

Step 1. Find a feasible solution, x.

Step 1. Find a feasible solution, x.

Step 2. If x is optimal, STOP.

Step 1. Find a feasible solution, x.

Step 2. If x is optimal, STOP.

Step 3. If LP is unbounded, STOP.

Step 1. Find a feasible solution, x.

Step 2. If x is optimal, STOP.

Step 3. If LP is unbounded, STOP.

Step 4. Find a "better" feasible solution.

Step 1. Find a feasible solution, x.

Step 2. If x is optimal, STOP.

Step 3. If LP is unbounded, STOP.

Step 4. Find a "better" feasible solution.

Step 1. Find a feasible solution, x.

Step 2. If x is optimal, STOP.

Step 3. If LP is unbounded, STOP.

Step 4. Find a "better" feasible solution.

Many details missing!

- **Step 1.** Find a feasible solution, x.
- **Step 2.** If x is optimal, STOP.
- **Step 3.** If LP is unbounded, STOP.
- **Step 4.** Find a "better" feasible solution.

Many details missing!

Questions

How do we find a feasible solution?

- **Step 1.** Find a feasible solution, x.
- **Step 2.** If x is optimal, STOP.
- **Step 3.** If LP is unbounded, STOP.
- **Step 4.** Find a "better" feasible solution.

Many details missing!

Questions

- How do we find a feasible solution?
- How do we find a "better" solution?

- **Step 1.** Find a feasible solution, x.
- **Step 2.** If x is optimal, STOP.
- **Step 3.** If LP is unbounded, STOP.
- **Step 4.** Find a "better" feasible solution.

Many details missing!

Questions

- How do we find a feasible solution?
- How do we find a "better" solution?
- Will this ever terminate?

- **Step 1.** Find a feasible solution, x.
- **Step 2.** If x is optimal, STOP.
- **Step 3.** If LP is unbounded, STOP.
- **Step 4.** Find a "better" feasible solution.

Many details missing!

Questions

- How do we find a feasible solution?
- How do we find a "better" solution?
- Will this ever terminate?

The **SIMPLEX** algorithm works along these lines.

- **Step 1.** Find a feasible solution, x.
- **Step 2.** If x is optimal, STOP.
- **Step 3.** If LP is unbounded, STOP.
- **Step 4.** Find a "better" feasible solution.

Many details missing!

Questions

- How do we find a feasible solution?
- How do we find a "better" solution?
- Will this ever terminate?

The **SIMPLEX** algorithm works along these lines.

In this lecture: A first attempt at this algorithm.

Consider

$$\max (4,3,0,0)x + 7$$
s.t.
$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Consider

$$\begin{array}{ll} \max & (4,3,0,0)x+7\\ \text{s.t.} & \\ \begin{pmatrix} 3 & 2 & 1 & 0\\ 1 & 1 & 0 & 1 \end{pmatrix}x = \begin{pmatrix} 2\\ 1 \end{pmatrix}\\ x_1,x_2,x_3,x_4 \geq 0 \end{array}$$

Remarks

ullet We have a feasible solution: $x_1=0, x_2=0, x_3=2,$ and $x_4=1.$

Consider

$$\max \quad (4,3,0,0)x+7$$
 s.t.
$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1,x_2,x_3,x_4 \geq 0$$

Remarks

- We have a feasible solution: $x_1 = 0, x_2 = 0, x_3 = 2,$ and $x_4 = 1.$
- The objective function is $z = 4x_1 + 3x_2 + 7$.

Consider

$$\max \quad (4,3,0,0)x+7$$
 s.t.
$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1,x_2,x_3,x_4 \geq 0$$

Remarks

- We have a feasible solution: $x_1 = 0, x_2 = 0, x_3 = 2,$ and $x_4 = 1.$
- The objective function is $z = 4x_1 + 3x_2 + 7$.

Question

The feasible solution has objective value: $4 \times 0 + 3 \times 0 + 7 = 7$.

Consider

$$\max \quad (4,3,0,0)x+7$$
 s.t.
$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1,x_2,x_3,x_4 \geq 0$$

Remarks

- We have a feasible solution: $x_1 = 0, x_2 = 0, x_3 = 2, \text{ and } x_4 = 1.$
- The objective function is $z = 4x_1 + 3x_2 + 7$.

