Module 4: Duality Theory (Geometry of Duality)

Recap: Strong Duality

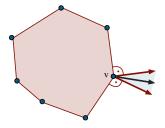
$$\max c^T x \qquad (\mathsf{P}) \qquad \min b^T y \qquad (\mathsf{D})$$

s.t. $Ax \le b \qquad \qquad \text{s.t. } A^T y = c$
 $y \ge 0$

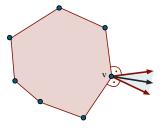
Strong Duality Theorem

For the above primal-dual pair of LPs, (P) and (D), if (P) has an optimal solution, then (D) has one and their objective values equal.

- In Module 2, we saw that
 - The feasible region of an LP is a polyhedron.
 - Basic solutions correspond to extreme points of this polyhedron.



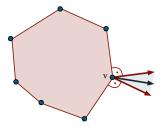
- In Module 2, we saw that
 - The feasible region of an LP is a polyhedron.
 - Basic solutions correspond to extreme points of this polyhedron.



Question

When is an extreme point optimal?

- In Module 2, we saw that
 - The feasible region of an LP is a polyhedron.
 - Basic solutions correspond to extreme points of this polyhedron.



Question

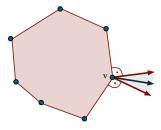
When is an extreme point optimal?

Module 2 and strong duality told us that Simplex computes

- a basic solution (if it exists), and
- a certificate of optimality.

In Module 2, we saw that

- The feasible region of an LP is a polyhedron.
- Basic solutions correspond to extreme points of this polyhedron.



Question

When is an extreme point optimal?

Module 2 and strong duality told us that Simplex computes

- a basic solution (if it exists), and
- a certificate of optimality.

Today we will investigate these certificates using geometry.

We can rewrite (P) using slack variables s:

$$\max c^{T}x \qquad (P)$$
s.t. $Ax \le b$
s.t. $Ax + s = b$
 $s \ge 0$

$$\min b^{T}y \qquad (D)$$
s.t. $A^{T}y = c$
 $y \ge 0$

We can rewrite (P) using slack variables s:

$$\max c^{T}x \qquad (P)$$
s.t. $Ax \le b$
s.t. $Ax + s = b$
 $s \ge 0$
Note:
Note:
 $y \ge 0$

• (x,s) feasible for (P') $\longrightarrow x$ feasible for (P)

We can rewrite (P) using slack variables s:

$$\max c^{T} x \qquad (\mathsf{P}')$$

s.t. $Ax + s = b$
 $s \ge 0$

$$\max c^T x \qquad (\mathsf{P})$$

s.t. $Ax \le b$

$$\min b^T y \qquad (D)$$
s.t. $A^T y = c$
 $y \ge 0$

Note:

- (x, s) feasible for (P') → x feasible for (P)
- x feasible for (P) $\longrightarrow (x, b Ax)$ feasible for (P')

Suppose \bar{x} is feasible for (P), and \bar{y} is feasible for (D)

$$\max c^T x \qquad (\mathsf{P})$$

s.t. $Ax \le b$

$$\max c^T x \qquad (\mathsf{P}')$$

s.t. $Ax + s = b$
 $s \ge 0$

$$\min b^T y \qquad (D)$$
s.t. $A^T y = c$
 $y \ge 0$

Suppose \bar{x} is feasible for (P), and \bar{y} is feasible for (D)

$$\longrightarrow$$
 $(\bar{x}, b - A\bar{x})$ feasible for (P')

$$\max c^T x \qquad (\mathsf{P}')$$

s.t. $Ax + s = b$
 $s \ge 0$

$$\min b^T y \qquad (D)$$
s.t. $A^T y = c$
 $y \ge 0$

Suppose \bar{x} is feasible for (P), and \bar{y} is feasible for (D)

$$\longrightarrow (\bar{x}, \underbrace{b-A\bar{x}}_{\bar{s}})$$
 feasible for (P')

$$\max c^T x \qquad (\mathsf{P}')$$

s.t. $Ax + s = b$
 $s \ge 0$

$$\min b^T y \qquad (D)$$
s.t. $A^T y = c$
 $y \ge 0$

Suppose \bar{x} is feasible for (P), and \bar{y} is feasible for (D)

$$\longrightarrow (\bar{x}, \underbrace{b-A\bar{x}}_{\bar{s}})$$
 feasible for (P')

Recall the Weak Duality proof:

$$\bar{y}^T b = \bar{y}^T (A\bar{x} + \bar{s})$$
$$= (\bar{y}^T A)\bar{x} + \bar{y}^T \bar{s}$$

$$\max c^T x \qquad (\mathsf{P})$$

s.t. $Ax \le b$

$$\max c^T x \qquad (\mathsf{P}')$$

s.t. $Ax + s = b$
 $s \ge 0$

$$\min b^T y \qquad (D)$$
s.t. $A^T y = c$
 $y \ge 0$

Suppose \bar{x} is feasible for (P), and \bar{y} is feasible for (D)

$$\longrightarrow (\bar{x}, \underbrace{b-A\bar{x}}_{\bar{s}})$$
 feasible for (P')

Recall the Weak Duality proof:

$$\bar{y}^T b = \bar{y}^T (A\bar{x} + \bar{s})$$
$$= (\bar{y}^T A)\bar{x} + \bar{y}^T \bar{s}$$
$$= c^T \bar{x} + \bar{y}^T \bar{s}$$

$$\max c^T x \qquad (\mathsf{P})$$

s.t. $Ax \le b$

$$\max c^T x \qquad (\mathsf{P}')$$

s.t. $Ax + s = b$
 $s \ge 0$

$$\min b^T y \qquad (D)$$
s.t. $A^T y = c$
 $y \ge 0$

Suppose \bar{x} is feasible for (P), and \bar{y} is feasible for (D)

$$\longrightarrow (\bar{x}, \underbrace{b-A\bar{x}}_{\bar{s}})$$
 feasible for (P')

Recall the Weak Duality proof:

$$\begin{split} \bar{y}^T b &= \bar{y}^T (A \bar{x} + \bar{s}) \\ &= (\bar{y}^T A) \bar{x} + \bar{y}^T \bar{s} \\ &= c^T \bar{x} + \bar{y}^T \bar{s} \end{split}$$

Strong Duality tells us that:

 $ar{x}, \ ar{y}$ both optimal $\iff c^T ar{x} = ar{y}^T b$

$$\max c^T x \qquad (\mathsf{P}')$$

s.t. $Ax + s = b$
 $s \ge 0$

$$\min b^T y \qquad (D) \\ \text{s.t. } A^T y = c \\ y \ge 0$$

Suppose \bar{x} is feasible for (P), and \bar{y} is feasible for (D)

$$\longrightarrow (\bar{x}, \underbrace{b-A\bar{x}}_{\bar{s}})$$
 feasible for (P')

