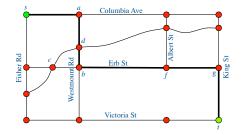
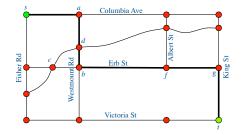
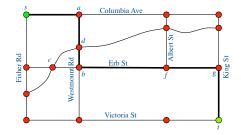
Module 1: Formulations (Optimization on Graphs)



• Familiar problem: Starting at location *s*, we wish to travel to *t*. What is the best (i.e., shortest) route?



- Familiar problem: Starting at location *s*, we wish to travel to *t*. What is the best (i.e., shortest) route?
- In the figure above, such a route is indicated in bold.



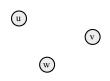
• Goal: Write the problem of finding the shortest route between *s* and *t* as an integer program!

 Goal: Write the problem of finding the shortest route between s and t as an integer program!
... How?

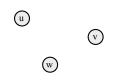
Rephrasing this problem in the language of graph theory helps!

A graph G consists of \ldots

- A graph G consists of \ldots
 - vertices $u, w, \ldots \in V$



- A graph G consists of \ldots
 - vertices u, w, ... ∈ V (drawn as filled circles)



- A graph G consists of \ldots
 - vertices u, w, ... ∈ V (drawn as filled circles)
 - edges $uw, wz, \ldots \in E$

u		v
	W	

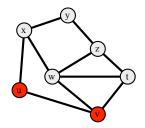
- A graph ${\cal G}$ consists of \ldots
 - vertices u, w, ... ∈ V (drawn as filled circles)
 - edges uw, wz, ... ∈ E (drawn as lines connecting circles)



Rephrasing this problem in the language of graph theory helps!

- A graph ${\cal G}$ consists of \ldots
 - vertices u, w, ... ∈ V (drawn as filled circles)
 - edges uw, wz, ... ∈ E (drawn as lines connecting circles)

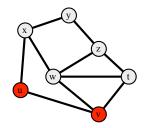
Two vertices u and v are adjacent if $uv \in E$.



Rephrasing this problem in the language of graph theory helps!

- A graph ${\cal G}$ consists of \ldots
 - vertices u, w, ... ∈ V (drawn as filled circles)
 - edges uw, wz, ... ∈ E (drawn as lines connecting circles)

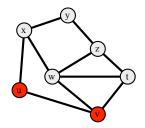
Two vertices u and v are adjacent if $uv \in E$. Vertices u and v are the endpoints of edge $uv \in E$,



Rephrasing this problem in the language of graph theory helps!

- A graph ${\cal G}$ consists of \ldots
 - vertices u, w, ... ∈ V (drawn as filled circles)
 - edges uw, wz, ... ∈ E (drawn as lines connecting circles)

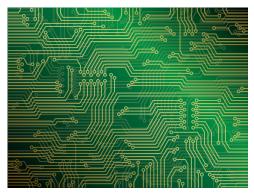
Two vertices u and v are adjacent if $uv \in E$. Vertices u and v are the endpoints of edge $uv \in E$, and edge $e \in E$ is incident to $u \in V$ if u is an endpoint of e.



Graphs are useful to compactly model many real-world entities.

Graphs are useful to compactly model many real-world entities. For example:

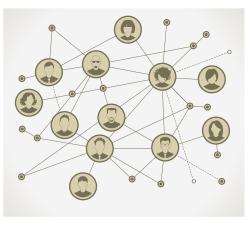
• Modeling circuits in chip design



Eyematrix/iStock/Thinkstock

Graphs are useful to compactly model many real-world entities. For example:

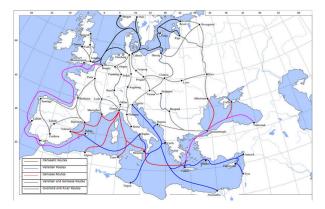
- Modeling circuits in chip design
- Social networks



VLADGRIN/iStock/Thinkstock

Graphs are useful to compactly model many real-world entities. For example:

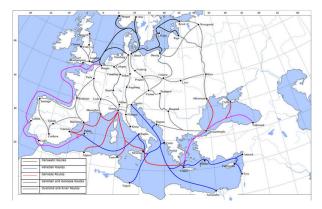
- Modeling circuits in chip design
- Social networks
- Trade networks



Lampman, 2008 [Online Image]. Late Medieval Trade Routes. Wikimedia Commons. http://commons.wikimedia.org/wiki/File:Late_Medieval_Trade_Routes.jpg

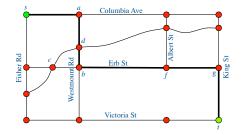
Graphs are useful to compactly model many real-world entities. For example:

- Modeling circuits in chip design
- Social networks
- Trade networks
- and many more!

