimal!

### **Complementary Slackness**

Feasible solutions  $\bar{x}$  and  $\bar{y}$  for (P) and (D) are optimal if and only if

 $\bar{y}_i = 0$  or the *i*th primal constraint is tight for  $\bar{x}$ , for all row indices *i*.

Consider the following LP:

$$\max (5,3,5)x \qquad (\mathsf{P})$$
  
s.t.  $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$ 

Its dual is:

min 
$$(2, 4, -1)y$$
 (D)  
s.t.  $\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$   
 $y \ge 0$ 

### **Complementary Slackness**

Feasible solutions  $\bar{x}$  and  $\bar{y}$  for (P) and (D) are optimal if and only if

 $\bar{y}_i = 0$  or the *i*th primal constraint is tight for  $\bar{x}$ , for all row indices *i*.

It is easy to check if  $\bar{x}$  and  $\bar{y}$  are feasible.

### Claim

$$\bar{x}=(1,-1,1)^T$$
 and  $\bar{y}=(0,2,1)^T$  are optimal!

Consider the following LP:

$$\max (5,3,5)x \qquad (\mathsf{P})$$
  
s.t.  $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$ 

Its dual is:

min 
$$(2, 4, -1)y$$
 (D)  
s.t.  $\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$   
 $y \ge 0$ 

#### Claim

$$\bar{x}=(1,-1,1)^T$$
 and  $\bar{y}=(0,2,1)^T$  are optimal!

### **Complementary Slackness**

Feasible solutions  $\bar{x}$  and  $\bar{y}$  for (P) and (D) are optimal if and only if

 $\bar{y}_i = 0$  or the *i*th primal constraint is tight for  $\bar{x}$ , for all row indices *i*.

It is easy to check if  $\bar{x}$  and  $\bar{y}$  are feasible.

(i) 
$$\bar{y}_1 = 0$$
 or  $(1, 2, -1)\bar{x} = 2$ 

Consider the following LP:

$$\max (5,3,5)x \qquad (\mathsf{P})$$
  
s.t.  $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$ 

Its dual is:

min 
$$(2, 4, -1)y$$
 (D)  
s.t.  $\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$   
 $y \ge 0$ 

#### Claim

$$\bar{x}=(1,-1,1)^T$$
 and  $\bar{y}=(0,2,1)^T$  are optimal!

### **Complementary Slackness**

Feasible solutions  $\bar{x}$  and  $\bar{y}$  for (P) and (D) are optimal if and only if

 $\bar{y}_i = 0$  or the *i*th primal constraint is tight for  $\bar{x}$ , for all row indices *i*.

It is easy to check if  $\bar{x}$  and  $\bar{y}$  are feasible.

(i)  $\bar{y}_1 = 0$  or  $(1, 2, -1)\bar{x} = 2$ (ii)  $\bar{y}_2 = 0$  or  $(3, 1, 2)\bar{x} = 4$ 

Consider the following LP:

$$\max (5,3,5)x \qquad (\mathsf{P})$$
  
s.t.  $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$ 

Its dual is:

min 
$$(2, 4, -1)y$$
 (D)  
s.t.  $\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$   
 $y \ge 0$ 

#### Claim

$$\bar{x}=(1,-1,1)^T$$
 and  $\bar{y}=(0,2,1)^T$  are optimal!

### **Complementary Slackness**

Feasible solutions  $\bar{x}$  and  $\bar{y}$  for (P) and (D) are optimal if and only if

 $\bar{y}_i = 0$  or the *i*th primal constraint is tight for  $\bar{x}$ , for all row indices *i*.

It is easy to check if  $\bar{x}$  and  $\bar{y}$  are feasible.

(i)  $\bar{y}_1 = 0$  or  $(1, 2, -1)\bar{x} = 2$ (ii)  $\bar{y}_2 = 0$  or  $(3, 1, 2)\bar{x} = 4$ (iii)  $\bar{y}_3 = 0$  or  $(-1, 1, 1)\bar{x} = -1$ 

Consider the following LP:

$$\max (5,3,5)x \qquad (\mathsf{P})$$
  
s.t.  $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$ 

Its dual is:

min 
$$(2, 4, -1)y$$
 (D)  
s.t.  $\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$   
 $y \ge 0$ 

#### Claim

$$\bar{x} = (1, -1, 1)^T$$
 and  $\bar{y} = (0, 2, 1)^T$  are optimal!

### **Complementary Slackness**

Feasible solutions  $\bar{x}$  and  $\bar{y}$  for (P) and (D) are optimal if and only if

 $\bar{y}_i = 0$  or the *i*th primal constraint is tight for  $\bar{x}$ , for all row indices *i*.

It is easy to check if  $\bar{x}$  and  $\bar{y}$  are feasible.

(i)  $\bar{y}_1 = 0$  or  $(1, 2, -1)\bar{x} = 2$ (ii)  $\bar{y}_2 = 0$  or  $(3, 1, 2)\bar{x} = 4$ (iii)  $\bar{y}_3 = 0$  or  $(-1, 1, 1)\bar{x} = -1$ 

 $\longrightarrow \bar{x}$  and  $\bar{y}$  are optimal!