Recall the Weak Duality proof:

$$\begin{split} \bar{y}^T b &= \bar{y}^T (A \bar{x} + \bar{s}) \\ &= (\bar{y}^T A) \bar{x} + \bar{y}^T \bar{s} \\ &= c^T \bar{x} + \bar{y}^T \bar{s} \end{split}$$

Strong Duality tells us that:

$$ar{x}, \ ar{y}$$
 both optimal $\iff c^T ar{x} = ar{y}^T b$
 $\iff ar{y}^T ar{s} = 0$

$$\max c^T x \qquad (\mathsf{P}')$$

s.t. $Ax + s = b$
 $s \ge 0$

$$\min b^T y \qquad (\mathsf{D}) \\ \text{s.t. } A^T y = c \\ y \ge 0$$

Recall the Weak Duality proof:

$$\begin{split} \bar{y}^T b &= \bar{y}^T (A \bar{x} + \bar{s}) \\ &= (\bar{y}^T A) \bar{x} + \bar{y}^T \bar{s} \\ &= c^T \bar{x} + \bar{y}^T \bar{s} \end{split}$$

$$0 = \bar{y}^T \bar{s} = \sum_{i=1}^m \bar{y}_i \bar{s}_i \qquad (\star)$$

$$\max c^T x \qquad (\mathsf{P}')$$

s.t. $Ax + s = b$
 $s \ge 0$

$$\min b^T y \qquad (D)$$
s.t. $A^T y = c$
 $y \ge 0$

Recall the Weak Duality proof:

$$\bar{y}^T b = \bar{y}^T (A\bar{x} + \bar{s})$$
$$= (\bar{y}^T A)\bar{x} + \bar{y}^T \bar{s}$$
$$= c^T \bar{x} + \bar{y}^T \bar{s}$$

$$\max c^T x \qquad (\mathsf{P})$$

s.t. $Ax \le b$

$$\max c^T x \qquad (\mathsf{P}')$$

s.t. $Ax + s = b$
 $s \ge 0$

$$0 = \bar{y}^T \bar{s} = \sum_{i=1}^m \bar{y}_i \bar{s}_i \qquad (\star)$$

By feasibility, $\bar{y} \geq \mathbb{0}$ and $\bar{s} \geq \mathbb{0}$

$$\min b^T y \qquad (D)$$
s.t. $A^T y = c$
 $y \ge 0$

Recall the Weak Duality proof:

$$\bar{y}^T b = \bar{y}^T (A\bar{x} + \bar{s})$$

$$= (\bar{y}^T A)\bar{x} + \bar{y}^T \bar{s}$$

$$= c^T \bar{x} + \bar{y}^T \bar{s}$$

$$\max c^T x \qquad (\mathsf{P})$$

s.t. $Ax \le b$

$$\max c^T x \qquad (\mathsf{P}')$$

s.t. $Ax + s = b$
 $s \ge 0$

$$0 = \bar{y}^T \bar{s} = \sum_{i=1}^m \bar{y}_i \bar{s}_i \qquad (\star)$$

By feasibility, $\bar{y} \ge 0$ and $\bar{s} \ge 0$ and hence (*) holds if and only if $\bar{y}_i = 0$ or $\bar{s}_i = 0$, for every $1 \le i \le m$.

 $\min b^T y \qquad (D)$ s.t. $A^T y = c$ $y \ge 0$

Given: \bar{x} and \bar{y} feasible solutions for (P) and (D)

$$\max c^T x \qquad (\mathsf{P}')$$

s.t. $Ax + s = b$
 $s \ge 0$

$$\min b^T y \qquad (D)$$
s.t. $A^T y = c$
 $y \ge 0$

Given: \bar{x} and \bar{y} feasible solutions for (P) and (D)

Define: $\bar{s} = b - A\bar{x}$

$$\max c^T x \qquad (\mathsf{P}')$$

s.t. $Ax + s = b$
 $s \ge 0$

$$\min b^T y \qquad (\mathsf{D}) \\ \text{s.t.} \ A^T y = c \\ y \ge 0$$

Given: \bar{x} and \bar{y} feasible solutions for (P) $\max c^T x$ (P)and (D)s.t. $Ax \le b$

Define: $\bar{s} = b - A\bar{x}$

Then:

 \bar{x} and \bar{y} optimal $\iff \bar{y}_i = 0$ or $\bar{s}_i = 0$

for all $1 \leq i \leq m$.

$$\max c^T x \qquad (\mathsf{P}')$$

s.t. $Ax + s = b$
 $s \ge 0$

$$\min b^T y \qquad (D)$$
s.t. $A^T y = c$
 $y \ge 0$

Given: \bar{x} and \bar{y} feasible solutions for (P) and (D)

Define: $\bar{s} = b - A\bar{x}$

Then:

$$\bar{x} \text{ and } \bar{y} \text{ optimal } \iff \underbrace{\bar{y}_i = 0 \text{ or } \bar{s}_i = 0}_{(\star)}$$

for all $1 \leq i \leq m$.

$$\max c^T x \qquad (\mathsf{P}')$$

s.t. $Ax + s = b$
 $s \ge 0$

$$\min b^T y \qquad (\mathsf{D}) \\ \text{s.t. } A^T y = c \\ y \ge 0$$

Given: \bar{x} and \bar{y} feasible solutions for (P) and (D)

Define: $\bar{s} = b - A\bar{x}$

Then:

$$\bar{x} \text{ and } \bar{y} \text{ optimal } \iff \underbrace{\bar{y}_i = 0 \text{ or } \bar{s}_i = 0}_{(\star)}$$

for all $1 \leq i \leq m$. We can rephrase (*) equivalently as

 $\bar{y}_i = 0$ or *i*th constraint of (P) holds with equality .

$$\max c^T x \qquad (\mathsf{P}')$$

s.t. $Ax + s = b$
 $s \ge 0$

$$\min b^T y \qquad (\mathsf{D}) \\ \text{s.t.} \ A^T y = c \\ y \ge 0$$

Given: \bar{x} and \bar{y} feasible solutions for (P) and (D)

Define: $\bar{s} = b - A\bar{x}$

Then:

$$\bar{x} \text{ and } \bar{y} \text{ optimal} \iff \underbrace{\bar{y}_i = 0 \text{ or } \bar{s}_i = 0}_{(\star)}$$

for all $1 \leq i \leq m$. We can rephrase (*) equivalently as

 $\bar{y}_i = 0$ or *i*th constraint of (P) holds with equality (is tight).

$$\max c^T x \qquad (\mathsf{P}')$$

s.t. $Ax + s = b$
 $s \ge 0$

$$\min b^T y \qquad (\mathsf{D}) \\ \text{s.t.} \ A^T y = c \\ y \ge 0$$

Complementary Slackness – Special Case

Let \bar{x} and \bar{y} be feasible for (P) and (D).