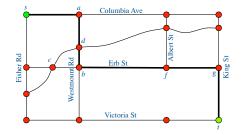


Lampman, 2008 [Online Image]. Late Medieval Trade Routes. Wikimedia Commons. http://commons.wikimedia.org/wiki/File:Late_Medieval_Trade_Routes.jpg

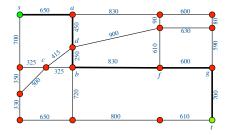
• We can think of the street map as a graph, G.



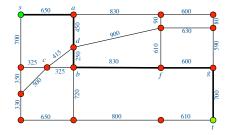
- We can think of the street map as a graph, G.
- Vertices: Road intersections



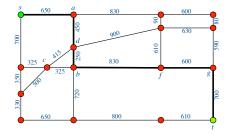
- We can think of the street map as a graph, G.
- Vertices: Road intersections
- Edges: Road segments connecting adjacent intersections



• Each edge $e \in E$ is labelled by its length $c_e \ge 0$.



- Each edge $e \in E$ is labelled by its length $c_e \ge 0$.
- We are looking for a path connecting s and t of smallest total length!

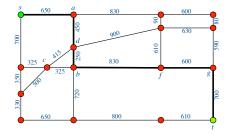


An s, t-path in G = (V, E) is a sequence

$$v_1v_2, v_2v_3, v_3v_4, \ldots, v_{k-2}v_{k-1}, v_{k-1}v_k$$

where

• $v_i \in V$ and $v_i v_{i+1} \in E$ for all i, and

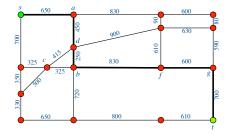


An s, t-path in G = (V, E) is a sequence

$$v_1v_2, v_2v_3, v_3v_4, \ldots, v_{k-2}v_{k-1}, v_{k-1}v_k$$

where

- $v_i \in V$ and $v_i v_{i+1} \in E$ for all i, and
- $v_1 = s$, $v_k = t$, and $v_i \neq v_j$ for all $i \neq j$.

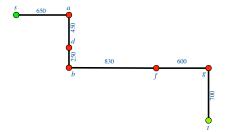


An s, t-path in G = (V, E) is a sequence

$$v_1v_2, v_2v_3, v_3v_4, \ldots, v_{k-2}v_{k-1}, v_{k-1}v_k$$

where

- $v_i \in V$ and $v_i v_{i+1} \in E$ for all i, and
- $v_1 = s$, $v_k = t$, and $v_i \neq v_j$ for all $i \neq j$. (Without this, it is called an s, t-walk)



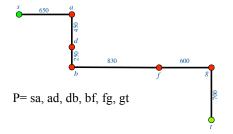
An s, t-path in G = (V, E) is a sequence

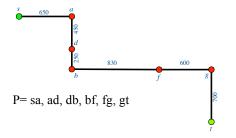
$$v_1v_2, v_2v_3, v_3v_4, \ldots, v_{k-2}v_{k-1}, v_{k-1}v_k$$

where

• $v_i \in V$ and $v_i v_{i+1} \in E$ for all i, and

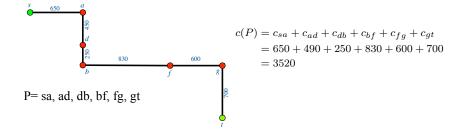
•
$$v_1 = s$$
, $v_k = t$, and $v_i \neq v_j$ for all $i \neq j$.
(Without this, it is called an s , t -walk)





The length of a path $P = v_1 v_2, \ldots, v_{k-1} v_k$ is the sum of the lengths of the edges on P:

$$c(P) := \sum (c_e : e \in P).$$

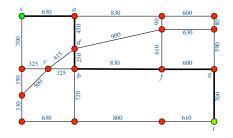


The length of a path $P = v_1 v_2, \ldots, v_{k-1} v_k$ is the sum of the lengths of the edges on P:

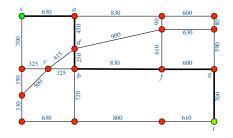
$$c(P) := \sum (c_e : e \in P).$$



• Given: Graph G = (V, E), lengths $c_e \ge 0$ for all $e \in E$, $s, t \in V$

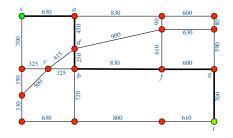


- Given: Graph G = (V, E), lengths $c_e \ge 0$ for all $e \in E$, $s, t \in V$
- Find: Minimum-length s, t-path P



- Given: Graph G = (V, E), lengths $c_e \ge 0$ for all $e \in E$, $s, t \in V$
- Find: Minimum-length s, t-path P

Goal: Write an IP whose solutions are the shortest s, t-paths!



- Given: Graph G = (V, E), lengths $c_e \ge 0$ for all $e \in E$, $s, t \in V$
- Find: Minimum-length s, t-path P

Goal: Write an IP whose solutions are the shortest s, t-paths! \longrightarrow Later!

Example: Matchings

WaterTech has a collection of important jobs:

$$J = \{1', 2', 3', 4'\}$$

that it needs to handle urgently.

WaterTech has a collection of important jobs:

 $J = \{1', 2', 3', 4'\}$

that it needs to handle urgently.

It also has 4 employees:

 $E = \{1, 2, 3, 4\}$

that need to handle these jobs.

WaterTech has a collection of important jobs:

 $J=\{1',2',3',4'\}$

that it needs to handle urgently.

It also has 4 employees:

 $E = \{1, 2, 3, 4\}$

that need to handle these jobs.

Employees have different skill-sets and may take different amounts of time to execute a job.

WaterTech has a collection of important jobs:

 $J=\{1',2',3',4'\}$

that it needs to handle urgently. It also has 4 employees:

 $E = \{1, 2, 3, 4\}$

that need to handle these jobs.

Employees have different skill-sets and may take different amounts of time to execute a job.

Employees	Jobs			
Linployees	1'	2'	3'	4'
1	-	5	-	7
2	8	-	2	-
3	-	1	-	-
4	8	-	3	-

WaterTech has a collection of important jobs:

 $J=\{1',2',3',4'\}$

that it needs to handle urgently. It also has 4 employees:

 $E = \{1, 2, 3, 4\}$

that need to handle these jobs.

Employees have different skill-sets and may take different amounts of time to execute a job.

Employees		J	obs	
Linployees	1'	2'	3'	4'
1	-	5	-	7
2	8	-	2	-
3	-	1	-	-
4	8	-	3	-

Note: Some workers are not able to handle certain jobs!

WaterTech has a collection of important jobs:

 $J=\{1',2',3',4'\}$

that it needs to handle urgently. It also has 4 employees:

 $E = \{1, 2, 3, 4\}$

that need to handle these jobs.

Employees have different skill-sets and may take different amounts of time to execute a job.

Employees	Jobs			
Linployees	1'	2'	3'	4'
1	-	5	-	7
2	8	-	2	-
3	-	1	-	-
4	8	-	3	-

Note: Some workers are not able to handle certain jobs!

Goal: Assign each worker to exactly one task so that the total execution time is smallest!

WaterTech has a collection of important jobs:

 $J=\{1',2',3',4'\}$

that it needs to handle urgently. It also has 4 employees:

 $E = \{1, 2, 3, 4\}$

that need to handle these jobs.

Employees have different skill-sets and may take different amounts of time to execute a job.

Employees	Jobs			
Linployees	1'	2'	3'	4'
1	-	5	-	7
2	8	-	2	-
3	-	1	-	-
4	8	-	3	-

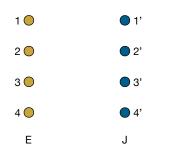
Note: Some workers are not able to handle certain jobs!

Goal: Assign each worker to exactly one task so that the total execution time is smallest!

 \longrightarrow We will rephrase this in the language of graphs

Create a graph with one vertex for each employee and job.

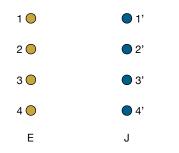
Create a graph with one vertex for each employee and job.