## **General Complementary Slackness**

| (P <sub>max</sub> ) |              |                   | (P <sub>min</sub> ) |            |                 |
|---------------------|--------------|-------------------|---------------------|------------|-----------------|
|                     | _            |                   | $\geq$ 0 variable   |            | _               |
| max                 | $c^{\top}x$  | = constraint      | free variable       | min        | $b^{\top}y$     |
| subject to          |              | $\geq$ constraint | $\leq 0$ variable   | subject to |                 |
|                     | Ax ? b       | $\geq 0$ variable | $\geq$ constraint   |            | $A^{\top}y$ ? c |
|                     | <i>x</i> ? 0 | free variable     | = constraint        |            | y?0             |
|                     |              | $\leq$ 0 variable | $\leq$ constraint   |            | -               |

Suppose:  $(P_{max})$  and  $(P_{min})$  are a pair of primal and dual LPs according to the above table

| (P <sub>max</sub> ) |              |                   | (P <sub>min</sub> ) |            |                 |
|---------------------|--------------|-------------------|---------------------|------------|-----------------|
|                     | _            |                   | $\geq$ 0 variable   |            | _               |
| max                 | $c^{\top}x$  | = constraint      | free variable       | min        | $b^{\top}y$     |
| subject to          |              | $\geq$ constraint | $\leq$ 0 variable   | subject to |                 |
|                     | Ax ? b       | $\geq 0$ variable | $\geq$ constraint   |            | $A^{\top}y$ ? c |
|                     | <i>x</i> ? 0 | free variable     | = constraint        |            | y?0             |
|                     |              | $\leq$ 0 variable | $\leq$ constraint   |            | -               |

Suppose: (P<sub>max</sub>) and (P<sub>min</sub>) are a pair of primal and dual LPs according to the above table, with feasible solutions  $\bar{x}$ , and  $\bar{y}$ 

| (P <sub>max</sub> ) |              |                   | (P <sub>min</sub> )                |            |                 |
|---------------------|--------------|-------------------|------------------------------------|------------|-----------------|
| max                 | $c^{\top}x$  |                   | $\geq$ 0 variable<br>free variable | min        | $b^{\top}y$     |
| subject to          | C A          |                   | $\leq 0$ variable                  | subject to |                 |
|                     | Ax?b         | $\geq 0$ variable | $\geq$ constraint                  |            | $A^{\top}y$ ? c |
|                     | <i>x</i> ? 0 | free variable     | = constraint                       |            | y ? 0           |
|                     |              | $\leq 0$ variable | $\leq$ constraint                  |            |                 |

Suppose:  $(P_{max})$  and  $(P_{min})$  are a pair of primal and dual LPs according to the above table, with feasible solutions  $\bar{x}$ , and  $\bar{y}$ 

 $\bar{x}$  and  $\bar{y}$  satisfy the complementary slackness conditions if  $\ldots$ 

for all variables  $x_j$  of ( $P_{max}$ ):

- (i)  $\bar{x}_{j} = 0$ , or
- (ii)  $j {\rm th}$  constraint of (P\_min) is satisfied with equality for  $\bar{y}$

| (P <sub>max</sub> ) |              |                   | (P <sub>min</sub> )                |            |                 |
|---------------------|--------------|-------------------|------------------------------------|------------|-----------------|
| max                 | $c^{\top}x$  |                   | $\geq$ 0 variable<br>free variable | min        | $b^{\top}y$     |
| subject to          | C A          |                   | $\leq 0$ variable                  | subject to |                 |
|                     | Ax?b         | $\geq 0$ variable | $\geq$ constraint                  |            | $A^{\top}y$ ? c |
|                     | <i>x</i> ? 0 | free variable     | = constraint                       |            | y ? 0           |
|                     |              | $\leq 0$ variable | $\leq$ constraint                  |            |                 |

Suppose:  $(P_{max})$  and  $(P_{min})$  are a pair of primal and dual LPs according to the above table, with feasible solutions  $\bar{x}$ , and  $\bar{y}$ 

 $\bar{x}$  and  $\bar{y}$  satisfy the complementary slackness conditions if  $\ldots$ 

for all variables  $x_j$  of ( $P_{max}$ ):

- (i)  $\bar{x}_j = 0$ , or
- (ii) jth constraint of (P\_min) is satisfied with equality for  $\bar{y}$

for all variables  $y_i$  of  $(\mathsf{P}_{\min})$ :

(i)  $\bar{y}_i = 0$ , or

(ii) *i*th constraint of ( $P_{max}$ ) is satisfied with equality for  $\bar{x}$ 

 $\bar{x}$  and  $\bar{y}$  satisfy the CS conditions if ...

for all variables  $x_j$  of ( $P_{max}$ ):

- (i)  $\bar{x}_{j} = 0$ , or
- (ii) *j*th constraint of ( $P_{min}$ ) is satisfied with equality for  $\bar{y}$

for all variables  $y_i$  of ( $\mathsf{P}_{\min}$ ):

- (i)  $\bar{y}_i = 0$ , or
- (ii) *i*th constraint of ( $P_{max}$ ) is satisfied with equality for  $\bar{x}$

 $\bar{x}$  and  $\bar{y}$  satisfy the CS conditions if ...

for all variables  $x_j$  of ( $P_{max}$ ):

- (i)  $\bar{x}_j = 0$ , or
- (ii) jth constraint of (P<sub>min</sub>) is satisfied with equality for  $\bar{y}$

for all variables  $y_i$  of ( $\mathsf{P}_{\min}$ ):

(i) 
$$\bar{y}_i = 0$$
, or

(ii) *i*th constraint of ( $P_{max}$ ) is satisfied with equality for  $\bar{x}$ 

Note: The two or's above are inclusive!