Then \bar{x} and \bar{y} are optimal if and only if (i) $\bar{y}_i = 0$, or (ii) the *i*th constraint of (P) is tight for \bar{x} ,

for every row index i.

$$\max c^T x \qquad (\mathsf{P}')$$

s.t. $Ax + s = b$
 $s \ge 0$

$$\min b^T y \qquad (D)$$
s.t. $A^T y = c$
 $y \ge 0$

Consider the following LP:

$$\max (5,3,5)x \qquad (\mathsf{P})$$

s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Consider the following LP:

$$\max (5,3,5)x \qquad (\mathsf{P})$$

s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Its dual is:

min
$$(2, 4, -1)y$$
 (D)
s.t. $\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$
 $y \ge 0$

Consider the following LP:

$$\max (5,3,5)x \qquad (\mathsf{P})$$

s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Its dual is:

min
$$(2, 4, -1)y$$
 (D)
s.t. $\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$
 $y \ge 0$

Claim

$$\bar{x} = (1, -1, 1)^T$$
 and $\bar{y} = (0, 2, 1)^T$ are optimal!

Consider the following LP:

$$\max (5,3,5)x \qquad (\mathsf{P})$$

s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Its dual is:

min
$$(2, 4, -1)y$$
 (D)
s.t. $\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$
 $y \ge 0$

Claim

$$\bar{x}=(1,-1,1)^T$$
 and $\bar{y}=(0,2,1)^T$ are optimal!

Complementary Slackness

Feasible solutions \bar{x} and \bar{y} for (P) and (D) are optimal if and only if

 $\bar{y}_i = 0$ or the *i*th primal constraint is tight for \bar{x} , for all row indices *i*.

Consider the following LP:

$$\max (5,3,5)x \qquad (\mathsf{P})$$

s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Its dual is:

min
$$(2, 4, -1)y$$
 (D)
s.t. $\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$
 $y \ge 0$

Complementary Slackness

Feasible solutions \bar{x} and \bar{y} for (P) and (D) are optimal if and only if

 $\bar{y}_i = 0$ or the *i*th primal constraint is tight for \bar{x} , for all row indices *i*.

It is easy to check if \bar{x} and \bar{y} are feasible.

Claim

$$\bar{x}=(1,-1,1)^T$$
 and $\bar{y}=(0,2,1)^T$ are optimal!

Consider the following LP:

$$\max (5,3,5)x \qquad (\mathsf{P})$$

s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Its dual is:

min
$$(2, 4, -1)y$$
 (D)
s.t. $\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$
 $y \ge 0$

Claim

$$\bar{x}=(1,-1,1)^T$$
 and $\bar{y}=(0,2,1)^T$ are optimal!

Complementary Slackness

Feasible solutions \bar{x} and \bar{y} for (P) and (D) are optimal if and only if

 $\bar{y}_i = 0$ or the *i*th primal constraint is tight for \bar{x} , for all row indices *i*.

It is easy to check if \bar{x} and \bar{y} are feasible.

(i)
$$\bar{y}_1 = 0$$
 or $(1, 2, -1)\bar{x} = 2$

Consider the following LP:

$$\max (5,3,5)x \qquad (\mathsf{P})$$

s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Its dual is:

min
$$(2, 4, -1)y$$
 (D)
s.t. $\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$
 $y \ge 0$

Claim

$$\bar{x}=(1,-1,1)^T$$
 and $\bar{y}=(0,2,1)^T$ are optimal!

Complementary Slackness

Feasible solutions \bar{x} and \bar{y} for (P) and (D) are optimal if and only if

 $\bar{y}_i = 0$ or the *i*th primal constraint is tight for \bar{x} , for all row indices *i*.

It is easy to check if \bar{x} and \bar{y} are feasible.

(i) $\bar{y}_1 = 0$ or $(1, 2, -1)\bar{x} = 2$ (ii) $\bar{y}_2 = 0$ or $(3, 1, 2)\bar{x} = 4$

Consider the following LP:

$$\max (5,3,5)x \qquad (\mathsf{P})$$

s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Its dual is:

min
$$(2, 4, -1)y$$
 (D)
s.t. $\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$
 $y \ge 0$

Claim

$$\bar{x}=(1,-1,1)^T$$
 and $\bar{y}=(0,2,1)^T$ are optimal!

Complementary Slackness

Feasible solutions \bar{x} and \bar{y} for (P) and (D) are optimal if and only if

 $\bar{y}_i = 0$ or the *i*th primal constraint is tight for \bar{x} , for all row indices *i*.

It is easy to check if \bar{x} and \bar{y} are feasible.

(i) $\bar{y}_1 = 0$ or $(1, 2, -1)\bar{x} = 2$ (ii) $\bar{y}_2 = 0$ or $(3, 1, 2)\bar{x} = 4$ (iii) $\bar{y}_3 = 0$ or $(-1, 1, 1)\bar{x} = -1$

Consider the following LP:

$$\max (5,3,5)x \qquad (\mathsf{P})$$

s.t. $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$

Its dual is:

min
$$(2, 4, -1)y$$
 (D)
s.t. $\begin{pmatrix} 1 & 3 & -1 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix} y = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$
 $y \ge 0$

Claim

$$\bar{x} = (1, -1, 1)^T$$
 and $\bar{y} = (0, 2, 1)^T$ are optimal!

Complementary Slackness

Feasible solutions \bar{x} and \bar{y} for (P) and (D) are optimal if and only if

 $\bar{y}_i = 0$ or the *i*th primal constraint is tight for \bar{x} , for all row indices *i*.

It is easy to check if \bar{x} and \bar{y} are feasible.

(i) $\bar{y}_1 = 0$ or $(1, 2, -1)\bar{x} = 2$ (ii) $\bar{y}_2 = 0$ or $(3, 1, 2)\bar{x} = 4$ (iii) $\bar{y}_3 = 0$ or $(-1, 1, 1)\bar{x} = -1$

 $\longrightarrow \bar{x}$ and \bar{y} are optimal!

