Module 4: Duality Theory (Geometry of Duality)

Recap: Strong Duality

$$
\max c^{T} x
$$
 (P)
$$
\min b^{T} y
$$
 (D)
s.t. $Ax \leq b$
$$
\text{s.t. } A^{T} y = c
$$

$$
y \geq 0
$$

Strong Duality Theorem

For the above primal-dual pair of LPs, (P) and (D), if (P) has an optimal solution, then (D) has one and their objective values equal.

- In Module 2, we saw that
	- The feasible region of an LP is a polyhedron.
	- Basic solutions correspond to extreme points of this polyhedron.

- In Module 2, we saw that
	- The feasible region of an LP is a polyhedron.
	- Basic solutions correspond to extreme points of this polyhedron.

Question

When is an extreme point optimal?

- In Module 2, we saw that
	- The feasible region of an LP is a polyhedron.
	- Basic solutions correspond to extreme points of this polyhedron.

Question

When is an extreme point optimal?

Module 2 and strong duality told us that Simplex computes

- a basic solution (if it exists), and
- a certificate of optimality.

In Module 2, we saw that

- The feasible region of an LP is a polyhedron.
- Basic solutions correspond to extreme points of this polyhedron.

Question

When is an extreme point optimal?

Module 2 and strong duality told us that Simplex computes

- a basic solution (if it exists), and
- a certificate of optimality.

Today we will investigate these certificates using geometry.

We can rewrite (P) using slack variables *s*:
\n
$$
\max_{C} c^{T} x
$$
\n
$$
\text{s.t. } Ax + s = b
$$
\n
$$
s \ge 0
$$
\n
$$
\text{min } b^{T} y
$$
\n
$$
\text{s.t. } A^{T} y = c
$$
\n
$$
y \ge 0
$$
\n
$$
\text{(D)}
$$

for (P)

We can rewrite (P) using slack variables *s*:
\n
$$
\max c^{T}x
$$
 (P)
\n
$$
\max c^{T}x
$$
 (P)
\n
$$
s.t. Ax + s = b
$$

\n
$$
s \ge 0
$$

\n
$$
\min b^{T}y
$$
 (D)
\nNote:
\n• (x, s) feasible for (P') $\longrightarrow x$ feasible

We can rewrite (P) using slack variables *s*:
\n
$$
\max c^{T}x
$$
 (P)
\n
$$
\max c^{T}x
$$
 (P)
\n
$$
\text{s.t. } Ax \leq b
$$
\n
$$
s \geq 0
$$
\n
$$
\min b^{T}y
$$
 (D)
\n
$$
\text{s.t. } A^{T}y = c
$$

 $y \geq 0$

Note:

- (x, s) feasible for $(P') \longrightarrow x$ feasible for (P)
- x feasible for $(P) \longrightarrow (x, b Ax)$ feasible for (P')

Suppose \bar{x} is feasible for (P), and \bar{y} is feasible for (D)

$$
\max c^T x \qquad (P)
$$

s.t. $Ax \le b$

$$
\max cT x
$$
 (P')
s.t. $Ax + s = b$
 $s \ge 0$

$$
\min b^T y
$$
 (D)
s.t. $A^T y = c$

$$
y \ge 0
$$

Suppose \bar{x} is feasible for (P), and \bar{y} is feasible for (D)

$$
\longrightarrow (\bar{x}, b - A \bar{x}) \text{ feasible for (P')}
$$

$$
\max cT x \qquad (\mathsf{P'})
$$

s.t. $Ax + s = b$

$$
s \ge 0
$$

$$
\min b^T y \qquad \text{(D)}
$$
\n
$$
\text{s.t. } A^T y = c
$$
\n
$$
y \ge 0
$$

Suppose \bar{x} is feasible for (P), and \bar{y} is feasible for (D)

$$
\longrightarrow (\bar{x}, \underbrace{b-A\bar{x}}_{\bar{s}}) \text{ feasible for (P')}
$$

$$
\max cT x \qquad (\mathsf{P'})
$$

s.t. $Ax + s = b$

$$
s \ge 0
$$

$$
\min b^T y
$$
 (D)
s.t. $A^T y = c$

$$
y \ge 0
$$

Suppose \bar{x} is feasible for (P), and \bar{y} is feasible for (D)

$$
\longrightarrow (\bar{x}, \underbrace{b - A\bar{x}}_{\bar{s}}) \text{ feasible for (P')}
$$

Recall the Weak Duality proof:

$$
\bar{y}^T b = \bar{y}^T (A\bar{x} + \bar{s})
$$

$$
= (\bar{y}^T A)\bar{x} + \bar{y}^T \bar{s}
$$

$$
\max c^T x \qquad \text{(P)}
$$

s.t. $Ax \leq b$

$$
\max cT x
$$
 (P')
s.t. $Ax + s = b$
 $s \ge 0$

$$
\min b^T y
$$
 (D)
s.t. $A^T y = c$

$$
y \ge 0
$$

Suppose \bar{x} is feasible for (P), and \bar{y} is feasible for (D)

$$
\longrightarrow (\bar{x}, \underbrace{b - A\bar{x}}_{\bar{s}}) \text{ feasible for (P')}
$$

Recall the Weak Duality proof:

$$
\bar{y}^T b = \bar{y}^T (A\bar{x} + \bar{s})
$$

= $(\bar{y}^T A)\bar{x} + \bar{y}^T \bar{s}$
= $c^T \bar{x} + \bar{y}^T \bar{s}$

$$
\max c^T x \qquad \text{(P)}
$$

s.t. $Ax \leq b$

$$
\max cT x
$$
 (P')
s.t. $Ax + s = b$
 $s \ge 0$

$$
\min b^T y \qquad \text{(D)}
$$
\n
$$
\text{s.t. } A^T y = c
$$
\n
$$
y \ge 0
$$

Suppose \bar{x} is feasible for (P), and \bar{y} is feasible for (D)

$$
\longrightarrow (\bar{x}, \underbrace{b - A\bar{x}}_{\bar{s}}) \text{ feasible for (P')}
$$

Recall the Weak Duality proof:

$$
\begin{aligned}\n\bar{y}^T b &= \bar{y}^T (A\bar{x} + \bar{s}) \\
&= (\bar{y}^T A)\bar{x} + \bar{y}^T \bar{s} \\
&= c^T \bar{x} + \bar{y}^T \bar{s}\n\end{aligned}
$$

Strong Duality tells us that:

 \bar{x}, \bar{y} both optimal $\iff c^T \bar{x} = \bar{y}^T b$

$$
\max c^T x \qquad \text{(P)}
$$

s.t. $Ax \leq b$

$$
\max cT x
$$
 (P')
s.t. $Ax + s = b$
 $s \ge 0$

$$
\min b^T y \qquad \text{(D)}
$$
\n
$$
\text{s.t. } A^T y = c
$$
\n
$$
y \ge 0
$$

Suppose \bar{x} is feasible for (P), and \bar{y} is feasible for (D)

$$
\longrightarrow (\bar{x}, \underbrace{b - A\bar{x}}_{\bar{s}}) \text{ feasible for (P')}
$$

Recall the Weak Duality proof:

$$
\begin{aligned}\n\bar{y}^T b &= \bar{y}^T (A\bar{x} + \bar{s}) \\
&= (\bar{y}^T A)\bar{x} + \bar{y}^T \bar{s} \\
&= c^T \bar{x} + \bar{y}^T \bar{s}\n\end{aligned}
$$

Strong Duality tells us that:

$$
\bar{x}
$$
, \bar{y} both optimal $\iff c^T \bar{x} = \bar{y}^T b$
 $\iff \bar{y}^T \bar{s} = 0$

$$
\max cT x \qquad (\mathsf{P'})
$$

s.t. $Ax + s = b$

$$
s \ge 0
$$

$$
\min b^T y \qquad \text{(D)}
$$
\n
$$
\text{s.t. } A^T y = c
$$
\n
$$
y \ge 0
$$

Recall the Weak Duality proof:

$$
\begin{aligned}\n\bar{y}^T b &= \bar{y}^T (A\bar{x} + \bar{s}) \\
&= (\bar{y}^T A)\bar{x} + \bar{y}^T \bar{s} \\
&= c^T \bar{x} + \bar{y}^T \bar{s}\n\end{aligned}
$$

$$
0 = \bar{y}^T \bar{s} = \sum_{i=1}^m \bar{y}_i \bar{s}_i \qquad (*)
$$

$$
\max c^T x \qquad \qquad \text{(P)}
$$
\n
$$
\text{s.t. } Ax \leq b
$$

$$
\max cT x \qquad (\mathsf{P'})
$$

s.t. $Ax + s = b$

$$
s \ge 0
$$

$$
\min b^T y \qquad \text{(D)}
$$
\n
$$
\text{s.t. } A^T y = c
$$
\n
$$
y \ge 0
$$

Recall the Weak Duality proof:

$$
\begin{aligned}\n\bar{y}^T b &= \bar{y}^T (A\bar{x} + \bar{s}) \\
&= (\bar{y}^T A)\bar{x} + \bar{y}^T \bar{s} \\
&= c^T \bar{x} + \bar{y}^T \bar{s}\n\end{aligned}
$$

$$
\max c^T x \qquad \text{(P)}
$$

s.t. $Ax \leq b$

$$
\max cT x \qquad (\mathsf{P'})
$$

s.t. $Ax + s = b$

$$
s \ge 0
$$

$$
0 = \bar{y}^T \bar{s} = \sum_{i=1}^m \bar{y}_i \bar{s}_i \qquad (*)
$$

By feasibility, $\bar{y} \geq 0$ and $\bar{s} \geq 0$

$$
\min b^T y \qquad \text{(D)}
$$
\n
$$
\text{s.t. } A^T y = c
$$
\n
$$
y \ge 0
$$

Recall the Weak Duality proof:

$$
\bar{y}^T b = \bar{y}^T (A\bar{x} + \bar{s})
$$

= $(\bar{y}^T A)\bar{x} + \bar{y}^T \bar{s}$
= $c^T \bar{x} + \bar{y}^T \bar{s}$

$$
\max c^T x \qquad \text{(P)}
$$

s.t. $Ax \leq b$

$$
\max cT x \qquad (\mathsf{P'})
$$

s.t. $Ax + s = b$

$$
s \ge 0
$$

$$
0 = \bar{y}^T \bar{s} = \sum_{i=1}^m \bar{y}_i \bar{s}_i \qquad (*)
$$

By feasibility, $\bar{y} \geq 0$ and $\bar{s} \geq 0$ and hence (\star) holds if and only if $\bar{y}_i = 0$ or $\bar{s}_i = 0$, $\min b^T y$ (D) s.t. $A^T y = c$ $y > 0$

for every $1 \leq i \leq m$.

Given: \bar{x} and \bar{y} feasible solutions for (P) and (D)

$$
\max cT x
$$
 (P')
s.t. $Ax + s = b$
 $s \ge 0$

$$
\min b^T y \qquad \text{(D)}
$$
\n
$$
\text{s.t. } A^T y = c
$$
\n
$$
y \ge 0
$$

Given: \bar{x} and \bar{y} feasible solutions for (P) and (D)

Define: $\bar{s} = b - A\bar{x}$

$$
\max cT x \qquad (\mathsf{P'})
$$

s.t. $Ax + s = b$

$$
s \ge 0
$$

$$
\min b^T y \qquad \text{(D)}
$$
\n
$$
\text{s.t. } A^T y = c
$$
\n
$$
y \ge 0
$$

Given: \bar{x} and \bar{y} feasible solutions for (P) and (D) $\max c^T x$ (P) s.t. $Ax \leq b$

Define: $\bar{s} = b - A\bar{x}$

Then:

 \bar{x} and \bar{y} optimal $\iff \bar{y}_i = 0$ or $\bar{s}_i = 0$

for all $1 \leq i \leq m$.

$$
\max c^T x \qquad (\mathsf{P}')
$$

s.t. $Ax + s = b$

$$
s \ge 0
$$

$$
\min b^T y \qquad \text{(D)}
$$
\n
$$
\text{s.t. } A^T y = c
$$
\n
$$
y \ge 0
$$

Given: \bar{x} and \bar{y} feasible solutions for (P) and (D)

Define: $\bar{s} = b - A\bar{x}$

Then:

 \bar{x} and \bar{y} optimal $\iff \bar{y}_i = 0$ or $\bar{s}_i = 0$ $\overbrace{(\star)}$

for all $1 \leq i \leq m$.

$$
\max cT x \qquad (\mathsf{P'})
$$

s.t. $Ax + s = b$

$$
s \ge 0
$$

$$
\min b^T y \qquad \text{(D)}
$$
\n
$$
\text{s.t. } A^T y = c
$$
\n
$$
y \ge 0
$$