Question

The feasible solution has objective value: $4 \times 0 + 3 \times 0 + 7 = 7$.

• Can we find a feasible solution with value larger than 7?

Consider

$$\max \quad (4,3,0,0)x+7$$
 s.t.
$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1,x_2,x_3,x_4 \geq 0$$

Remarks

- We have a feasible solution: $x_1 = 0, x_2 = 0, x_3 = 2,$ and $x_4 = 1.$
- The objective function is $z = 4x_1 + 3x_2 + 7$.

Question

The feasible solution has objective value: $4 \times 0 + 3 \times 0 + 7 = 7$.

• Can we find a feasible solution with value larger than 7?

Consider

$$\max \quad (4,3,0,0)x+7$$
 s.t.
$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1,x_2,x_3,x_4 \geq 0$$

Remarks

- We have a feasible solution: $x_1 = 0, x_2 = 0, x_3 = 2, \text{ and } x_4 = 1.$
- The objective function is $z = 4x_1 + 3x_2 + 7$.

Consider

$$\max \quad (4,3,0,0)x+7$$
 s.t.
$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1,x_2,x_3,x_4 \geq 0$$

Remarks

- We have a feasible solution: $x_1 = 0, x_2 = 0, x_3 = 2,$ and $x_4 = 1.$
- The objective function is $z = 4x_1 + 3x_2 + 7$.

Idea

Increase x_1 as much as possible, and keep x_2 unchanged, i.e.,

Consider

$$\max_{\textbf{s.t.}} \quad (4,3,0,0)x+7$$

$$\textbf{s.t.} \quad \begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1,x_2,x_3,x_4 \geq 0$$

Remarks

- We have a feasible solution: $x_1 = 0, x_2 = 0, x_3 = 2,$ and $x_4 = 1.$
- The objective function is $z = 4x_1 + 3x_2 + 7$.

Idea

Increase x_1 as much as possible, and keep x_2 unchanged, i.e.,

$$x_1=t$$
 for some $t\geq 0$ as large as possible $x_2=0$

$$\begin{array}{ccc} \max & (4,3,0,0)x+7 \\ \text{s.t.} & \begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \\ x_1, x_2, x_3, x_4 \geq 0 \end{array}$$

 $x_1 = t$

 $x_2 = 0$

 $x_3 = ?$ $x_4 = ?$

$$\max \quad (4,3,0,0)x + 7$$
s.t.
$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Choose $t \geq 0$ as large as possible.

It needs to satisfy

 $1. \ \ the \ equality \ constraints, \ and$

 $x_1 = t$ $x_2 = 0$ $x_3 = ?$ $x_4 = ?$

$$\max_{\text{s.t.}} (4, 3, 0, 0)x + 7$$

$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
$$x_1, x_2, x_3, x_4 \ge 0$$

 $x_1 = t$

Choose $t \geq 0$ as large as possible.

It needs to satisfy

- 1. the equality constraints, and
- 2. the non-negativity constraints.

$$\max \quad (4,3,0,0)x+7$$
 s.t.
$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1,x_2,x_3,x_4 \geq 0$$

$$x_1 = t$$
$$x_2 = 0$$
$$x_3 = ?$$

$$x_4 = ?$$

$$x_4 =$$

$$\max \quad (4,3,0,0)x + 7$$
s.t.
$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

$$x_1 = t$$

$$x_2 = 0$$

$$x_3 = ?$$

$$x_4 = ?$$

$$\begin{pmatrix} 2\\1 \end{pmatrix} = \begin{pmatrix} 3 & 2 & 1 & 0\\1 & 1 & 0 & 1 \end{pmatrix} x$$

$$\begin{array}{ccc} \max & (4,3,0,0)x+7 \\ \text{s.t.} & \begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \\ & x_1,x_2,x_3,x_4 \geq 0 \end{array}$$

$$x_1 = t$$

$$x_2 = 0$$

$$x_3 = ?$$

$$x_4 = ?$$

$$x_2 = 0$$

$$x_3 = 7$$

$$x_4 = 7$$

$$\max \quad (4,3,0,0)x + 7$$
 s.t.
$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