General Complementary Slackness

(P _{max})			(P _{min})		
	_		\geq 0 variable		_
max	$c^{\top}x$	= constraint	free variable	min	$b^{\top}y$
subject to		\geq constraint	≤ 0 variable	subject to	
	Ax ? b	≥ 0 variable	\geq constraint		$A^{\top}y$? c
	<i>x</i> ? 0	free variable	= constraint		y?0
		\leq 0 variable	\leq constraint		-

Suppose: (P_{max}) and (P_{min}) are a pair of primal and dual LPs according to the above table

(P _{max})			(P _{min})		
	_		\geq 0 variable		_
max	$c^{\top}x$	= constraint	free variable	min	$b^{\top}y$
subject to		\geq constraint	\leq 0 variable	subject to	
	Ax ? b	≥ 0 variable	\geq constraint		$A^{\top}y$? c
	<i>x</i> ? 0	free variable	= constraint		y?0
		\leq 0 variable	\leq constraint		-

Suppose: (P_{max}) and (P_{min}) are a pair of primal and dual LPs according to the above table, with feasible solutions \bar{x} , and \bar{y}

(P _{max})			(P _{min})		
max	$c^{\top}x$		\geq 0 variable free variable	min	$b^{\top}y$
subject to	C A		≤ 0 variable	subject to	
	Ax?b	≥ 0 variable	\geq constraint		$A^{\top}y$? c
	<i>x</i> ? 0	free variable	= constraint		y ? 0
		≤ 0 variable	\leq constraint		

Suppose: (P_{max}) and (P_{min}) are a pair of primal and dual LPs according to the above table, with feasible solutions \bar{x} , and \bar{y}

 \bar{x} and \bar{y} satisfy the complementary slackness conditions if \ldots

for all variables x_j of (P_{max}):

- (i) $\bar{x}_{j} = 0$, or
- (ii) $j {\rm th}$ constraint of (P_min) is satisfied with equality for \bar{y}

(P _{max})			(P _{min})		
max	$c^{\top}x$		\geq 0 variable free variable	min	$b^{\top}y$
subject to	C A		≤ 0 variable	subject to	
	Ax?b	≥ 0 variable	\geq constraint		$A^{\top}y$? c
	<i>x</i> ? 0	free variable	= constraint		y ? 0
		≤ 0 variable	\leq constraint		

Suppose: (P_{max}) and (P_{min}) are a pair of primal and dual LPs according to the above table, with feasible solutions \bar{x} , and \bar{y}

 \bar{x} and \bar{y} satisfy the complementary slackness conditions if \ldots

for all variables x_j of (P_{max}):

- (i) $\bar{x}_j = 0$, or
- (ii) jth constraint of (P_min) is satisfied with equality for \bar{y}

for all variables y_i of (P_{\min}) :

(i) $\bar{y}_i = 0$, or

(ii) *i*th constraint of (P_{max}) is satisfied with equality for \bar{x}

 \bar{x} and \bar{y} satisfy the CS conditions if ...

for all variables x_j of (P_{max}):

- (i) $\bar{x}_{j} = 0$, or
- (ii) *j*th constraint of (P_{min}) is satisfied with equality for \bar{y}

for all variables y_i of (P_{\min}):

- (i) $\bar{y}_i = 0$, or
- (ii) *i*th constraint of (P_{max}) is satisfied with equality for \bar{x}

 \bar{x} and \bar{y} satisfy the CS conditions if ...

for all variables x_j of (P_{max}):

- (i) $\bar{x}_j = 0$, or
- (ii) jth constraint of (P_{min}) is satisfied with equality for \bar{y}

for all variables y_i of (P_{\min}):

(i)
$$\bar{y}_i = 0$$
, or

(ii) *i*th constraint of (P_{max}) is satisfied with equality for \bar{x}

Note: The two or's above are inclusive!

 \bar{x} and \bar{y} satisfy the CS conditions if ...

for all variables x_j of (P_{max}):

- (i) $\bar{x}_j = 0$, or
- (ii) *j*th constraint of (P_{min}) is satisfied with equality for \bar{y}

for all variables y_i of (P_{\min}):

(i)
$$\bar{y}_i = 0$$
, or

(ii) *i*th constraint of (P_{max}) is satisfied with equality for \bar{x}

Note: The two or's above are inclusive!

Complementary Slackness Theorem

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let \bar{x} and \bar{y} be feasible solutions. Then these solutions are optimal if and only if the CS conditions hold.

(P _{max})			(P _{min})		
max subject to	$c^{\top}x$ $Ax?b$ $x?0$	$= constraint$ $\geq constraint$ $\geq 0 variable$ free variable	≥ 0 variable free variable ≤ 0 variable \geq constraint = constraint \leq constraint	min subject to	$b^{\top}y$ $A^{\top}y?c$ $y?0$

Consider the following LP...

$$\max (-2, -1, 0)x \qquad (\mathsf{P})$$

s.t. $\begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \stackrel{\geq}{\leq} \begin{pmatrix} 5 \\ 7 \end{pmatrix}$
 $x_1 \le 0, x_2 \ge 0$

(P _{max})			(P _{min})		
max subject to	$c^{\top}x$ $Ax?b$ $x?0$	$= constraint$ $\geq constraint$ $\geq 0 variable$ free variable		min subject to	$b^{\top}y$ $A^{\top}y?c$ $y?0$

Consider the following LP...

... and its dual LP:

 $\max (-2, -1, 0)x \qquad (\mathsf{P})$ s.t. $\begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \stackrel{\geq}{\leq} \begin{pmatrix} 5 \\ 7 \end{pmatrix}$ $x_1 \leq 0, x_2 \geq 0$

min
$$(5,7)y$$
 (D)
s.t. $\begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \stackrel{\leq}{\geq} \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$
 $y_1 \le 0, y_2 \ge 0$

$$\max (-2, -1, 0)x \qquad (P) \qquad \min (5, 7)y \qquad (D)$$

s.t. $\begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \stackrel{\geq}{\leq} \begin{pmatrix} 5 \\ 7 \end{pmatrix} \qquad \text{s.t.} \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \stackrel{\leq}{=} \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$
 $y_1 \le 0, y_2 \ge 0$

Check: $\bar{x} = (-1, 0, 3)^T$ and $\bar{y} = (-1, 1)^T$ are feasible for (P) and (D).

$$\max (-2, -1, 0)x \qquad (\mathsf{P}) \qquad \min (5, 7)y \qquad (\mathsf{D}) \\ \text{s.t.} \begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \stackrel{\geq}{\leq} \begin{pmatrix} 5 \\ 7 \end{pmatrix} \qquad \text{s.t.} \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \stackrel{\leq}{=} \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix} \\ y_1 \le 0, y_2 \ge 0 \qquad \qquad y_1 \le 0, y_2 \ge 0$$

Check: $\bar{x} = (-1, 0, 3)^T$ and $\bar{y} = (-1, 1)^T$ are feasible for (P) and (D). Are they also optimal?

$$\max (-2, -1, 0)x \qquad (\mathsf{P}) \qquad \min (5, 7)y \qquad (\mathsf{D})$$

s.t. $\begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \stackrel{\geq}{\leq} \begin{pmatrix} 5 \\ 7 \end{pmatrix} \qquad \text{s.t. } \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \stackrel{\leq}{=} \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$
 $y_1 \le 0, y_2 \ge 0$

Check: $\bar{x} = (-1, 0, 3)^T$ and $\bar{y} = (-1, 1)^T$ are feasible for (P) and (D). Are they also optimal?