 $\bar{x}$  and  $\bar{y}$  satisfy the CS conditions if ...

for all variables  $x_j$  of ( $P_{max}$ ):

- (i)  $\bar{x}_j = 0$ , or
- (ii) *j*th constraint of ( $P_{min}$ ) is satisfied with equality for  $\bar{y}$

for all variables  $y_i$  of ( $\mathsf{P}_{\min}$ ):

(i) 
$$\bar{y}_i = 0$$
, or

(ii) *i*th constraint of ( $P_{max}$ ) is satisfied with equality for  $\bar{x}$ 

Note: The two or's above are inclusive!

#### **Complementary Slackness Theorem**

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let  $\bar{x}$  and  $\bar{y}$  be feasible solutions. Then these solutions are optimal if and only if the CS conditions hold.

| (P <sub>max</sub> ) |                          |                                                                  | (P <sub>min</sub> )                                                                                               |                   |                                 |
|---------------------|--------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------|
| max<br>subject to   | $c^{\top}x$ $Ax?b$ $x?0$ | $= constraint$ $\geq constraint$ $\geq 0 variable$ free variable | $\geq 0$ variable<br>free variable<br>$\leq 0$ variable<br>$\geq$ constraint<br>= constraint<br>$\leq$ constraint | min<br>subject to | $b^{\top}y$ $A^{\top}y?c$ $y?0$ |

Consider the following LP...

$$\max (-2, -1, 0)x \qquad (\mathsf{P})$$
  
s.t.  $\begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \stackrel{\geq}{\leq} \begin{pmatrix} 5 \\ 7 \end{pmatrix}$   
 $x_1 \le 0, x_2 \ge 0$ 

| (P <sub>max</sub> ) |                          |                                                                  | (P <sub>min</sub> ) |                   |                                 |
|---------------------|--------------------------|------------------------------------------------------------------|---------------------|-------------------|---------------------------------|
| max<br>subject to   | $c^{\top}x$ $Ax?b$ $x?0$ | $= constraint$ $\geq constraint$ $\geq 0 variable$ free variable |                     | min<br>subject to | $b^{\top}y$ $A^{\top}y?c$ $y?0$ |

Consider the following LP...

... and its dual LP:

 $\max (-2, -1, 0)x \qquad (\mathsf{P})$ s.t.  $\begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \stackrel{\geq}{\leq} \begin{pmatrix} 5 \\ 7 \end{pmatrix}$  $x_1 \leq 0, x_2 \geq 0$ 

min 
$$(5,7)y$$
 (D)  
s.t.  $\begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \stackrel{\leq}{\geq} \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$   
 $y_1 \le 0, y_2 \ge 0$ 

$$\max (-2, -1, 0)x \qquad (P) \qquad \min (5, 7)y \qquad (D)$$
  
s.t.  $\begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \stackrel{\geq}{\leq} \begin{pmatrix} 5 \\ 7 \end{pmatrix} \qquad \text{s.t.} \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \stackrel{\leq}{=} \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$   
 $y_1 \le 0, y_2 \ge 0$ 

Check:  $\bar{x} = (-1, 0, 3)^T$  and  $\bar{y} = (-1, 1)^T$  are feasible for (P) and (D).

$$\max (-2, -1, 0)x \qquad (\mathsf{P}) \qquad \min (5, 7)y \qquad (\mathsf{D}) \\ \text{s.t.} \begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \stackrel{\geq}{\leq} \begin{pmatrix} 5 \\ 7 \end{pmatrix} \qquad \text{s.t.} \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \stackrel{\leq}{=} \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix} \\ y_1 \le 0, y_2 \ge 0 \qquad \qquad y_1 \le 0, y_2 \ge 0$$

Check:  $\bar{x} = (-1, 0, 3)^T$  and  $\bar{y} = (-1, 1)^T$  are feasible for (P) and (D). Are they also optimal?

$$\max (-2, -1, 0)x \qquad (\mathsf{P}) \qquad \min (5, 7)y \qquad (\mathsf{D})$$
  
s.t.  $\begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \stackrel{\geq}{\leq} \begin{pmatrix} 5 \\ 7 \end{pmatrix} \qquad \text{s.t. } \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \stackrel{\leq}{=} \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$   
 $y_1 \le 0, y_2 \ge 0$ 

Check:  $\bar{x} = (-1, 0, 3)^T$  and  $\bar{y} = (-1, 1)^T$  are feasible for (P) and (D). Are they also optimal?