$$x_1 = t$$

$$x_2 = 0$$

$$x_3 = ?$$

$$x_4 = ?$$

$$x_1 = t$$

$$x_2 = 0$$

$$x_3 = ?$$

$$x_4 = ?$$

$$\max \quad (4,3,0,0)x + 7$$
 s.t.
$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$\begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x$$

$$= x_1 \begin{pmatrix} 3 \\ 1 \end{pmatrix} + x_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + x_3 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= t \begin{pmatrix} 3 \\ 1 \end{pmatrix} + 0 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + \begin{pmatrix} x_3 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ x_4 \end{pmatrix}$$

$$= t \begin{pmatrix} 3 \\ 1 \end{pmatrix} + \begin{pmatrix} x_3 \\ x_4 \end{pmatrix}$$

$$x_1 = t$$

$$x_2 = 0$$

$$x_3 = ?$$

$$x_4 = ?$$

$$\max \quad (4,3,0,0)x+7$$
 s.t.
$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1,x_2,x_3,x_4 \geq 0$$

$$x_1 = t$$

$$x_2 = 0$$

$$x_3 = ?$$

$$x_4 = ?$$

$$x_1 = t$$

$$x_2 = 0$$

$$x_3 = ?$$

$$x_4 = ?$$

$$\begin{pmatrix} x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} - t \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

Remark

Equality constraints hold for any choice of t.

Satisfying the Non-Negativity Constraints

$$\max \quad (4,3,0,0)x+7$$
 s.t.
$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1,x_2,x_3,x_4 \geq 0$$

$$x_1 = t$$

$$x_2 = 0$$

$$\begin{pmatrix} x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} - t \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

Satisfying the Non-Negativity Constraints

$$\max \quad (4,3,0,0)x+7$$
 s.t.
$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1,x_2,x_3,x_4 \geq 0$$

$$x_1 = t \ge 0$$

$$x_{1} = t$$

$$x_{2} = 0$$

$$\begin{pmatrix} x_{3} \\ x_{4} \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} - t \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

Satisfying the Non-Negativity Constraints

$$\max \quad (4,3,0,0)x+7$$
 s.t.
$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1,x_2,x_3,x_4 \geq 0$$

$$x_1 = t \ge 0$$

$$x_2 = 0$$

$$x_1 = t$$

$$x_2 = 0$$

$$\begin{pmatrix} x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} - t \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

$$\max \quad (4,3,0,0)x + 7$$
s.t.
$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Choose $t \geq 0$ as large as possible.

$$x_1 = t \ge 0$$

$$x_2 = 0$$

$$x_3 = 2 - 3t \ge 0$$

$$t \le \frac{2}{3}$$

$$x_1 = t$$

$$x_2 = 0$$

$$\begin{pmatrix} x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} - t \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

$$\max \quad (4,3,0,0)x + 7$$
 s.t.
$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Choose $t \ge 0$ as large as possible.

$$x_1 = t \ge 0$$

$$x_2 = 0$$

$$x_3 = 2 - 3t \ge 0$$

$$x_4 = 1 - t \ge 0$$

$$t \le \frac{2}{3}$$

$$t \le 1$$

$$x_1 = t$$

$$x_2 = 0$$

$$\begin{pmatrix} x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} - t \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

$$\max \quad (4,3,0,0)x+7$$
 s.t.
$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1,x_2,x_3,x_4 \geq 0$$

$$x_1 = t$$

$$x_2 = 0$$

$$\begin{pmatrix} x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} - t \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

Choose $t \ge 0$ as large as possible.

$$x_1 = t \ge 0$$

$$x_2 = 0$$

$$x_3 = 2 - 3t \ge 0$$

$$x_4 = 1 - t \ge 0$$

$$t \le \frac{2}{3}$$

$$t \le 1$$

Thus, the largest possible t is $\min \left\{1, \frac{2}{3}\right\} = \frac{2}{3}$.

$$x_1 = t$$

$$x_2 = 0$$

$$\begin{pmatrix} x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} - t \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

Choose $t \ge 0$ as large as possible.