Employees		Jobs		
Linployees	1'	2'	3'	4'
1	-	5	-	7
2	8	-	-	4
3	-	1	-	-
4	8	-	3	-

Create a graph with one vertex for each employee and job.

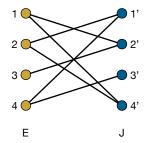
Add an edge ij for $i \in E$ and $j \in J$ if employee i can handle job j.



Employees	Jobs			
Linployees	1'	2'	3'	4'
1	-	5	-	7
2	8	-	-	4
3	-	1	-	-
4	8	-	3	-

Create a graph with one vertex for each employee and job.

Add an edge ij for $i \in E$ and $j \in J$ if employee i can handle job j.

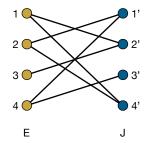


Employees	Jobs			
Linployees	1'	2'	3'	4'
1	-	5	-	7
2	8	-	-	4
3	-	1	-	-
4	8	-	3	-

Create a graph with one vertex for each employee and job.

Add an edge ij for $i \in E$ and $j \in J$ if employee i can handle job j.

Let the cost c_{ij} of edge ij be the amount of time needed by i to complete j.

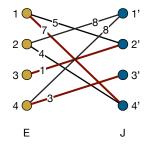


Employees		Jobs		
Linployees	1'	2'	3'	4'
1	-	5	-	7
2	8	-	-	4
3	-	1	-	-
4	8	-	3	-

Create a graph with one vertex for each employee and job.

Add an edge ij for $i \in E$ and $j \in J$ if employee i can handle job j.

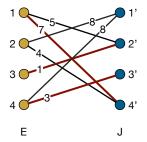
Let the cost c_{ij} of edge ij be the amount of time needed by i to complete j.



Employees	Jobs			
Linployees	1'	2'	3'	4'
1	-	5	-	7
2	8	-	-	4
3	-	1	-	-
4	8	-	3	-

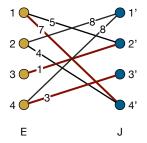
Definition

A collection $M \subseteq E$ is a matching if no two edges $ij, i'j' \in M$ $(ij \neq i'j')$ share an endpoint;



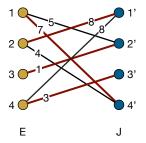
Definition

A collection $M \subseteq E$ is a matching if no two edges $ij, i'j' \in M$ $(ij \neq i'j')$ share an endpoint; i.e., $\{i, j\} \cap \{i', j'\} = \emptyset$.



Definition

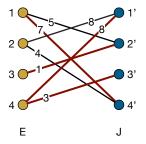
A collection $M \subseteq E$ is a matching if no two edges $ij, i'j' \in M$ $(ij \neq i'j')$ share an endpoint; i.e., $\{i, j\} \cap \{i', j'\} = \emptyset$.



1.
$$M = \{14', 21', 32', 43'\}$$
 is a matching.

Definition

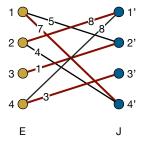
A collection $M \subseteq E$ is a matching if no two edges $ij, i'j' \in M$ $(ij \neq i'j')$ share an endpoint; i.e., $\{i, j\} \cap \{i', j'\} = \emptyset$.



- 1. $M = \{14', 21', 32', 43'\}$ is a matching.
- 2. $M = \{14', 32', 41', 43'\}$ is not a matching.

The cost of a matching M is the sum of costs of its edges:

$$c(M) = \sum (c_e : e \in M)$$

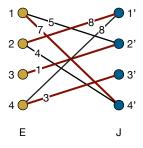


The cost of a matching M is the sum of costs of its edges:

$$c(M) = \sum (c_e : e \in M)$$

e.g.,
$$M = \{14', 21', 32', 43'\}$$

 $\longrightarrow c(M) = 19$



The cost of a matching M is the sum of costs of its edges:

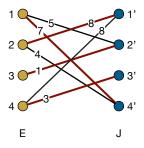
$$c(M) = \sum (c_e : e \in M)$$

e.g.,
$$M = \{14', 21', 32', 43'\}$$

 $\longrightarrow c(M) = 19$

Definition

A matching M is perfect if every vertex v in the graph is incident to an edge in M.