#### **Complementary Slackness Theorem**

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let  $\bar{x}$  and  $\bar{y}$  be feasible solutions. Then these solutions are optimal if and only if the CS conditions hold.

$$\max (-2, -1, 0)x \qquad (P) \qquad \min (5, 7)y \qquad (D)$$
  
s.t.  $\begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \stackrel{\geq}{\leq} \begin{pmatrix} 5 \\ 7 \end{pmatrix} \qquad \text{s.t. } \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} \stackrel{\leq}{=} \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$   
 $y_1 \le 0, y_2 \ge 0$ 

#### Claim

$$\bar{x} = (-1,0,3)^T$$
 and  $\bar{y} = (-1,1)^T$  are optimal

#### Primal conditions:

- (i)  $\bar{x}_1 = 0$  or the first (D) constraint is tight for  $\bar{y}$ .
- (ii)  $\bar{x}_2 = 0$  or the second (D) constraint is tight for  $\bar{y}$ .
- (iii)  $\bar{x}_3 = 0$  or the third (D) constraint is tight for  $\bar{y}$ .

$$\max (-2, -1, 0)x \qquad (P) \qquad \min (5, 7)y \qquad (D)$$
  
s.t.  $\begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \leq \begin{pmatrix} 5 \\ 7 \end{pmatrix} \qquad \text{s.t. } \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \geq \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$   
 $y_1 \leq 0, y_2 \geq 0$ 

#### Claim

$$\bar{x} = (-1,0,3)^T$$
 and  $\bar{y} = (-1,1)^T$  are optima

#### Primal conditions:

- (i)  $\bar{x}_1 = 0$  or the first (D) constraint is tight for  $\bar{y}$ .
- (ii)  $\bar{x}_2 = 0$  or the second (D) constraint is tight for  $\bar{y}$ .
- (iii)  $\bar{x}_3 = 0$  or the third (D) constraint is tight for  $\bar{y}$ .

#### Dual conditions:

- (i)  $\bar{y}_1 = 0$  or the first (P) constraint is tight for  $\bar{x}$ .
- (ii)  $\bar{y}_2 = 0$  or the second (P) constraint is tight for  $\bar{x}$ .

#### **Complementary Slackness – Geometry**

#### **Complementary Slackness Theorem**

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let  $\bar{x}$  and  $\bar{y}$  be feasible solutions. Then these solutions are optimal if and only if the CS conditions hold.

Will now see a geometric interpretation of this theorem!

#### **Complementary Slackness – Geometry**

#### **Complementary Slackness Theorem**

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let  $\bar{x}$  and  $\bar{y}$  be feasible solutions. Then these solutions are optimal if and only if the CS conditions hold.

Will now see a geometric interpretation of this theorem!

But some basics first!

### **Geometry – Cones of Vectors**

**Definition** Let  $a^{(1)}, \ldots, a^{(k)}$  be vectors in  $\mathbb{R}^n$ . The cone generated by these vectors is given by

$$C = \{\lambda_1 a^{(1)} + \lambda_2 a^{(2)} + \ldots + \lambda_k a^{(k)} : \lambda \ge 0\}$$



### **Geometry – Cones of Vectors**

**Definition** Let  $a^{(1)}, \ldots, a^{(k)}$  be vectors in  $\mathbb{R}^n$ . The cone generated by these vectors is given by

$$C = \{\lambda_1 a^{(1)} + \lambda_2 a^{(2)} + \ldots + \lambda_k a^{(k)} : \lambda \ge 0\}$$



Example: The cone generated by  $a^{(1)}, a^{(2)}$  and  $a^{(3)}$  is the blue-shaded area.

Consider the following polyhedron:

$$P = \{x \in \mathbb{R}^2 : \underbrace{\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}}_A x \le \underbrace{\begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}}_b \}$$



Consider the following polyhedron:

$$P = \{x \in \mathbb{R}^2 : \underbrace{\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}}_A x \le \underbrace{\begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}}_b \}$$

Consider: 
$$\bar{x} = (2,1)^T$$



Consider the following polyhedron:

$$P = \{x \in \mathbb{R}^2 : \underbrace{\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}}_A x \le \underbrace{\begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}}_b \}$$

Consider: 
$$\bar{x} = (2,1)^T$$

(i)  $\bar{x} \in P \longrightarrow$  Check!



Consider the following polyhedron:

$$P = \{x \in \mathbb{R}^2 : \underbrace{\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}}_A x \le \underbrace{\begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}}_b \}$$

Consider: 
$$\bar{x} = (2,1)^T$$

(i)  $\bar{x} \in P \longrightarrow$  Check!

(ii) Tight constraints:

$$\operatorname{row}_1(A)\bar{x} = b_1$$
$$\operatorname{row}_2(A)\bar{x} = b_2$$



Consider the following polyhedron:

$$P = \{x \in \mathbb{R}^2 : \underbrace{\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}}_A x \le \underbrace{\begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}}_b \}$$

Consider: 
$$\bar{x} = (2,1)^T$$

- (i)  $\bar{x} \in P \longrightarrow$  Check!
- (ii) Tight constraints:

$$\begin{array}{rrr} \operatorname{row}_1(A)\bar{x}=b_1 & \longrightarrow & (1,0)\bar{x}=2\\ \operatorname{row}_2(A)\bar{x}=b_2 & \longrightarrow & (1,1)\bar{x}=3 \end{array}$$