Given: \bar{x} and \bar{y} feasible solutions for (P) and (D)

Define: $\bar{s} = b - A\bar{x}$

Then:

 \bar{x} and \bar{y} optimal $\iff \bar{y}_i = 0$ or $\bar{s}_i = 0$ $\overbrace{(\star)}$

for all $1 \leq i \leq m$. We can rephrase (\star) equivalently as

 $\bar{y}_i = 0$ or *i*th constraint of (P) holds with equality .

$$
\max cT x \qquad (\mathsf{P'})
$$

s.t. $Ax + s = b$

$$
s \ge 0
$$

$$
\min b^T y \qquad \text{(D)}
$$
\n
$$
\text{s.t. } A^T y = c
$$
\n
$$
y \ge 0
$$

Given: \bar{x} and \bar{y} feasible solutions for (P) and (D)

Define: $\bar{s} = b - A\bar{x}$

Then:

 \bar{x} and \bar{y} optimal $\iff \bar{y}_i = 0$ or $\bar{s}_i = 0$ $\overbrace{(\star)}$

for all $1 \leq i \leq m$. We can rephrase (\star) equivalently as

 $\bar{y}_i = 0$ or *i*th constraint of (P) holds with equality (is tight).

$$
\max cT x \qquad (\mathsf{P'})
$$

s.t. $Ax + s = b$

$$
s \ge 0
$$

$$
\min b^T y \qquad \text{(D)}
$$
\n
$$
\text{s.t. } A^T y = c
$$
\n
$$
y \ge 0
$$

Complementary Slackness – Special Case

Let \bar{x} and \bar{y} be feasible for (P) and (D).

Then \bar{x} and \bar{y} are optimal if and only if

(i) $\bar{y}_i = 0$, or

(ii) the *i*th constraint of (P) is tight for \bar{x} ,

for every row index i .

$$
\max cT x \qquad (\mathsf{P'})
$$

s.t. $Ax + s = b$

$$
s \ge 0
$$

$$
\min b^T y
$$
 (D)
s.t. $A^T y = c$

$$
y \ge 0
$$

Consider the following LP:

max (5,3,5)*x* (P)
s.t.
$$
\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix}
$$
 $x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Consider the following LP:

max (5,3,5)
$$
x
$$
 (P)
s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Its dual is:

min (2, 4, -1)y (D)
s.t.
$$
\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}
$$

 $y \ge 0$

Consider the following LP:

max (5,3,5)
$$
x
$$
 (P)
s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Its dual is:

min (2, 4, -1)y (D)
s.t.
$$
\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}
$$

 $y \ge 0$

Claim

$$
\bar{x}=(1,-1,1)^T \text{ and } \bar{y}=(0,2,1)^T
$$
 are optimal!

Consider the following LP:

max (5,3,5)
$$
x
$$
 (P)
s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Its dual is:

min (2, 4, -1)y (D)
\ns.t.
$$
\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}
$$

$$
y \ge 0
$$

Claim

$$
\bar{x} = (1, -1, 1)^T \text{ and } \bar{y} = (0, 2, 1)^T
$$

are optimal!

Complementary Slackness

Feasible solutions \bar{x} and \bar{y} for (P) and (D) are optimal if and only if

 $\bar{y}_i = 0$ or the *i*th primal constraint is tight for \bar{x} , for all row indices i.

Consider the following LP:

max (5,3,5)
$$
x
$$
 (P)
s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Its dual is:

min (2, 4, -1)y (D)
\ns.t.
$$
\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}
$$

$$
y \ge 0
$$

Complementary Slackness

Feasible solutions \bar{x} and \bar{y} for (P) and (D) are optimal if and only if

 $\bar{y}_i = 0$ or the *i*th primal constraint is tight for \bar{x} , for all row indices i.

It is easy to check if \bar{x} and \bar{y} are feasible.

Claim

$$
\bar{x}=(1,-1,1)^T \text{ and } \bar{y}=(0,2,1)^T
$$
 are optimal!

Consider the following LP:

max (5,3,5)
$$
x
$$
 (P)
s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Its dual is:

min (2, 4, -1)y (D)
\ns.t.
$$
\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}
$$

$$
y \ge 0
$$

Claim

$$
\bar{x} = (1,-1,1)^T \text{ and } \bar{y} = (0,2,1)^T
$$
 are optimal!

Complementary Slackness

Feasible solutions \bar{x} and \bar{y} for (P) and (D) are optimal if and only if

 $\bar{y}_i = 0$ or the *i*th primal constraint is tight for \bar{x} , for all row indices i.

It is easy to check if \bar{x} and \bar{y} are feasible.

(i)
$$
\bar{y}_1 = 0
$$
 or $(1, 2, -1)\bar{x} = 2$

Consider the following LP:

max (5,3,5)
$$
x
$$
 (P)
s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Its dual is:

min (2, 4, -1)y (D)
\ns.t.
$$
\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}
$$

$$
y \ge 0
$$

Claim

$$
\bar{x}=(1,-1,1)^T \text{ and } \bar{y}=(0,2,1)^T
$$
 are optimal!

Complementary Slackness

Feasible solutions \bar{x} and \bar{y} for (P) and (D) are optimal if and only if

 $\bar{y}_i = 0$ or the *i*th primal constraint is tight for \bar{x} , for all row indices i.

It is easy to check if \bar{x} and \bar{y} are feasible.

(i) $\bar{y}_1 = 0$ or $(1, 2, -1)\bar{x} = 2$ (ii) $\bar{y}_2 = 0$ or $(3, 1, 2)\bar{x} = 4$

Consider the following LP:

max (5,3,5)
$$
x
$$
 (P)
s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Its dual is:

min (2, 4, -1)y (D)
s.t.
$$
\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}
$$

 $y \ge 0$

Claim

$$
\bar{x}=(1,-1,1)^T \text{ and } \bar{y}=(0,2,1)^T
$$
 are optimal!

Complementary Slackness

Feasible solutions \bar{x} and \bar{y} for (P) and (D) are optimal if and only if

 $\bar{y}_i = 0$ or the *i*th primal constraint is tight for \bar{x} , for all row indices i.

It is easy to check if \bar{x} and \bar{y} are feasible.