The cost of a matching M is the sum of costs of its edges:

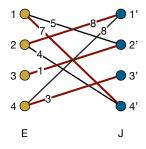
$$c(M) = \sum (c_e : e \in M)$$

e.g.,
$$M = \{14', 21', 32', 43'\}$$

 $\longrightarrow c(M) = 19$

Definition

A matching M is perfect if every vertex v in the graph is incident to an edge in M.



E.g., matching in figure is perfect,

The cost of a matching M is the sum of costs of its edges:

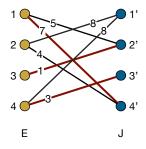
$$c(M) = \sum (c_e : e \in M)$$

e.g.,
$$M = \{14', 21', 32', 43'\}$$

 $\longrightarrow c(M) = 19$

Definition

A matching M is perfect if every vertex v in the graph is incident to an edge in M.

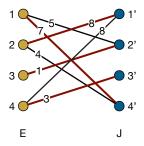


E.g., matching in figure is perfect, and this one is not!

Definition

A matching M is perfect if every vertex v in the graph is incident to an edge in M.

Note: Perfect matchings correspond to feasible assignments of workers to jobs!



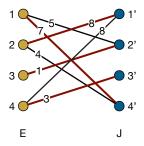
Definition

A matching M is perfect if every vertex v in the graph is incident to an edge in M.

Note: Perfect matchings correspond to feasible assignments of workers to jobs!

E.g., the matching shown corresponds to the following assignment:

$$1 \rightarrow 4', 2 \rightarrow 1', 3 \rightarrow 2', \text{ and } 4 \rightarrow 3'$$



Definition

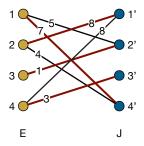
A matching M is perfect if every vertex v in the graph is incident to an edge in M.

Note: Perfect matchings correspond to feasible assignments of workers to jobs!

E.g., the matching shown corresponds to the following assignment:

 $1 \rightarrow 4', 2 \rightarrow 1', 3 \rightarrow 2', \text{ and } 4 \rightarrow 3'$

whose execution time equals c(M) = 19!



Definition

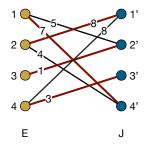
A matching M is perfect if every vertex v in the graph is incident to an edge in M.

Note: Perfect matchings correspond to feasible assignments of workers to jobs!

E.g., the matching shown corresponds to the following assignment:

 $1 \rightarrow 4', 2 \rightarrow 1', 3 \rightarrow 2', \text{ and } 4 \rightarrow 3'$

whose execution time equals c(M) = 19!

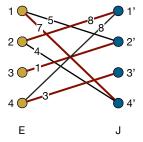


Restatement of original question:

Find a perfect matching ${\cal M}$ in our graph of smallest cost.

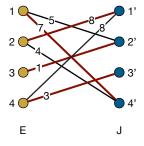
Notation: Use $\delta(v)$ to denote the set of edges incident to v; i.e.,

 $\delta(v) = \{ e \in E : e = vu \text{ for some } u \in V \}.$



Notation: Use $\delta(v)$ to denote the set of edges incident to v; i.e.,

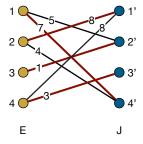
 $\delta(v) = \{ e \in E : e = vu \text{ for some } u \in V \}.$



•
$$\delta(2) = \{21', 24'\}$$

Notation: Use $\delta(v)$ to denote the set of edges incident to v; i.e.,

 $\delta(v) = \{ e \in E : e = vu \text{ for some } u \in V \}.$



•
$$\delta(2) = \{21', 24'\}$$

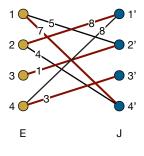
$$\bullet \ \delta(3') = \{43'\}$$

Notation: Use $\delta(v)$ to denote the set of edges incident to v; i.e.,

 $\delta(v) = \{ e \in E : e = vu \text{ for some } u \in V \}.$

Definition

Given G = (V, E), $M \subseteq E$ is a perfect matching iff $M \cap \delta(v)$ contains a single edge for all $v \in V$.