#### Cone of tight constraints:

Cone generated by rows of tight constraints

#### Cone of tight constraints:

Cone generated by rows of tight constraints

Tight constraints:

$$(1,0)\bar{x} = 2$$
  
 $(1,1)\bar{x} = 3$ 

(1) (2)



#### Cone of tight constraints:

Cone generated by rows of tight constraints

Tight constraints:

$$(1,0)\bar{x} = 2$$
 (1)  
 $(1,1)\bar{x} = 3$  (2)

Cone of tight constraints:

$$\{\lambda_1(1,0)^T + \lambda_2(1,1)^T : \lambda_1, \lambda_2 \ge 0\}$$



#### Cone of tight constraints:

Cone generated by rows of tight constraints

Tight constraints:

$$(1,0)\bar{x} = 2$$
 (1  
 $(1,1)\bar{x} = 3$  (2

Cone of tight constraints:

$$\{\lambda_1(1,0)^T + \lambda_2(1,1)^T : \lambda_1, \lambda_2 \ge 0\}$$

Consider an LP of the form

$$\max\{c^T x \, : \, Ax \le b\}$$

and a feasible solution  $\bar{x}$ .



#### Cone of tight constraints:

Cone generated by rows of tight constraints

Tight constraints:

$$(1,0)\bar{x} = 2$$
 (1)  
 $(1,1)\bar{x} = 3$  (2)

Cone of tight constraints:

$$\{\lambda_1(1,0)^T + \lambda_2(1,1)^T : \lambda_1, \lambda_2 \ge 0\}$$

Consider an LP of the form

$$\max\{c^T x \, : \, Ax \le b\}$$

and a feasible solution  $\bar{x}$ .

The cone of tight constraints at  $\bar{x}$  is the cone generated by the rows of A corresponding to tight constraints at  $\bar{x}$ .



#### Theorem

Let  $\bar{x}$  be a feasible solution to

 $\max\{c^T x : Ax \le b\}$ 

Then  $\bar{x}$  is optimal if and only if c is in the cone of tight constraints for  $\bar{x}$ .



#### Theorem

Let  $\bar{x}$  be a feasible solution to

 $\max\{c^T x : Ax \le b\}$ 

Then  $\bar{x}$  is optimal if and only if c is in the cone of tight constraints for  $\bar{x}$ .

Example: Consider the LP

 $\max\{(3/2, 1/2)x : x \in P\}$ 



#### Theorem

Let  $\bar{x}$  be a feasible solution to

 $\max\{c^T x : Ax \le b\}$ 

Then  $\bar{x}$  is optimal if and only if c is in the cone of tight constraints for  $\bar{x}$ .

Example: Consider the LP

 $\max\{(3/2, 1/2)x \, : \, x \in P\}$ 

Tight constraints at  $\bar{x} = (2, 1)^T$ :

$$(1,0)\bar{x} = 2$$
 (1)

$$(1,1)\bar{x} = 3$$
 (2)



Example: Consider the LP  $\max\{(3/2, 1/2)x : x \in P\}$  (\*)

Tight constraints at  $\bar{x} = (2, 1)^T$ :

$$\begin{array}{ll} (1,0)\bar{x}=2 & (1) \\ (1,1)\bar{x}=3 & (2) \end{array}$$

Note:  $(3/2, 1/2)^T$  in cone of tight constraints as

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$



$$P = \{ x \in \mathbb{R}^2 : \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix} \}$$

Example: Consider the LP

$$\max\{(3/2, 1/2)x : x \in P\} \quad (\star)$$

Tight constraints at  $\bar{x} = (2, 1)^T$ :

$$\begin{array}{ll} (1,0)\bar{x} = 2 & (1) \\ (1,1)\bar{x} = 3 & (2) \end{array}$$

#### Theorem

Let  $\bar{x}$  be a feasible solution to

$$\max\{c^T x : Ax \le b\}$$

Then  $\bar{x}$  is optimal if and only if c is in the cone of tight constraints for  $\bar{x}$ .

Note:  $(3/2, 1/2)^T$  is in cone of tight constraints as

$$\begin{pmatrix} 3/2\\ 1/2 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1\\ 0 \end{pmatrix} + 1/2 \cdot \begin{pmatrix} 1\\ 1 \end{pmatrix}$$

**Therefore**:  $\bar{x}$  is an optimal solution!

Example: Consider the LP

$$\max\{(3/2, 1/2)x : x \in P\} \quad (\star)$$

Tight constraints at  $\bar{x} = (2, 1)^T$ :

$$\begin{array}{ll} (1,0)\bar{x} = 2 & (1) \\ (1,1)\bar{x} = 3 & (2) \end{array}$$

Note:  $(3/2, 1/2)^T$  is in cone of tight constraints as

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$

**Therefore**:  $\bar{x}$  is an optimal solution!

#### Theorem

Let  $\bar{x}$  be a feasible solution to

$$\max\{c^T x : Ax \le b\}$$

Then  $\bar{x}$  is optimal if and only if c is in the cone of tight constraints for  $\bar{x}$ .

Proving the "if" direction of the above theorem amounts to

- (i) finding a feasible solution  $\bar{y}$  to the dual of (\*), and
- (ii) showing that  $\bar{x}$  and  $\bar{y}$  satisfy the CS conditions!