(i) $\bar{y}_1 = 0$ or $(1, 2, -1)\bar{x} = 2$ (ii) $\bar{y}_2 = 0$ or $(3, 1, 2)\bar{x} = 4$ (iii) $\bar{y}_3 = 0$ or $(-1, 1, 1)\bar{x} = -1$

Consider the following LP:

max (5,3,5)
$$
x
$$
 (P)
s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Its dual is:

min (2, 4, -1)y (D)
s.t.
$$
\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}
$$

 $y \ge 0$

Claim

$$
\bar{x} = (1, -1, 1)^T
$$
 and $\bar{y} = (0, 2, 1)^T$
are optimal!

Complementary Slackness

Feasible solutions \bar{x} and \bar{y} for (P) and (D) are optimal if and only if

 $\bar{y}_i = 0$ or the *i*th primal constraint is tight for \bar{x} , for all row indices i.

It is easy to check if \bar{x} and \bar{y} are feasible.

(i) $\bar{y}_1 = 0$ or $(1, 2, -1)\bar{x} = 2$ (ii) $\bar{y}_2 = 0$ or $(3, 1, 2)\bar{x} = 4$ (iii) $\bar{y}_3 = 0$ or $(-1, 1, 1)\bar{x} = -1$ $\longrightarrow \bar{x}$ and \bar{y} are optimal!

General Complementary Slackness

Suppose: (P_{max}) and (P_{min}) are a pair of primal and dual LPs according to the above table

Suppose: (P_{max}) and (P_{min}) are a pair of primal and dual LPs according to the above table, with feasible solutions \bar{x} , and \bar{y}

Suppose: (P_{max}) and (P_{min}) are a pair of primal and dual LPs according to the above table, with feasible solutions \bar{x} , and \bar{y}

 \bar{x} and \bar{y} satisfy the complementary slackness conditions if ...

for all variables x_i of (P_{max}):

(i)
$$
\bar{x}_j = 0
$$
, or

(ii) *j*th constraint of (P_{min}) is satisfied with equality for \bar{y}

Suppose: (P_{max}) and (P_{min}) are a pair of primal and dual LPs according to the above table, with feasible solutions \bar{x} , and \bar{y}

 \bar{x} and \bar{y} satisfy the complementary slackness conditions if ...

for all variables x_i of (P_{max}):

(i)
$$
\bar{x}_j = 0
$$
, or

(ii) *j*th constraint of (P_{min}) is satisfied with equality for \bar{y} for all variables y_i of (P_{min}) :

(i)
$$
\bar{y}_i = 0
$$
, or

(ii) ith constraint of (P_{max}) is satisfied with equality for \bar{x}

 \bar{x} and \bar{y} satisfy the CS conditions if ...

for all variables x_i of (P_{max}):

- (i) $\bar{x}_j = 0$, or
- (ii) *j*th constraint of (P_{min}) is satisfied with equality for \bar{y}

for all variables y_i of (P_{min}) :

- (i) $\bar{y}_i = 0$, or
- (ii) ith constraint of (P_{max}) is satisfied with equality for \bar{x}

 \bar{x} and \bar{y} satisfy the CS conditions if ...

for all variables x_i of (P_{max}):

- (i) $\bar{x}_j = 0$, or
- (ii) *j*th constraint of (P_{min}) is satisfied with equality for \bar{y}

Note: The two or's above are inclusive!

for all variables y_i of (P_{min}) :

(i)
$$
\bar{y}_i = 0
$$
, or

(ii) ith constraint of (P_{max}) is satisfied with equality for \bar{x}

 \bar{x} and \bar{y} satisfy the CS conditions if ...

for all variables x_i of (P_{max}):

- (i) $\bar{x}_j = 0$, or
- (ii) *j*th constraint of (P_{min}) is satisfied with equality for \bar{y}

for all variables y_i of (P_{min}) :

(i)
$$
\bar{y}_i = 0
$$
, or

(ii) *i*th constraint of (P_{max}) is satisfied with equality for \bar{x}

Note: The two or's above are inclusive!

Complementary Slackness Theorem

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let \bar{x} and \bar{y} be feasible solutions. Then these solutions are optimal if and only if the CS conditions hold.

Consider the following LP...

max (-2, -1, 0)*x* (P)
s.t.
$$
\begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \leq {5 \choose 7}
$$

 $x_1 \leq 0, x_2 \geq 0$

Consider the following LP...

max $(-2, -1, 0)x$ (P) s.t. $\begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \le$ ≤ $\sqrt{5}$ 7 \setminus $x_1 \leq 0, x_2 \geq 0$

... and its dual LP:

$$
\min (5,7)y
$$
\n
$$
\text{s.t.} \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \stackrel{\le}{=} \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}
$$
\n
$$
y_1 \leq 0, y_2 \geq 0
$$
\n
$$
(D)
$$

$$
\max (-2, -1, 0)x
$$
\n
$$
\text{s.t.} \begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \geq \begin{pmatrix} 5 \\ 7 \end{pmatrix}
$$
\n
$$
\text{s.t.} \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \geq \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}
$$
\n
$$
x_1 \leq 0, x_2 \geq 0
$$
\n
$$
y_1 \leq 0, y_2 \geq 0
$$
\n
$$
(D)
$$
\n
$$
\text{s.t.} \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \geq \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}
$$

Check: $\bar{x} = (-1, 0, 3)^T$ and $\bar{y} = (-1, 1)^T$ are feasible for (P) and (D).

$$
\max (-2, -1, 0)x
$$
\n
$$
\text{s.t.} \begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \geq \begin{pmatrix} 5 \\ 7 \end{pmatrix}
$$
\n
$$
\text{s.t.} \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \geq \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}
$$
\n
$$
x_1 \leq 0, x_2 \geq 0
$$
\n
$$
y_1 \leq 0, y_2 \geq 0
$$
\n
$$
(D)
$$
\n
$$
\text{s.t.} \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \geq \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}
$$

Check: $\bar{x} = (-1, 0, 3)^T$ and $\bar{y} = (-1, 1)^T$ are feasible for (P) and (D). Are they also optimal?

$$
\max (-2, -1, 0)x
$$
\n
$$
\text{s.t.} \begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \geq \begin{pmatrix} 5 \\ 7 \end{pmatrix}
$$
\n
$$
\text{s.t.} \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \geq \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}
$$
\n
$$
x_1 \leq 0, x_2 \geq 0
$$
\n
$$
y_1 \leq 0, y_2 \geq 0
$$
\n
$$
(D)
$$
\n
$$
\text{s.t.} \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \geq \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}
$$

Check: $\bar{x} = (-1, 0, 3)^T$ and $\bar{y} = (-1, 1)^T$ are feasible for (P) and (D). Are they also optimal?