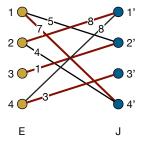


•
$$\delta(2) = \{21', 24'\}$$

$$\bullet \ \delta(3') = \{43'\}$$

Definition

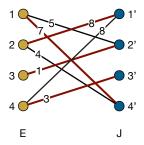
Given G = (V, E), $M \subseteq E$ is a perfect matching iff $M \cap \delta(v)$ contains a single edge for all $v \in V$.



Definition

Given G = (V, E), $M \subseteq E$ is a perfect matching iff $M \cap \delta(v)$ contains a single edge for all $v \in V$.

The IP will have a binary variable x_e for every edge $e \in E$.

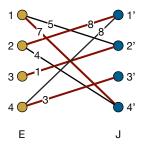


Definition

Given G = (V, E), $M \subseteq E$ is a perfect matching iff $M \cap \delta(v)$ contains a single edge for all $v \in V$.

The IP will have a binary variable x_e for every edge $e \in E$. Idea:

 $x_e = 1 \quad \leftrightarrow \quad e \in M$



Definition

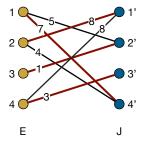
Given G = (V, E), $M \subseteq E$ is a perfect matching iff $M \cap \delta(v)$ contains a single edge for all $v \in V$.

The IP will have a binary variable x_e for every edge $e \in E$. Idea:

 $x_e = 1 \quad \leftrightarrow \quad e \in M$

Constraints: For all $v \in V$, need

$$\sum (x_e : e \in \delta(v)) = 1$$



Definition

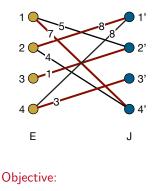
Given G = (V, E), $M \subseteq E$ is a perfect matching iff $M \cap \delta(v)$ contains a single edge for all $v \in V$.

The IP will have a binary variable x_e for every edge $e \in E$. Idea:

 $x_e = 1 \quad \leftrightarrow \quad e \in M$

Constraints: For all $v \in V$, need

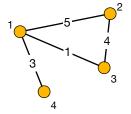
$$\sum (x_e : e \in \delta(v)) = 1$$



$$\sum (c_e x_e \, : \, e \in E)$$

$$\min \sum (c_e x_e : e \in E)$$

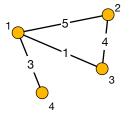
s.t.
$$\sum (x_e : e \in \delta(v)) = 1 \ (v \in V)$$
$$x \ge 0, x \text{ integer}$$



min
$$\sum (c_e x_e : e \in E)$$

s.t. $\sum (x_e : e \in \delta(v)) = 1 \ (v \in V)$
 $x \ge 0, x \text{ integer}$

min (5, 1, 3, 4)x12 13 14 23 s.t. $\begin{array}{c}12 & 13 & 14 & 23\\1 & 1 & 1 & 1 & 0\\1 & 0 & 0 & 1\\0 & 1 & 0 & 1\\0 & 0 & 1 & 0\end{array}\right)x = 1$ $x \ge 0$ integer



• Graphs consist of vertices V and edges E ... and are very useful in modeling many practical problems.

- Graphs consist of vertices V and edges E ... and are very useful in modeling many practical problems.
- In particular, graphs can be used to model road networks, where roads are edges and street intersections are vertices.

- Graphs consist of vertices V and edges E ... and are very useful in modeling many practical problems.
- In particular, graphs can be used to model road networks, where roads are edges and street intersections are vertices.
- In the shortest path problem, each edge e ∈ E has an associated weight c_e, and we are looking for a path connecting two specific vertices of smallest total weight.

- Graphs consist of vertices V and edges E ... and are very useful in modeling many practical problems.
- In particular, graphs can be used to model road networks, where roads are edges and street intersections are vertices.
- In the shortest path problem, each edge e ∈ E has an associated weight c_e, and we are looking for a path connecting two specific vertices of smallest total weight.
- A matching is a collection of edges, no two of which share an endpoint.

- Graphs consist of vertices V and edges E ... and are very useful in modeling many practical problems.
- In particular, graphs can be used to model road networks, where roads are edges and street intersections are vertices.
- In the shortest path problem, each edge e ∈ E has an associated weight c_e, and we are looking for a path connecting two specific vertices of smallest total weight.
- A matching is a collection of edges, no two of which share an endpoint. A perfect matching is a matching that *covers* all vertices in V.