Example: Consider the LP

$$\max\{(3/2, 1/2)x : x \in P\} \quad (\star)$$

Tight constraints at  $\bar{x} = (2, 1)^T$ :

$$\begin{array}{ll} (1,0)\bar{x} = 2 & (1) \\ (1,1)\bar{x} = 3 & (2) \end{array}$$

Note:  $(3/2, 1/2)^T$  is in cone of tight constraints as

$$\begin{pmatrix} 3/2\\ 1/2 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1\\ 0 \end{pmatrix} + 1/2 \cdot \begin{pmatrix} 1\\ 1 \end{pmatrix}$$

**Therefore**:  $\bar{x}$  is an optimal solution!

#### Theorem

Let  $\bar{x}$  be a feasible solution to

$$\max\{c^T x : Ax \le b\}$$

Then  $\bar{x}$  is optimal if and only if c is in the cone of tight constraints for  $\bar{x}$ .

Proving the "if" direction of the above theorem amounts to

- (i) finding a feasible solution  $\bar{y}$  to the dual of (\*), and
- (ii) showing that  $\bar{x}$  and  $\bar{y}$  satisfy the CS conditions!

The above theorem follows from CS Theorem!

#### Geometric Optimality – Towards a Proof

If we write out the LP:

$$\max (3/2, 1/2)x \qquad (\star)$$
  
s.t.  $\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$ 

#### Geometric Optimality – Towards a Proof

If we write out the LP:

$$\max (3/2, 1/2)x \qquad (\star)$$
  
s.t.  $\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$ 

We can write the dual of  $(\star)$  as:

min 
$$(2,3,2)y$$
 ( $\Diamond$ )  
s.t.  $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$   
 $y \ge 0$ 

#### Geometric Optimality – Towards a Proof

If we write out the LP:

$$\max (3/2, 1/2)x \qquad (\star)$$
  
s.t.  $\begin{pmatrix} 1 & 0\\ 1 & 1\\ 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 2\\ 3\\ 2 \end{pmatrix}$ 

We can write the dual of  $(\star)$  as:

min 
$$(2,3,2)y$$
 ( $\Diamond$ )  
s.t.  $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$   
 $y \ge 0$ 

We know that:

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$

If we write out the LP:

$$\max (3/2, 1/2)x \qquad (\star)$$
  
s.t.  $\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$ 

We know that:

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$

Hence:  $\bar{y} = (1, 1/2, 0)^T$  is feasible for ( $\Diamond$ ).

We can write the dual of  $(\star)$  as:

min 
$$(2,3,2)y$$
 ( $\Diamond$ )  
s.t.  $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$   
 $y \ge 0$ 

If we write out the LP:

$$\max (3/2, 1/2)x \qquad (\star)$$
  
s.t.  $\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$ 

We can write the dual of  $(\star)$  as:

min 
$$(2,3,2)y$$
 (\$)  
s.t.  $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$   
 $y \ge 0$ 

We know that:

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$

Hence:  $\bar{y} = (1, 1/2, 0)^T$  is feasible for ( $\Diamond$ ).

Also:  $\bar{y}_i > 0$  only if the constraint i is tight at  $\bar{x}$ .

If we write out the LP:

$$\max (3/2, 1/2)x \qquad (\star)$$
  
s.t.  $\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$ 

We can write the dual of  $(\star)$  as:

min 
$$(2,3,2)y$$
 ( $\Diamond$ )  
s.t.  $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$   
 $y \ge 0$ 

We know that:

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$

Hence:  $\bar{y} = (1, 1/2, 0)^T$  is feasible for ( $\Diamond$ ).

Also:  $\bar{y}_i > 0$  only if the constraint i is tight at  $\bar{x}$ .

 $\longrightarrow$  Dual CS Conditions hold!

If we write out the LP:

$$\max (3/2, 1/2)x \qquad (\star)$$
  
s.t.  $\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$ 

We can write the dual of  $(\star)$  as:

min 
$$(2,3,2)y$$
 ( $\Diamond$ )  
s.t.  $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$   
 $y \ge 0$ 

We know that:

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$

Hence:  $\bar{y} = (1, 1/2, 0)^T$  is feasible for ( $\Diamond$ ).

Also:  $\bar{y}_i > 0$  only if the constraint i is tight at  $\bar{x}$ .

 $\longrightarrow$  Dual CS Conditions hold!

How about primal CS conditions?

If we write out the LP:

$$\max (3/2, 1/2)x \qquad (\star)$$
  
s.t.  $\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$ 

We can write the dual of  $(\star)$  as:

min 
$$(2,3,2)y$$
 ( $\Diamond$ )  
s.t.  $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$   
 $y \ge 0$ 

We know that:

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$

Hence:  $\bar{y} = (1, 1/2, 0)^T$  is feasible for ( $\Diamond$ ).

Also:  $\bar{y}_i > 0$  only if the constraint i is tight at  $\bar{x}$ .

 $\longrightarrow$  Dual CS Conditions hold!

How about primal CS conditions?  $\longrightarrow$  they always hold as all constraints in the dual are equality constraints!