Complementary Slackness Theorem

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let \bar{x} and \bar{y} be feasible solutions. Then these solutions are optimal if and only if the CS conditions hold.

$$
\max (-2, -1, 0)x
$$
\n
$$
\text{s.t.} \begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \geq \begin{pmatrix} 5 \\ 7 \end{pmatrix}
$$
\n
$$
\text{s.t.} \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \geq \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}
$$
\n
$$
x_1 \leq 0, x_2 \geq 0
$$
\n
$$
\text{y}_1 \leq 0, y_2 \geq 0
$$
\n(D)

Claim

$$
\bar{x}=(-1,0,3)^T \text{ and } \bar{y}=(-1,1)^T \text{ are optimal}
$$

Primal conditions:

- (i) $\bar{x}_1 = 0$ or the first (D) constraint is tight for \bar{y} .
- (ii) $\bar{x}_2 = 0$ or the second (D) constraint is tight for \bar{y} .
- (iii) $\bar{x}_3 = 0$ or the third (D) constraint is tight for \bar{y} .

$$
\max (-2, -1, 0)x
$$
\n
$$
\text{s.t.} \begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \geq \begin{pmatrix} 5 \\ 7 \end{pmatrix}
$$
\n
$$
\text{s.t.} \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \geq \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}
$$
\n
$$
x_1 \leq 0, x_2 \geq 0
$$
\n
$$
\text{y}_1 \leq 0, y_2 \geq 0
$$
\n(D)

Claim

$$
\bar{x}=(-1,0,3)^T \text{ and } \bar{y}=(-1,1)^T \text{ are optimal}
$$

Primal conditions:

- (i) $\bar{x}_1 = 0$ or the first (D) constraint is tight for \bar{y} .
- (ii) $\bar{x}_2 = 0$ or the second (D) constraint is tight for \bar{y} .
- (iii) $\bar{x}_3 = 0$ or the third (D) constraint is tight for \bar{y} .

Dual conditions:

- (i) $\bar{v}_1 = 0$ or the first (P) constraint is tight for \bar{x} .
- (ii) $\bar{y}_2 = 0$ or the second (P) constraint is tight for \bar{x} .

Complementary Slackness – Geometry

Complementary Slackness Theorem

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let \bar{x} and \bar{y} be feasible solutions. Then these solutions are optimal if and only if the CS conditions hold.

Will now see a geometric interpretation of this theorem!

Complementary Slackness – Geometry

Complementary Slackness Theorem

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let \bar{x} and \bar{y} be feasible solutions. Then these solutions are optimal if and only if the CS conditions hold.

Will now see a geometric interpretation of this theorem!

But some basics first!

Geometry – Cones of Vectors

Definition Let $a^{(1)}, \ldots, a^{(k)}$ be vectors in \mathbb{R}^n . The cone generated by these vectors is given by

$$
C = {\lambda_1 a^{(1)} + \lambda_2 a^{(2)} + \ldots + \lambda_k a^{(k)} : \lambda \ge 0}
$$

Geometry – Cones of Vectors

Definition Let $a^{(1)}, \ldots, a^{(k)}$ be vectors in \mathbb{R}^n . The cone generated by these vectors is given by

$$
C = {\lambda_1 a^{(1)} + \lambda_2 a^{(2)} + \ldots + \lambda_k a^{(k)} : \lambda \ge 0}
$$

Example: The cone generated by $a^{(1)}, a^{(2)}$ and $a^{(3)}$ is the blue-shaded area.

Consider the following polyhedron:

$$
P = \{x \in \mathbb{R}^2 :
$$

$$
\underbrace{\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}}_{A} x \le \underbrace{\begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}}_{b} \}
$$

Consider the following polyhedron:

$$
P = \{x \in \mathbb{R}^2 :
$$

$$
\underbrace{\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}}_{A} x \le \underbrace{\begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}}_{b} \}
$$

Consider:
$$
\bar{x} = (2, 1)^T
$$

Consider the following polyhedron:

$$
P = \{x \in \mathbb{R}^2 :
$$

$$
\underbrace{\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}}_{A} x \le \underbrace{\begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}}_{b} \}
$$

Consider:
$$
\bar{x} = (2, 1)^T
$$

(i) $\bar{x} \in P \longrightarrow$ Check!

Consider the following polyhedron:

$$
P = \{x \in \mathbb{R}^2 :
$$

$$
\underbrace{\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}}_A x \le \underbrace{\begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}}_b \}
$$

Consider:
$$
\bar{x} = (2, 1)^T
$$

(i) $\bar{x} \in P \longrightarrow$ Check!

(ii) Tight constraints:

$$
\text{row}_1(A)\bar{x} = b_1
$$

$$
\text{row}_2(A)\bar{x} = b_2
$$

Consider the following polyhedron:

$$
P = \{x \in \mathbb{R}^2 :
$$

$$
\underbrace{\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}}_A x \le \underbrace{\begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}}_b \}
$$

Consider:
$$
\bar{x} = (2, 1)^T
$$

(i) $\bar{x} \in P \longrightarrow$ Check!

(ii) Tight constraints:

$$
\text{row}_1(A)\bar{x} = b_1 \longrightarrow (1,0)\bar{x} = 2
$$

$$
\text{row}_2(A)\bar{x} = b_2 \longrightarrow (1,1)\bar{x} = 3
$$

Cone of tight constraints:

Cone generated by rows of tight constraints

Cone of tight constraints:

Cone generated by rows of tight constraints

Tight constraints:

$$
(1,0)\bar{x} = 2
$$

$$
(1,1)\bar{x} = 3
$$

 (1) (2)

Cone of tight constraints:

Cone generated by rows of tight constraints

Tight constraints:

$$
(1,0)\bar{x} = 2 \qquad (1)
$$

$$
(1,1)\bar{x} = 3 \qquad (2)
$$

Cone of tight constraints:

$$
\{\lambda_1(1,0)^T + \lambda_2(1,1)^T : \lambda_1, \lambda_2 \ge 0\}
$$

Cone of tight constraints:

Cone generated by rows of tight constraints

Tight constraints:

$$
(1,0)\bar{x} = 2 \qquad (1)
$$

$$
(1,1)\bar{x} = 3 \qquad (2)
$$

Cone of tight constraints:

$$
\{\lambda_1(1,0)^T + \lambda_2(1,1)^T : \lambda_1, \lambda_2 \ge 0\}
$$

Consider an LP of the form

$$
\max\{c^T x\,:\, Ax\leq b\}
$$

and a feasible solution \bar{x} .