Complementary Slackness Theorem

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let \bar{x} and \bar{y} be feasible solutions. Then these solutions are optimal if and only if the CS conditions hold.

$$\max (-2, -1, 0)x \qquad (P) \qquad \min (5, 7)y \qquad (D)$$

s.t. $\begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \stackrel{\geq}{\leq} \begin{pmatrix} 5 \\ 7 \end{pmatrix} \qquad \text{s.t. } \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} \stackrel{\leq}{=} \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$
 $y_1 \le 0, y_2 \ge 0$

Claim

$$\bar{x} = (-1,0,3)^T$$
 and $\bar{y} = (-1,1)^T$ are optimal

Primal conditions:

- (i) $\bar{x}_1 = 0$ or the first (D) constraint is tight for \bar{y} .
- (ii) $\bar{x}_2 = 0$ or the second (D) constraint is tight for \bar{y} .
- (iii) $\bar{x}_3 = 0$ or the third (D) constraint is tight for \bar{y} .

$$\max (-2, -1, 0)x \qquad (P) \qquad \min (5, 7)y \qquad (D)$$

s.t. $\begin{pmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \end{pmatrix} \leq \begin{pmatrix} 5 \\ 7 \end{pmatrix} \qquad \text{s.t. } \begin{pmatrix} 1 & -1 \\ 3 & 4 \\ 2 & 2 \end{pmatrix} y \geq \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$
 $y_1 \leq 0, y_2 \geq 0$

Claim

$$\bar{x} = (-1,0,3)^T$$
 and $\bar{y} = (-1,1)^T$ are optima

Primal conditions:

- (i) $\bar{x}_1 = 0$ or the first (D) constraint is tight for \bar{y} .
- (ii) $\bar{x}_2 = 0$ or the second (D) constraint is tight for \bar{y} .
- (iii) $\bar{x}_3 = 0$ or the third (D) constraint is tight for \bar{y} .

Dual conditions:

- (i) $\bar{y}_1 = 0$ or the first (P) constraint is tight for \bar{x} .
- (ii) $\bar{y}_2 = 0$ or the second (P) constraint is tight for \bar{x} .

Complementary Slackness – Geometry

Complementary Slackness Theorem

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let \bar{x} and \bar{y} be feasible solutions. Then these solutions are optimal if and only if the CS conditions hold.

Will now see a geometric interpretation of this theorem!

Complementary Slackness – Geometry

Complementary Slackness Theorem

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let \bar{x} and \bar{y} be feasible solutions. Then these solutions are optimal if and only if the CS conditions hold.

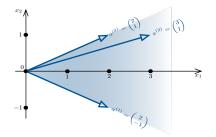
Will now see a geometric interpretation of this theorem!

But some basics first!

Geometry – Cones of Vectors

Definition Let $a^{(1)}, \ldots, a^{(k)}$ be vectors in \mathbb{R}^n . The cone generated by these vectors is given by

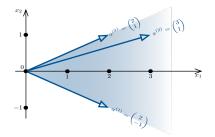
$$C = \{\lambda_1 a^{(1)} + \lambda_2 a^{(2)} + \ldots + \lambda_k a^{(k)} : \lambda \ge 0\}$$



Geometry – Cones of Vectors

Definition Let $a^{(1)}, \ldots, a^{(k)}$ be vectors in \mathbb{R}^n . The cone generated by these vectors is given by

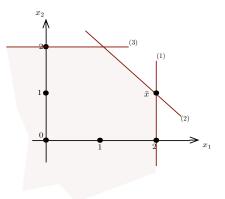
$$C = \{\lambda_1 a^{(1)} + \lambda_2 a^{(2)} + \ldots + \lambda_k a^{(k)} : \lambda \ge 0\}$$



Example: The cone generated by $a^{(1)}, a^{(2)}$ and $a^{(3)}$ is the blue-shaded area.

Consider the following polyhedron:

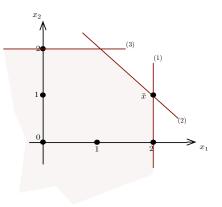
$$P = \{x \in \mathbb{R}^2 : \underbrace{\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}}_A x \le \underbrace{\begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}}_b \}$$



Consider the following polyhedron:

$$P = \{x \in \mathbb{R}^2 : \underbrace{\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}}_A x \le \underbrace{\begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}}_b \}$$

Consider:
$$\bar{x} = (2,1)^T$$

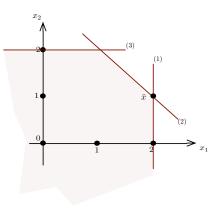


Consider the following polyhedron:

$$P = \{x \in \mathbb{R}^2 : \underbrace{\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}}_A x \le \underbrace{\begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}}_b \}$$

Consider:
$$\bar{x} = (2,1)^T$$

(i) $\bar{x} \in P \longrightarrow$ Check!



Consider the following polyhedron:

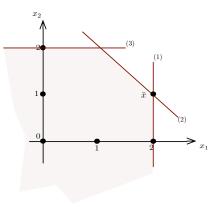
$$P = \{x \in \mathbb{R}^2 : \underbrace{\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}}_A x \le \underbrace{\begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}}_b \}$$

Consider:
$$\bar{x} = (2,1)^T$$

(i) $\bar{x} \in P \longrightarrow$ Check!