If we write out the LP:

$$\max (3/2, 1/2)x \qquad (\star)$$
  
s.t.  $\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$ 

We can write the dual of  $(\star)$  as:

min 
$$(2,3,2)y$$
 ( $\Diamond$ )  
s.t.  $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$   
 $y \ge 0$ 

We know that:

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$

Hence:  $\bar{y} = (1, 1/2, 0)^T$  is feasible for ( $\Diamond$ ).

Also:  $\bar{y}_i > 0$  only if the constraint i is tight at  $\bar{x}$ .

 $\longrightarrow$  Dual CS Conditions hold!

How about primal CS conditions?  $\longrightarrow$  they always hold as all constraints in the dual are equality constraints!

CS Theorem  $\longrightarrow$   $(\bar{x}, \bar{y})$  optimal!

Suppose  $\bar{x}$  is a solution to (P), and let  $J(\bar{x})$  be the indices of tight constraints for  $\bar{x}$ .

$$\max c^T x \qquad (\mathsf{P})$$
  
s.t.  $Ax \le b$ 

$$\min b^T y \qquad (D)$$
s.t.  $A^T y = c$ 
 $y \ge 0$ 

$$y_i = 0$$
 or  $\operatorname{row}_i(A)x = b_i$  (\*)

Suppose  $\bar{x}$  is a solution to (P), and let  $J(\bar{x})$  be the indices of tight constraints for  $\bar{x}$ . i.e.,

$$\mathsf{row}_i(A)\bar{x} = b_i$$

for  $i \in J(\bar{x})$  and

$$\mathsf{row}_i(A)\bar{x} < b_i$$

for  $i \notin J(\bar{x})$ .

$$\max c^T x \qquad (\mathsf{P})$$
  
s.t.  $Ax < b$ 

$$\min b^T y \qquad (D)$$
s.t.  $A^T y = c$ 
 $y \ge 0$ 

$$y_i = 0$$
 or  $\operatorname{row}_i(A)x = b_i$  (\*)

Suppose c is in the cone of tight constraints at  $\bar{x}$ 

(x, y) satisfy CS Conditions if for all variables  $y_i$  of (D):

(P)

(D)

$$y_i = 0$$
 or  $\operatorname{row}_i(A)x = b_i$  (\*)

Suppose  $\bar{x}$  is a solution to (P), and let  $J(\bar{x})$  be the indices of tight constraints for  $\bar{x}$ . i.e., row<sub>i</sub>(A) $\bar{x} = b_i$ for  $i \in J(\bar{x})$  and row<sub>i</sub>(A) $\bar{x} < b_i$ for  $i \notin J(\bar{x})$ .

Suppose c is in the cone of tight constraints at  $\bar{x}$ , and thus

$$c = \sum_{i \in J(\bar{x})} \lambda_i \mathrm{row}_i(A)^T$$

for some  $\lambda \geq 0$ .

$$\max c^T x \qquad (\mathsf{P})$$
  
s.t.  $Ax \le b$ 

$$\min b^T y \qquad (D)$$
s.t.  $A^T y = c$ 
 $y \ge 0$ 

$$y_i = 0$$
 or  $\operatorname{row}_i(A)x = b_i$  (\*)

$$c = \sum_{i \in J(\bar{x})} \lambda_i \mathrm{row}_i(A)^T$$

$$\max c^T x \qquad (\mathsf{P})$$
  
s.t.  $Ax \le b$ 

$$\min b^T y \qquad (D)$$
s.t.  $A^T y = c$ 
 $y \ge 0$ 

$$y_i = 0$$
 or  $\operatorname{row}_i(A)x = b_i$  (\*)

$$\begin{split} c &= \sum_{i \in J(\bar{x})} \lambda_i \mathsf{row}_i(A)^T \\ &= A^T \bar{y} \end{split}$$

Where we define:

$$\bar{y}_i = \begin{cases} \lambda_i \, : \, i \in J(\bar{x}) \\ 0 \, : \, \text{otherwise} \end{cases}$$

$$\max c^T x \qquad (\mathsf{P})$$
  
s.t.  $Ax \le b$ 

$$\min b^T y \qquad (D)$$
s.t.  $A^T y = c$ 
 $y \ge 0$ 

$$y_i = 0$$
 or  $\operatorname{row}_i(A)x = b_i$  (\*)

$$\begin{split} c &= \sum_{i \in J(\bar{x})} \lambda_i \mathrm{row}_i(A)^T \\ &= A^T \bar{y} \end{split}$$

Where we define:

$$\bar{y}_i = \begin{cases} \lambda_i \ : \ i \in J(\bar{x}) \\ 0 \ : \ \text{otherwise} \end{cases}$$

Since  $\lambda \geq 0$ :  $\bar{y}$  is feasible for (D)!

$$\max c^T x \tag{P}$$
  
s.t.  $Ax \le b$ 

$$\min b^T y \qquad (D)$$
s.t.  $A^T y = c$ 
 $y \ge 0$ 

$$y_i = 0$$
 or  $\operatorname{row}_i(A)x = b_i$  (\*)

$$\begin{split} c &= \sum_{i \in J(\bar{x})} \lambda_i \mathrm{row}_i(A)^T \\ &= A^T \bar{y} \end{split}$$

Where we define:

$$\bar{y}_i = \begin{cases} \lambda_i \ : \ i \in J(\bar{x}) \\ 0 \ : \ \text{otherwise} \end{cases}$$

Since  $\lambda \geq 0$ :  $\bar{y}$  is feasible for (D)!