Cone of tight constraints:

Cone generated by rows of tight constraints

Tight constraints:

$$
(1,0)\bar{x} = 2 \qquad (1)
$$

$$
(1,1)\bar{x} = 3 \qquad (2)
$$

Cone of tight constraints:

$$
\{\lambda_1(1,0)^T + \lambda_2(1,1)^T : \lambda_1, \lambda_2 \ge 0\}
$$

Consider an LP of the form

$$
\max\{c^T x\,:\, Ax\leq b\}
$$

and a feasible solution \bar{x} .

The cone of tight constraints at \bar{x} is the cone generated by the rows of A corresponding to tight constraints at \bar{x} .

Theorem

Let \bar{x} be a feasible solution to

 $\max\{c^T x : Ax \leq b\}$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Theorem

Let \bar{x} be a feasible solution to

 $\max\{c^T x : Ax \leq b\}$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Example: Consider the LP

 $\max\{(3/2, 1/2)x : x \in P\}$

Theorem

Let \bar{x} be a feasible solution to

 $\max\{c^T x : Ax \leq b\}$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Example: Consider the LP

 $\max\{(3/2, 1/2)x : x \in P\}$

Tight constraints at $\bar{x} = (2, 1)^T$:

$$
(1,0)\bar{x} = 2 \tag{1}
$$

$$
(1,1)\bar{x} = 3 \tag{2}
$$

Example: Consider the LP $\max\{(3/2, 1/2)x : x \in P\}$ (*)

Tight constraints at $\bar{x} = (2, 1)^T$:

$$
(1,0)\bar{x} = 2 \qquad (1)
$$

$$
(1,1)\bar{x} = 3 \qquad (2)
$$

Note: $(3/2, 1/2)^T$ in cone of tight constraints as

$$
\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}
$$

$$
P = \{x \in \mathbb{R}^2 :
$$

$$
\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix} \}
$$

Example: Consider the LP

$$
\max\{(3/2, 1/2)x : x \in P\} \quad (*)
$$

Tight constraints at $\bar{x} = (2,1)^T$:

$$
(1,0)\bar{x} = 2 \qquad (1)
$$

$$
(1,1)\bar{x} = 3 \qquad (2)
$$

Theorem

Let \bar{x} be a feasible solution to

$$
\max\{c^T x \,:\, Ax \leq b\}
$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Note: $(3/2, 1/2)^T$ is in cone of tight constraints as

$$
\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}
$$

Therefore: \bar{x} is an optimal solution!

Example: Consider the LP

$$
\max\{(3/2, 1/2)x : x \in P\} \quad (*)
$$

Tight constraints at $\bar{x} = (2,1)^T$:

$$
(1,0)\bar{x} = 2 \qquad (1)
$$

$$
(1,1)\bar{x} = 3 \qquad (2)
$$

Note: $(3/2, 1/2)^T$ is in cone of tight constraints as

$$
\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}
$$

Therefore: \bar{x} is an optimal solution!

Theorem

Let \bar{x} be a feasible solution to

$$
\max\{c^T x \,:\, Ax \leq b\}
$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Proving the "if" direction of the above theorem amounts to

- (i) finding a feasible solution \bar{y} to the dual of $(*)$, and
- (ii) showing that \bar{x} and \bar{y} satisfy the CS conditions!

Example: Consider the LP

$$
\max\{(3/2, 1/2)x : x \in P\} \quad (*)
$$

Tight constraints at $\bar{x} = (2,1)^T$:

$$
(1,0)\bar{x} = 2 \qquad (1)
$$

$$
(1,1)\bar{x} = 3 \qquad (2)
$$

Note: $(3/2, 1/2)^T$ is in cone of tight constraints as

$$
\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}
$$

Therefore: \bar{x} is an optimal solution!

Theorem

Let \bar{x} be a feasible solution to

$$
\max\{c^T x \,:\, Ax \leq b\}
$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Proving the "if" direction of the above theorem amounts to

- (i) finding a feasible solution \bar{y} to the dual of $(*)$, and
- (ii) showing that \bar{x} and \bar{y} satisfy the CS conditions!

The above theorem follows from CS Theorem!

Geometric Optimality – Towards a Proof

If we write out the LP:

$$
\max\limits_{\mathbf{s}.\mathbf{t}}\frac{(3/2,1/2)x}{\begin{pmatrix}1&0\\1&1\\0&1\end{pmatrix}}x\leq\begin{pmatrix}2\\3\\2\end{pmatrix}
$$
 (*)

Geometric Optimality – Towards a Proof

If we write out the LP:

$$
\max\limits_{\mathbf{s}.\mathbf{t}}\frac{(3/2,1/2)x}{\begin{pmatrix}1&0\\1&1\\0&1\end{pmatrix}}x \leq \begin{pmatrix}2\\3\\2\end{pmatrix}
$$
 (*)

We can write the dual of (\star) as:

$$
\begin{aligned}\n\min (2,3,2)y & (\Diamond) \\
\text{s.t.} & \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix} \\
y &\geq 0\n\end{aligned}
$$

Geometric Optimality – Towards a Proof

If we write out the LP:

$$
\max\limits_{\text{s.t.}}\begin{pmatrix}3/2,1/2)x\\1&0\\0&1\end{pmatrix}x\leq\begin{pmatrix}2\\3\\2\end{pmatrix}
$$
 (*)

We can write the dual of (\star) as:

$$
\begin{aligned}\n\min (2,3,2)y & (\Diamond) \\
\text{s.t.} & \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix} \\
y &\geq 0\n\end{aligned}
$$

We know that:

$$
\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}
$$
If we write out the LP:

$$
\max\limits_{\text{s.t.}}\begin{pmatrix}3/2,1/2)x\\1&0\\0&1\end{pmatrix}x\leq\begin{pmatrix}2\\3\\2\end{pmatrix}
$$
 (*)

We know that:

$$
\binom{3/2}{1/2}=1\cdot\binom{1}{0}+1/2\cdot\binom{1}{1}
$$

Hence: $\bar{y} = (1, 1/2, 0)^T$ is feasible for $(\Diamond).$

We can write the dual of (\star) as:

$$
\begin{aligned}\n\min (2,3,2)y & (\Diamond) \\
\text{s.t.} & \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix} \\
y &\geq 0\n\end{aligned}
$$

If we write out the LP:

$$
\max (3/2, 1/2)x
$$
\n
$$
\text{s.t.} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}
$$
\n
$$
(*)
$$

We can write the dual of (\star) as:

$$
\begin{aligned}\n\min (2,3,2)y & (\Diamond) \\
\text{s.t.} & \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix} \\
y &\geq 0\n\end{aligned}
$$

We know that:

$$
\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}
$$

Hence: $\bar{y} = (1, 1/2, 0)^T$ is feasible for (\Diamond) .