(ii) Tight constraints:

$$\operatorname{row}_1(A)\bar{x} = b_1$$
$$\operatorname{row}_2(A)\bar{x} = b_2$$



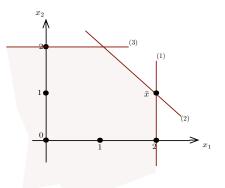
Consider the following polyhedron:

$$P = \{x \in \mathbb{R}^2 : \underbrace{\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}}_A x \le \underbrace{\begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}}_b \}$$

Consider:
$$\bar{x} = (2,1)^T$$

- (i) $\bar{x} \in P \longrightarrow$ Check!
- (ii) Tight constraints:

$$\begin{array}{rrr} \operatorname{row}_1(A)\bar{x}=b_1 & \longrightarrow & (1,0)\bar{x}=2\\ \operatorname{row}_2(A)\bar{x}=b_2 & \longrightarrow & (1,1)\bar{x}=3 \end{array}$$



Cone of tight constraints:

Cone generated by rows of tight constraints

Cone of tight constraints:

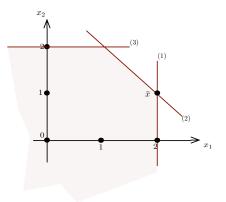
Cone generated by rows of tight constraints

Tight constraints:

$$(1,0)\bar{x} = 2$$

 $(1,1)\bar{x} = 3$

(1) (2)



Cone of tight constraints:

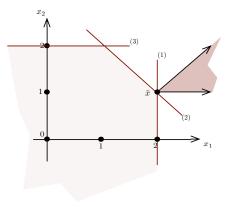
Cone generated by rows of tight constraints

Tight constraints:

$$(1,0)\bar{x} = 2$$
 (1)
 $(1,1)\bar{x} = 3$ (2)

Cone of tight constraints:

$$\{\lambda_1(1,0)^T + \lambda_2(1,1)^T : \lambda_1, \lambda_2 \ge 0\}$$



Cone of tight constraints:

Cone generated by rows of tight constraints

Tight constraints:

$$(1,0)\bar{x} = 2$$
 (1
 $(1,1)\bar{x} = 3$ (2

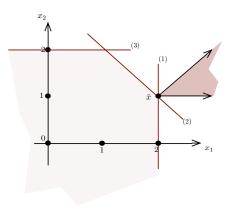
Cone of tight constraints:

$$\{\lambda_1(1,0)^T + \lambda_2(1,1)^T : \lambda_1, \lambda_2 \ge 0\}$$

Consider an LP of the form

$$\max\{c^T x \, : \, Ax \le b\}$$

and a feasible solution \bar{x} .



Cone of tight constraints:

Cone generated by rows of tight constraints

Tight constraints:

$$(1,0)\bar{x} = 2$$
 (1)
 $(1,1)\bar{x} = 3$ (2)

Cone of tight constraints:

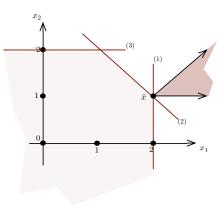
$$\{\lambda_1(1,0)^T + \lambda_2(1,1)^T : \lambda_1, \lambda_2 \ge 0\}$$

Consider an LP of the form

$$\max\{c^T x \, : \, Ax \le b\}$$

and a feasible solution \bar{x} .

The cone of tight constraints at \bar{x} is the cone generated by the rows of A corresponding to tight constraints at \bar{x} .

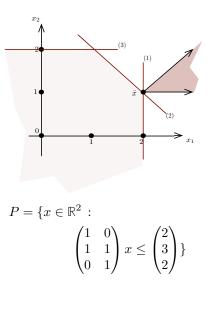


Theorem

Let \bar{x} be a feasible solution to

 $\max\{c^T x : Ax \le b\}$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .



Theorem

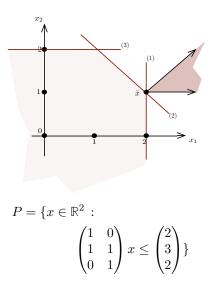
Let \bar{x} be a feasible solution to

 $\max\{c^T x : Ax \le b\}$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Example: Consider the LP

 $\max\{(3/2, 1/2)x : x \in P\}$



Theorem

Let \bar{x} be a feasible solution to

 $\max\{c^T x : Ax \le b\}$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

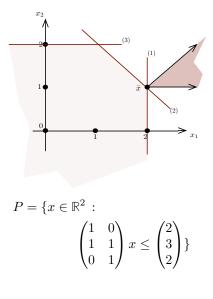
Example: Consider the LP

 $\max\{(3/2, 1/2)x \, : \, x \in P\}$

Tight constraints at $\bar{x} = (2, 1)^T$:

$$(1,0)\bar{x} = 2$$
 (1)

$$(1,1)\bar{x} = 3$$
 (2)



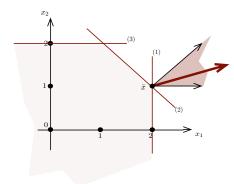
Example: Consider the LP $\max\{(3/2, 1/2)x : x \in P\}$ (*)

Tight constraints at $\bar{x} = (2, 1)^T$:

$$\begin{array}{ll} (1,0)\bar{x}=2 & (1) \\ (1,1)\bar{x}=3 & (2) \end{array}$$

Note: $(3/2, 1/2)^T$ in cone of tight constraints as

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$



$$P = \{ x \in \mathbb{R}^2 : \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix} \}$$

Example: Consider the LP

$$\max\{(3/2, 1/2)x : x \in P\} \quad (\star)$$

Tight constraints at $\bar{x} = (2, 1)^T$:

$$\begin{array}{ll} (1,0)\bar{x} = 2 & (1) \\ (1,1)\bar{x} = 3 & (2) \end{array}$$

Theorem

Let \bar{x} be a feasible solution to

$$\max\{c^T x : Ax \le b\}$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Note: $(3/2, 1/2)^T$ is in cone of tight constraints as

$$\begin{pmatrix} 3/2\\ 1/2 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1\\ 0 \end{pmatrix} + 1/2 \cdot \begin{pmatrix} 1\\ 1 \end{pmatrix}$$

Therefore: \bar{x} is an optimal solution!

Example: Consider the LP

$$\max\{(3/2, 1/2)x : x \in P\} \quad (\star)$$

Tight constraints at $\bar{x} = (2, 1)^T$:

$$\begin{array}{ll} (1,0)\bar{x} = 2 & (1) \\ (1,1)\bar{x} = 3 & (2) \end{array}$$

Note: $(3/2, 1/2)^T$ is in cone of tight constraints as

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$

Therefore: \bar{x} is an optimal solution!

Theorem

Let \bar{x} be a feasible solution to

$$\max\{c^T x : Ax \le b\}$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Proving the "if" direction of the above theorem amounts to

- (i) finding a feasible solution \bar{y} to the dual of (*), and
- (ii) showing that \bar{x} and \bar{y} satisfy the CS conditions!

Example: Consider the LP

$$\max\{(3/2, 1/2)x : x \in P\} \quad (\star)$$

Tight constraints at $\bar{x} = (2, 1)^T$:

$$\begin{array}{ll} (1,0)\bar{x} = 2 & (1) \\ (1,1)\bar{x} = 3 & (2) \end{array}$$

Note: $(3/2, 1/2)^T$ is in cone of tight constraints as

$$\begin{pmatrix} 3/2\\ 1/2 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1\\ 0 \end{pmatrix} + 1/2 \cdot \begin{pmatrix} 1\\ 1 \end{pmatrix}$$

Therefore: \bar{x} is an optimal solution!

