
CO 250: Introduction to Optimization
Module 1: Formulations (Optimization on Graphs)
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• Familiar problem: Starting at location s, we wish to travel to t.
What is the best (i.e., shortest) route?

• In the figure above, such a route is indicated in bold.
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• Goal: Write the problem of finding the shortest route between s and
t as an integer program!
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• Goal: Write the problem of finding the shortest route between s and
t as an integer program!
... How?
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graph theory helps!

A graph G consists of ...

• vertices u,w, . . . ∈ V
(drawn as filled circles)

• edges uw,wz, . . . ∈ E
(drawn as lines connecting circles)

Two vertices u and v are adjacent if
uv ∈ E. Vertices u and v are the
endpoints of edge uv ∈ E, and edge e ∈ E
is incident to u ∈ V if u is an endpoint of e.
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Graphs – Why do we care?

Graphs are useful to
compactly model
many real-world
entities.

• Modeling circuits
in chip design

• Social networks

• Trade networks

• .... and many
more!
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• We can think of the street map as a graph, G.

• Vertices: Road intersections

• Edges: Road segments connecting adjacent intersections
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• Vertices: Road intersections

• Edges: Road segments connecting adjacent intersections
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• Each edge e ∈ E is labelled by its length ce ≥ 0.

• We are looking for a path connecting s and t of smallest total length!
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An s, t-path in G = (V,E) is a sequence

v1v2, v2v3, v3v4, . . . , vk−2vk−1, vk−1vk

where

• vi ∈ V and vivi+1 ∈ E for all i, and

• v1 = s, vk = t, and vi 6= vj for all i 6= j.



Paths

830

800

830

72
0

s

t

a

d

b f g

c

600650

70
0

90

45
0

25
0 61
0

80
59
0

600

610

70
0

35
0

33
0

650

325
325

50
0

415

900
630

An s, t-path in G = (V,E) is a sequence

v1v2, v2v3, v3v4, . . . , vk−2vk−1, vk−1vk

where

• vi ∈ V and vivi+1 ∈ E for all i, and

• v1 = s, vk = t, and vi 6= vj for all i 6= j.



Paths

830

800

830

72
0

s

t

a

d

b f g

c

600650

70
0

90

45
0

25
0 61
0

80
59
0

600

610

70
0

35
0

33
0

650

325
325

50
0

415

900
630

An s, t-path in G = (V,E) is a sequence
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where
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• v1 = s, vk = t, and vi 6= vj for all i 6= j.
(Without this, it is called an s, t-walk)
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The length of a path P = v1v2, . . . , vk−1vk is the sum of the lengths of
the edges on P :

c(P ) :=
∑

(ce : e ∈ P ).
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P= sa, ad, db, bf, fg, gt

c(P ) = csa + cad + cdb + cbf + cfg + cgt

= 650 + 490 + 250 + 830 + 600 + 700

= 3520

The length of a path P = v1v2, . . . , vk−1vk is the sum of the lengths of
the edges on P :

c(P ) :=
∑

(ce : e ∈ P ).
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Shortest Path Problem

• Given: Graph G = (V,E), lengths ce ≥ 0 for all e ∈ E, s, t ∈ V

• Find: Minimum-length s, t-path P
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Shortest Path Problem

• Given: Graph G = (V,E), lengths ce ≥ 0 for all e ∈ E, s, t ∈ V

• Find: Minimum-length s, t-path P

Goal: Write an IP whose solutions are the shortest s, t-paths!
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Shortest Path Problem

• Given: Graph G = (V,E), lengths ce ≥ 0 for all e ∈ E, s, t ∈ V

• Find: Minimum-length s, t-path P

Goal: Write an IP whose solutions are the shortest s, t-paths!

−→ Later!



Example: Matchings
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WaterTech has a collection of
important jobs:

J = {1′, 2′, 3′, 4′}

that it needs to handle urgently.
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E = {1, 2, 3, 4}

that need to handle these jobs.

Employees have different skill-sets
and may take different amounts of
time to execute a job.

Employees
Jobs

1′ 2′ 3′ 4′

1 - 5 - 7
2 8 - 2 -
3 - 1 - -
4 8 - 3 -

Note: Some workers are not able to
handle certain jobs!

Goal: Assign each worker to exactly
one task so that the total execution
time is smallest!

−→ We will rephrase this in the
language of graphs
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The cost of a matching M is the
sum of costs of its edges:

c(M) =
∑

(ce : e ∈M)

e.g., M = {14′, 21′, 32′, 43′}
−→ c(M) = 19
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E.g., matching in figure is perfect,
and this one is not!
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Restatement of original
question:

Find a perfect matching M
in our graph of smallest cost.



A Little More Notation...

Notation: Use δ(v) to denote the set of
edges incident to v; i.e.,

δ(v) = {e ∈ E : e = vu for some u ∈ V }.

Definition

Given G = (V,E), M ⊆ E is a perfect
matching iff M ∩ δ(v) contains a single
edge for all v ∈ V .
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Examples

• δ(2) = {21′, 24′}
• δ(3′) = {43′}
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An IP for Perfect Matchings
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An IP for Perfect Matchings

Definition
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matching iff M ∩ δ(v) contains a single
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The IP will have a binary variable xe for
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An IP for Perfect Matchings

Definition
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(cexe : e ∈ E)



An IP for Perfect Matchings

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(v)) = 1 (v ∈ V )

x ≥ 0, x integer
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An IP for Perfect Matchings

min
∑

(cexe : e ∈ E)

s.t.
∑

(xe : e ∈ δ(v)) = 1 (v ∈ V )

x ≥ 0, x integer

min (5, 1, 3, 4)x

s.t.



12 13 14 23

1 1 1 1 0

2 1 0 0 1

3 0 1 0 1

4 0 0 1 0

x = 1

x ≥ 0 integer
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Recap

• Graphs consist of vertices V and edges E ... and are very useful in
modeling many practical problems.

• In particular, graphs can be used to model road networks, where
roads are edges and street intersections are vertices.

• In the shortest path problem, each edge e ∈ E has an associated
weight ce, and we are looking for a path connecting two specific
vertices of smallest total weight.

• A matching is a collection of edges, no two of which share an
endpoint.

A perfect matching is a matching that covers all vertices
in V .
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