Also: $\bar{y}_i > 0$ only if the constraint i is tight at \bar{x} .

If we write out the IP

$$
\max (3/2, 1/2)x
$$
\n
$$
\text{s.t.} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}
$$
\n
$$
(*)
$$

We can write the dual of (\star) as:

$$
\begin{aligned}\n\min (2,3,2)y & (\Diamond) \\
\text{s.t.} & \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix} \\
y &\geq 0\n\end{aligned}
$$

We know that:

$$
\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}
$$

Hence: $\bar{y} = (1, 1/2, 0)^T$ is feasible for (\Diamond) .

Also: $\bar{y}_i > 0$ only if the constraint i is tight at \bar{x} .

→ Dual CS Conditions hold!

If we write out the IP

$$
\max (3/2, 1/2)x
$$
\n
$$
\text{s.t.} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}
$$
\n
$$
(*)
$$

We can write the dual of (\star) as:

$$
\begin{aligned}\n\min (2,3,2)y & (\Diamond) \\
\text{s.t.} & \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix} \\
y &\geq 0\n\end{aligned}
$$

We know that:

$$
\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}
$$

Hence: $\bar{y} = (1, 1/2, 0)^T$ is feasible for (\Diamond) .

Also: $\bar{y}_i > 0$ only if the constraint i is tight at \bar{x} .

→ Dual CS Conditions hold!

How about primal CS conditions?

If we write out the IP

$$
\max (3/2, 1/2)x
$$
\n
$$
\text{s.t.} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}
$$
\n
$$
(*)
$$

We can write the dual of (\star) as:

$$
\begin{aligned}\n\min (2,3,2)y & (\Diamond) \\
\text{s.t.} & \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix} \\
y &\geq 0\n\end{aligned}
$$

We know that:

$$
\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}
$$

Hence: $\bar{y} = (1, 1/2, 0)^T$ is feasible for (\Diamond) .

Also: $\bar{y}_i > 0$ only if the constraint i is tight at \bar{x} .

→ Dual CS Conditions hold!

How about primal CS conditions? \longrightarrow they always hold as all constraints in the dual are equality constraints!

If we write out the IP

$$
\max (3/2, 1/2)x
$$
\n
$$
\text{s.t.} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}
$$
\n
$$
(*)
$$

We can write the dual of (\star) as:

$$
\begin{aligned}\n\min (2,3,2)y & (\Diamond) \\
\text{s.t.} & \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix} \\
y \geq 0\n\end{aligned}
$$

We know that:

$$
\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}
$$

Hence: $\bar{y} = (1, 1/2, 0)^T$ is feasible for $(\Diamond).$

Also: $\bar{y}_i > 0$ only if the constraint i is tight at \bar{x} .

→ Dual CS Conditions hold!

How about primal CS conditions? \longrightarrow they always hold as all constraints in the dual are equality constraints!

CS Theorem \longrightarrow (\bar{x}, \bar{y}) optimal!

Suppose \bar{x} is a solution to (P), and let $J(\bar{x})$ be the indices of tight constraints for \bar{x} .

$$
\max c^T x \qquad \qquad \text{(P)}
$$
\n
$$
\text{s.t. } Ax \leq b
$$

$$
\min b^T y
$$
 (D)
s.t. $A^T y = c$

$$
y \ge 0
$$

$$
y_i = 0 \quad \text{or} \quad \text{row}_i(A)x = b_i \quad (*)
$$

Suppose \bar{x} is a solution to (P), and let $J(\bar{x})$ be the indices of tight constraints for \bar{x} . i.e.,

$$
\text{row}_i(A)\bar{x} = b_i
$$
 for $i \in J(\bar{x})$ and

$$
\text{row}_i(A)\bar{x} < b_i
$$
 for $i \notin J(\bar{x})$.

$$
\max c^T x \qquad \qquad \text{(P)}\n\text{s.t. } Ax \leq b
$$

$$
\min b^T y
$$
 (D)
s.t. $A^T y = c$

$$
y \ge 0
$$

$$
y_i = 0 \quad \text{or} \quad \text{row}_i(A)x = b_i \quad (*)
$$

Suppose \bar{x} is a solution to (P), and let $J(\bar{x})$ be the indices of tight constraints for \bar{x} . i.e., row_i $(A)\bar{x} = b_i$

for $i \in J(\bar{x})$ and

$$
\mathsf{row}_i(A)\bar{x} < b_i
$$

for $i \notin J(\bar{x})$.

Suppose c is in the cone of tight constraints at \bar{x}

$$
\max c^T x \qquad (\mathsf{P})
$$

s.t. $Ax \leq b$

$$
\min b^T y
$$
 (D)
s.t. $A^T y = c$

$$
y \ge 0
$$

$$
y_i = 0 \quad \text{or} \quad \text{row}_i(A)x = b_i \quad (*)
$$

Suppose \bar{x} is a solution to (P), and let $J(\bar{x})$ be the indices of tight constraints for \bar{x} . i.e.,

$$
\mathsf{row}_i(A)\bar{x} = b_i
$$
\n
$$
\mathsf{for} \ i \in J(\bar{x}) \ \mathsf{and}
$$
\n
$$
\mathsf{row}_i(A)\bar{x} < b_i
$$
\n
$$
\mathsf{for} \ i \not\in J(\bar{x}).
$$

Suppose c is in the cone of tight constraints at \bar{x} , and thus

$$
c = \sum_{i \in J(\bar{x})} \lambda_i \textnormal{row}_i(A)^T
$$

for some $\lambda > 0$.