Theorem

Let \bar{x} be a feasible solution to

$$\max\{c^T x : Ax \le b\}$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Proving the "if" direction of the above theorem amounts to

- (i) finding a feasible solution \bar{y} to the dual of (*), and
- (ii) showing that \bar{x} and \bar{y} satisfy the CS conditions!

The above theorem follows from CS Theorem!

Geometric Optimality – Towards a Proof

If we write out the LP:

$$\max (3/2, 1/2)x \qquad (\star)$$

s.t. $\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$

Geometric Optimality – Towards a Proof

If we write out the LP:

$$\max (3/2, 1/2)x \qquad (\star)$$

s.t. $\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$

We can write the dual of (\star) as:

min
$$(2,3,2)y$$
 (\Diamond)
s.t. $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$
 $y \ge 0$

Geometric Optimality – Towards a Proof

If we write out the LP:

$$\max (3/2, 1/2)x \qquad (\star)$$

s.t. $\begin{pmatrix} 1 & 0\\ 1 & 1\\ 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 2\\ 3\\ 2 \end{pmatrix}$

We can write the dual of (\star) as:

min
$$(2,3,2)y$$
 (\Diamond)
s.t. $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$
 $y \ge 0$

We know that:

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$

If we write out the LP:

$$\max (3/2, 1/2)x \qquad (\star)$$

s.t. $\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$

We know that:

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$

Hence: $\bar{y} = (1, 1/2, 0)^T$ is feasible for (\Diamond).

We can write the dual of (\star) as:

min
$$(2,3,2)y$$
 (\Diamond)
s.t. $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$
 $y \ge 0$

If we write out the LP:

$$\max (3/2, 1/2)x \qquad (\star)$$

s.t. $\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$

We can write the dual of (\star) as:

min
$$(2,3,2)y$$
 (\$)
s.t. $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$
 $y \ge 0$

We know that:

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$

Hence: $\bar{y} = (1, 1/2, 0)^T$ is feasible for (\Diamond).

Also: $\bar{y}_i > 0$ only if the constraint i is tight at \bar{x} .

If we write out the LP:

$$\max (3/2, 1/2)x \qquad (\star)$$

s.t. $\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$

We can write the dual of (\star) as:

min
$$(2,3,2)y$$
 (\Diamond)
s.t. $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$
 $y \ge 0$

We know that:

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$

Hence: $\bar{y} = (1, 1/2, 0)^T$ is feasible for (\Diamond).

Also: $\bar{y}_i > 0$ only if the constraint i is tight at \bar{x} .

 \longrightarrow Dual CS Conditions hold!

If we write out the LP:

$$\max (3/2, 1/2)x \qquad (\star)$$

s.t. $\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$

We can write the dual of (\star) as:

min
$$(2,3,2)y$$
 (\Diamond)
s.t. $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$
 $y \ge 0$

We know that:

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$

Hence: $\bar{y} = (1, 1/2, 0)^T$ is feasible for (\Diamond).

Also: $\bar{y}_i > 0$ only if the constraint i is tight at \bar{x} .

 \longrightarrow Dual CS Conditions hold!

How about primal CS conditions?

If we write out the LP:

$$\max (3/2, 1/2)x \qquad (\star)$$

s.t. $\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$

We can write the dual of (\star) as:

min
$$(2,3,2)y$$
 (\Diamond)
s.t. $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$
 $y \ge 0$

We know that:

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$

Hence: $\bar{y} = (1, 1/2, 0)^T$ is feasible for (\Diamond).

Also: $\bar{y}_i > 0$ only if the constraint i is tight at \bar{x} .

 \longrightarrow Dual CS Conditions hold!

How about primal CS conditions? \longrightarrow they always hold as all constraints in the dual are equality constraints!

If we write out the LP:

$$\max (3/2, 1/2)x \qquad (\star)$$

s.t. $\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$

We can write the dual of (\star) as:

min
$$(2,3,2)y$$
 (\Diamond)
s.t. $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} y = \begin{pmatrix} 3/2 \\ 1/2 \end{pmatrix}$
 $y \ge 0$

We know that:

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}$$

Hence: $\bar{y} = (1, 1/2, 0)^T$ is feasible for (\Diamond).

Also: $\bar{y}_i > 0$ only if the constraint i is tight at \bar{x} .

 \longrightarrow Dual CS Conditions hold!

How about primal CS conditions? \longrightarrow they always hold as all constraints in the dual are equality constraints!

CS Theorem \longrightarrow (\bar{x}, \bar{y}) optimal!

Suppose \bar{x} is a solution to (P), and let $J(\bar{x})$ be the indices of tight constraints for \bar{x} .

$$\max c^T x \qquad (\mathsf{P})$$

s.t. $Ax \le b$

$$\min b^T y \qquad (D)$$
s.t. $A^T y = c$
 $y \ge 0$

$$y_i = 0$$
 or $\operatorname{row}_i(A)x = b_i$ (*)

Suppose \bar{x} is a solution to (P), and let $J(\bar{x})$ be the indices of tight constraints for \bar{x} . i.e.,

$$\mathsf{row}_i(A)\bar{x} = b_i$$

for $i \in J(\bar{x})$ and

$$\mathsf{row}_i(A)\bar{x} < b_i$$

for $i \notin J(\bar{x})$.

$$\max c^T x \qquad (\mathsf{P})$$

s.t. $Ax < b$

$$\min b^T y \qquad (D)$$
s.t. $A^T y = c$
 $y \ge 0$

$$y_i = 0$$
 or $\operatorname{row}_i(A)x = b_i$ (*)

Suppose c is in the cone of tight constraints at \bar{x}

(x, y) satisfy CS Conditions if for all variables y_i of (D):

(P)

(D)

$$y_i = 0$$
 or $\operatorname{row}_i(A)x = b_i$ (*)

Suppose \bar{x} is a solution to (P), and let $J(\bar{x})$ be the indices of tight constraints for \bar{x} . i.e., row_i(A) $\bar{x} = b_i$ for $i \in J(\bar{x})$ and row_i(A) $\bar{x} < b_i$ for $i \notin J(\bar{x})$.