Also note:  $\bar{y}_i > 0$  only if  $\operatorname{row}_i(A)\bar{x} = b_i$ 

$$\max c^T x \qquad (\mathsf{P})$$
  
s.t.  $Ax \le b$ 

$$\min b^T y \qquad (D)$$
s.t.  $A^T y = c$ 
 $y \ge 0$ 

$$y_i = 0$$
 or  $\operatorname{row}_i(A)x = b_i$  (\*)

$$\begin{split} c &= \sum_{i \in J(\bar{x})} \lambda_i \mathsf{row}_i(A)^T \\ &= A^T \bar{y} \end{split}$$

Where we define:

$$\bar{y}_i = \begin{cases} \lambda_i \ : \ i \in J(\bar{x}) \\ 0 \ : \ \text{otherwise} \end{cases}$$

Since  $\lambda \geq 0$ :  $\bar{y}$  is feasible for (D)!

Also note: 
$$\bar{y}_i > 0$$
 only if  
row<sub>i</sub>(A) $\bar{x} = b_i$   
 $\longrightarrow$  CS conditions (\*) hold!

$$\max c^T x \qquad (\mathsf{P})$$
  
s.t.  $Ax \le b$ 

$$\min b^T y \qquad (D)$$
s.t.  $A^T y = c$ 
 $y \ge 0$ 

$$y_i = 0$$
 or  $\operatorname{row}_i(A)x = b_i$  (\*)

$$\begin{split} c &= \sum_{i \in J(\bar{x})} \lambda_i \mathrm{row}_i(A)^T \\ &= A^T \bar{y} \end{split}$$

Where we define:

$$\bar{y}_i = \begin{cases} \lambda_i \ : \ i \in J(\bar{x}) \\ 0 \ : \ \text{otherwise} \end{cases}$$

Since  $\lambda \geq 0$ :  $\bar{y}$  is feasible for (D)!

Also note: 
$$\bar{y}_i > 0$$
 only if  
row<sub>i</sub>(A) $\bar{x} = b_i$   
 $\longrightarrow$  CS conditions (\*) hold!

$$\max c^T x \qquad (\mathsf{P})$$
  
s.t.  $Ax \le b$ 

$$\min b^T y \qquad (D)$$
s.t.  $A^T y = c$ 
 $y \ge 0$ 

(x, y) satisfy CS Conditions if for all variables  $y_i$  of (D):

$$y_i = 0$$
 or  $\operatorname{row}_i(A)x = b_i$  (\*)

Hence:  $(\bar{x}, \bar{y})$  are optimal!

We almost proved:

### Theorem

Let  $\bar{x}$  be a feasible solution to

$$\max\{c^T x : Ax \le b\}$$

Then  $\bar{x}$  is optimal if and only if c is in the cone of tight constraints for  $\bar{x}$ .

We almost proved:

### Theorem

Let  $\bar{x}$  be a feasible solution to

$$\max\{c^T x : Ax \le b\}$$

Then  $\bar{x}$  is optimal if and only if c is in the cone of tight constraints for  $\bar{x}$ .

Missing:  $\bar{x}$  is optimal  $\longrightarrow$  c is in the cone of tight constraints

We almost proved:

#### Theorem

Let  $\bar{x}$  be a feasible solution to

$$\max\{c^T x : Ax \le b\}$$

Then  $\bar{x}$  is optimal if and only if c is in the cone of tight constraints for  $\bar{x}$ .

Missing:  $\bar{x}$  is optimal  $\longrightarrow c$  is in the cone of tight constraints

CS Theorem  $\longrightarrow$  there is a feasible dual solution  $\bar{y}$  that, together with  $\bar{x}$ , satisfies CS conditions.

We almost proved:

#### Theorem

Let  $\bar{x}$  be a feasible solution to

$$\max\{c^T x : Ax \le b\}$$

Then  $\bar{x}$  is optimal if and only if c is in the cone of tight constraints for  $\bar{x}$ .

Missing:  $\bar{x}$  is optimal  $\longrightarrow c$  is in the cone of tight constraints

CS Theorem  $\longrightarrow$  there is a feasible dual solution  $\bar{y}$  that, together with  $\bar{x}$ , satisfies CS conditions.

We can use CS conditions and  $\bar{y}$  to show that c lies in cone of tight constraints for  $\bar{x}$ . This is an exercise!

### Recap

Given a feasible solution  $\bar{\boldsymbol{x}}$  to

 $\max\{c^T x : Ax \le b\}$ 

 $\bar{x}$  is optimal if and only if c is in the cone of tight constraints for  $\bar{x}$ .



$$\max (3/2, 1/2)x (P)$$
  
s.t.  $\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$ 

### Recap

Given a feasible solution  $\bar{\boldsymbol{x}}$  to

 $\max\{c^T x : Ax \le b\}$ 

 $\bar{x}$  is optimal if and only if c is in the cone of tight constraints for  $\bar{x}$ .

This provides a nice geometric view of optimality certificates



$$\max (3/2, 1/2)x (P)$$
  
s.t.  $\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$