$$
\max c^T x \qquad \qquad \text{(P)}
$$
\n
$$
\text{s.t. } Ax \leq b
$$

$$
\min b^T y
$$
 (D)
s.t. $A^T y = c$

$$
y \ge 0
$$

$$
y_i = 0 \quad \text{or} \quad \text{row}_i(A)x = b_i \quad (*)
$$

$$
c = \sum_{i \in J(\bar{x})} \lambda_i \textnormal{row}_i(A)^T
$$

$$
\max c^T x \qquad (\mathsf{P})
$$

s.t. $Ax \leq b$

$$
\min b^T y
$$
 (D)
s.t. $A^T y = c$

$$
y \ge 0
$$

$$
y_i = 0 \quad \text{or} \quad \text{row}_i(A)x = b_i \quad (*)
$$

$$
c = \sum_{i \in J(\bar{x})} \lambda_i \text{row}_i(A)^T
$$

$$
= A^T \bar{y}
$$

Where we define:

$$
\bar{y}_i = \begin{cases} \lambda_i \, : \, i \in J(\bar{x}) \\ 0 \, : \, \text{otherwise} \end{cases}
$$

$$
\max c^T x \qquad \qquad \text{(P)}
$$
\n
$$
\text{s.t. } Ax \leq b
$$

$$
\min b^T y
$$
 (D)
s.t. $A^T y = c$

$$
y \ge 0
$$

$$
y_i = 0 \quad \text{or} \quad \text{row}_i(A)x = b_i \quad (*)
$$

$$
c = \sum_{i \in J(\bar{x})} \lambda_i \text{row}_i(A)^T
$$

$$
= A^T \bar{y}
$$

Where we define:

$$
\bar{y}_i = \begin{cases} \lambda_i \, : \, i \in J(\bar{x}) \\ 0 \, : \text{ otherwise} \end{cases}
$$

Since $\lambda \geq 0$: \bar{y} is feasible for (D)!

$$
\max c^T x \qquad \qquad \text{(P)}
$$
\n
$$
\text{s.t. } Ax \leq b
$$

$$
\min b^T y
$$
 (D)
s.t. $A^T y = c$

$$
y \ge 0
$$

$$
y_i = 0 \quad \text{or} \quad \text{row}_i(A)x = b_i \quad (*)
$$

$$
c = \sum_{i \in J(\bar{x})} \lambda_i \text{row}_i(A)^T
$$

$$
= A^T \bar{y}
$$

Where we define:

$$
\bar{y}_i = \begin{cases} \lambda_i \, : \, i \in J(\bar{x}) \\ 0 \, : \text{ otherwise} \end{cases}
$$

Since $\lambda \geq 0$: \bar{y} is feasible for (D)!

Also note: $\bar{y}_i > 0$ only if row_i $(A)\bar{x} = b_i$

$$
\max c^T x \qquad \qquad \text{(P)}
$$
\n
$$
\text{s.t. } Ax \leq b
$$

$$
\min b^T y
$$
 (D)
s.t. $A^T y = c$

$$
y \ge 0
$$

$$
y_i = 0 \quad \text{or} \quad \text{row}_i(A)x = b_i \quad (*)
$$

$$
c = \sum_{i \in J(\bar{x})} \lambda_i \text{row}_i(A)^T
$$

$$
= A^T \bar{y}
$$

Where we define:

$$
\bar{y}_i = \begin{cases} \lambda_i \, : \, i \in J(\bar{x}) \\ 0 \, : \text{ otherwise} \end{cases}
$$

Since $\lambda \geq 0$: \bar{y} is feasible for (D)!

Also note:
$$
\bar{y}_i > 0
$$
 only if
row_i $(A)\bar{x} = b_i$
 \longrightarrow CS conditions (*) hold!

$$
\max c^T x \qquad \qquad \text{(P)}
$$
\n
$$
\text{s.t. } Ax \leq b
$$

$$
\min b^T y
$$
 (D)
s.t. $A^T y = c$

$$
y \ge 0
$$

$$
y_i = 0 \quad \text{or} \quad \text{row}_i(A)x = b_i \quad (*)
$$

$$
c = \sum_{i \in J(\bar{x})} \lambda_i \text{row}_i(A)^T
$$

$$
= A^T \bar{y}
$$

Where we define:

$$
\bar{y}_i = \begin{cases} \lambda_i \, : \, i \in J(\bar{x}) \\ 0 \, : \text{ otherwise} \end{cases}
$$

Since $\lambda \geq 0$: \bar{y} is feasible for (D)!

Also note:
$$
\bar{y}_i > 0
$$
 only if
row_i $(A)\bar{x} = b_i$
 \longrightarrow CS conditions (*) hold!

$$
\max c^T x \qquad \qquad \text{(P)}
$$
\n
$$
\text{s.t. } Ax \leq b
$$

$$
\min b^T y
$$
 (D)
s.t. $A^T y = c$

$$
y \ge 0
$$

 (x, y) satisfy CS Conditions if for all variables y_i of (D) :

$$
y_i = 0 \quad \text{or} \quad \text{row}_i(A)x = b_i \quad (*)
$$

Hence: (\bar{x}, \bar{y}) are optimal!

We almost proved:

Theorem

Let \bar{x} be a feasible solution to

$$
\max\{c^T x : Ax \le b\}
$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

We almost proved:

Theorem

Let \bar{x} be a feasible solution to

$$
\max\{c^T x \,:\, Ax \leq b\}
$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Missing: \bar{x} is optimal \longrightarrow c is in the cone of tight constraints

We almost proved:

Theorem

Let \bar{x} be a feasible solution to

$$
\max\{c^T x : Ax \le b\}
$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Missing: \bar{x} is optimal \longrightarrow c is in the cone of tight constraints

CS Theorem \longrightarrow there is a feasible dual solution \bar{v} that, together with \bar{x} , satisfies CS conditions.

We almost proved:

Theorem

Let \bar{x} be a feasible solution to

$$
\max\{c^T x : Ax \le b\}
$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Missing: \bar{x} is optimal \longrightarrow c is in the cone of tight constraints

CS Theorem \longrightarrow there is a feasible dual solution \bar{y} that, together with \bar{x} , satisfies CS conditions.

We can use CS conditions and \bar{y} to show that c lies in cone of tight constraints for \bar{x} . This is an exercise!

Recap

Given a feasible solution \bar{x} to

 $\max\{c^T x : Ax \leq b\}$

 \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

$$
\max (3/2, 1/2)x
$$
\n
$$
\text{s.t.} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}
$$
\n
$$
(P)
$$

Recap

Given a feasible solution \bar{x} to

 $\max\{c^T x : Ax \leq b\}$

 \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

This provides a nice geometric view of optimality certificates

$$
\max (3/2, 1/2)x
$$
\n
$$
\text{s.t.} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}
$$
\n
$$
(P)
$$