Suppose c is in the cone of tight constraints at \bar{x} , and thus

$$c = \sum_{i \in J(\bar{x})} \lambda_i \mathrm{row}_i(A)^T$$

for some $\lambda \geq 0$.

$$\max c^T x \qquad (\mathsf{P})$$

s.t. $Ax \le b$

$$\min b^T y \qquad (D)$$
s.t. $A^T y = c$
 $y \ge 0$

$$y_i = 0$$
 or $\operatorname{row}_i(A)x = b_i$ (*)

$$c = \sum_{i \in J(\bar{x})} \lambda_i \mathrm{row}_i(A)^T$$

$$\max c^T x \qquad (\mathsf{P})$$

s.t. $Ax \le b$

$$\min b^T y \qquad (D)$$
s.t. $A^T y = c$
 $y \ge 0$

$$y_i = 0$$
 or $\operatorname{row}_i(A)x = b_i$ (*)

$$\begin{split} c &= \sum_{i \in J(\bar{x})} \lambda_i \mathsf{row}_i(A)^T \\ &= A^T \bar{y} \end{split}$$

Where we define:

$$\bar{y}_i = \begin{cases} \lambda_i \, : \, i \in J(\bar{x}) \\ 0 \, : \, \text{otherwise} \end{cases}$$

$$\max c^T x \qquad (\mathsf{P})$$

s.t. $Ax \le b$

$$\min b^T y \qquad (D)$$
s.t. $A^T y = c$
 $y \ge 0$

$$y_i = 0$$
 or $\operatorname{row}_i(A)x = b_i$ (*)

$$\begin{split} c &= \sum_{i \in J(\bar{x})} \lambda_i \mathrm{row}_i(A)^T \\ &= A^T \bar{y} \end{split}$$

Where we define:

$$\bar{y}_i = \begin{cases} \lambda_i \ : \ i \in J(\bar{x}) \\ 0 \ : \ \text{otherwise} \end{cases}$$

Since $\lambda \geq 0$: \bar{y} is feasible for (D)!

$$\max c^T x \tag{P}$$

s.t. $Ax \le b$

$$\min b^T y \qquad (D)$$
s.t. $A^T y = c$
 $y \ge 0$

$$y_i = 0$$
 or $\operatorname{row}_i(A)x = b_i$ (*)

$$\begin{split} c &= \sum_{i \in J(\bar{x})} \lambda_i \mathrm{row}_i(A)^T \\ &= A^T \bar{y} \end{split}$$

Where we define:

$$\bar{y}_i = \begin{cases} \lambda_i \ : \ i \in J(\bar{x}) \\ 0 \ : \ \text{otherwise} \end{cases}$$

Since $\lambda \geq 0$: \bar{y} is feasible for (D)!

Also note: $\bar{y}_i > 0$ only if $\operatorname{row}_i(A)\bar{x} = b_i$

$$\max c^T x \qquad (\mathsf{P})$$

s.t. $Ax \le b$

$$\min b^T y \qquad (D)$$
s.t. $A^T y = c$
 $y \ge 0$

$$y_i = 0$$
 or $\operatorname{row}_i(A)x = b_i$ (*)

$$\begin{split} c &= \sum_{i \in J(\bar{x})} \lambda_i \mathsf{row}_i(A)^T \\ &= A^T \bar{y} \end{split}$$

Where we define:

$$\bar{y}_i = \begin{cases} \lambda_i \ : \ i \in J(\bar{x}) \\ 0 \ : \ \text{otherwise} \end{cases}$$

Since $\lambda \geq 0$: \bar{y} is feasible for (D)!

Also note:
$$\bar{y}_i > 0$$
 only if
row_i(A) $\bar{x} = b_i$
 \longrightarrow CS conditions (*) hold!

$$\max c^T x \qquad (\mathsf{P})$$

s.t. $Ax \le b$

$$\min b^T y \qquad (D)$$
s.t. $A^T y = c$
 $y \ge 0$

$$y_i = 0$$
 or $\operatorname{row}_i(A)x = b_i$ (*)

$$\begin{split} c &= \sum_{i \in J(\bar{x})} \lambda_i \mathrm{row}_i(A)^T \\ &= A^T \bar{y} \end{split}$$

Where we define:

$$\bar{y}_i = \begin{cases} \lambda_i \ : \ i \in J(\bar{x}) \\ 0 \ : \ \text{otherwise} \end{cases}$$

Since $\lambda \geq 0$: \bar{y} is feasible for (D)!

Also note:
$$\bar{y}_i > 0$$
 only if
row_i(A) $\bar{x} = b_i$
 \longrightarrow CS conditions (*) hold!

$$\max c^T x \qquad (\mathsf{P})$$

s.t. $Ax \le b$

$$\min b^T y \qquad (D)$$
s.t. $A^T y = c$
 $y \ge 0$

(x, y) satisfy CS Conditions if for all variables y_i of (D):

$$y_i = 0$$
 or $\operatorname{row}_i(A)x = b_i$ (*)

Hence: (\bar{x}, \bar{y}) are optimal!

We almost proved:

Theorem

Let \bar{x} be a feasible solution to

$$\max\{c^T x : Ax \le b\}$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

We almost proved:

Theorem

Let \bar{x} be a feasible solution to

$$\max\{c^T x : Ax \le b\}$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Missing: \bar{x} is optimal \longrightarrow c is in the cone of tight constraints

We almost proved:

Theorem

Let \bar{x} be a feasible solution to

$$\max\{c^T x : Ax \le b\}$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Missing: \bar{x} is optimal $\longrightarrow c$ is in the cone of tight constraints

CS Theorem \longrightarrow there is a feasible dual solution \bar{y} that, together with \bar{x} , satisfies CS conditions.

We almost proved:

Theorem

Let \bar{x} be a feasible solution to

$$\max\{c^T x : Ax \le b\}$$

Then \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

Missing: \bar{x} is optimal $\longrightarrow c$ is in the cone of tight constraints

CS Theorem \longrightarrow there is a feasible dual solution \bar{y} that, together with \bar{x} , satisfies CS conditions.

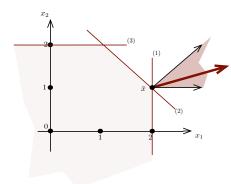
We can use CS conditions and \bar{y} to show that c lies in cone of tight constraints for \bar{x} . This is an exercise!

Recap

Given a feasible solution $\bar{\boldsymbol{x}}$ to

 $\max\{c^T x : Ax \le b\}$

 \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .



$$\max (3/2, 1/2)x (P)$$

s.t. $\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$

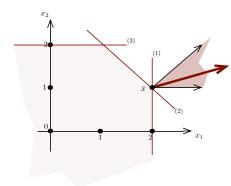
Recap

Given a feasible solution $\bar{\boldsymbol{x}}$ to

 $\max\{c^T x : Ax \le b\}$

 \bar{x} is optimal if and only if c is in the cone of tight constraints for \bar{x} .

This provides a nice geometric view of optimality certificates



$$\max (3/2, 1/2)x (P)$$

s.t. $\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$