$$x_1 = t \ge 0 \qquad \checkmark$$

$$x_2 = 0 \qquad \checkmark$$

$$x_3 = 2 - 3t \ge 0 \qquad \Longrightarrow \qquad t \le \frac{2}{3}$$

$$x_4 = 1 - t \ge 0 \qquad \Longrightarrow \qquad t \le 1$$

Thus, the largest possible t is $\min\left\{1,\frac{2}{3}\right\} = \frac{2}{3}$. The new solution is

$$x = (t, 0, 2 - 3t, 1 - t)^{\top} = \left(\frac{2}{3}, 0, 0, \frac{1}{3}\right)^{\top}$$

$$\max \quad (4,3,0,0)x+7$$
 s.t.
$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1,x_2,x_3,x_4 \geq 0$$

$$x_1 = \frac{2}{3}$$

$$x_2 = 0$$

$$x_3 = 0$$

$$x_4 = \frac{1}{3}$$

$$\max \quad (4,3,0,0)x+7$$
 s.t.
$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1,x_2,x_3,x_4 \geq 0$$

$$x_1 = \frac{2}{3}$$

$$x_2 = 0$$

$$x_3 = 0$$

$$x_4 = \frac{1}{3}$$

Question

Is the new solution optimal?

$$\max \quad (4,3,0,0)x+7$$
 s.t.
$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1,x_2,x_3,x_4 \geq 0$$

$$x_1 = \frac{2}{3}$$

$$x_2 = 0$$

$$x_3 = 0$$

$$x_4 = \frac{1}{3}$$

Question

Is the new solution optimal? NO!

$$\max \quad (4,3,0,0)x+7$$
 s.t.
$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1,x_2,x_3,x_4 \geq 0$$

$$x_1 = \frac{2}{3}$$

$$x_2 = 0$$

$$x_3 = 0$$

$$x_4 = \frac{1}{3}$$

Question

Is the new solution optimal? NO!

Question

Can we use the same trick to get a better solution?

$$\max \quad (4,3,0,0)x+7$$
 s.t.
$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1,x_2,x_3,x_4 \geq 0$$

$$x_1 = \frac{2}{3}$$

$$x_2 = 0$$

$$x_3 = 0$$

$$x_4 = \frac{1}{3}$$

Question

Is the new solution optimal? NO!

Question

Can we use the same trick to get a better solution? NO!

$$\max \quad (4,3,0,0)x + 7$$
 s.t.
$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

$$x_1 = \frac{2}{3}$$

$$x_2 = 0$$

$$x_3 = 0$$

$$x_4 = \frac{1}{3}$$

Question

Is the new solution optimal? NO!

Question

Can we use the same trick to get a better solution? NO!

What made it work the first time around?

The LP needs to be in "canonical" form.

The LP needs to be in "canonical" form.

$$\max \quad (4 \quad 3 \quad 0 \quad 0)x + 7$$
s.t.
$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

The LP needs to be in "canonical" form.

max	(4	3	0	(0)x + 7
s.t.				
	$\sqrt{3}$	2	1	0) (2)
	(1	1	0	$\begin{pmatrix} 0 \\ 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$
$x_1, x_2, x_3, x_4 \ge 0$				

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 2$$

$$x_4 = 1$$

The LP needs to be in "canonical" form.

The LP needs to be in "canonical" form.

Revised strategy:

Step 1. Find a feasible solution, x.

The LP needs to be in "canonical" form.

- **Step 1.** Find a feasible solution, x.
- Step 2. Rewrite LP so that it is in "canonical" form.

The LP needs to be in "canonical" form.

- **Step 1.** Find a feasible solution, x.
- **Step 2.** Rewrite LP so that it is in "canonical" form.
- **Step 3.** If x is optimal, STOP.

The LP needs to be in "canonical" form.

 $x_1 = 0$

 $x_2 = 0$

 $x_3 = 2$ $x_4 = 1$

- **Step 1.** Find a feasible solution, x.
- Step 2. Rewrite LP so that it is in "canonical" form.
- **Step 3.** If x is optimal, STOP.
- **Step 4.** If LP is unbounded, STOP.

The LP needs to be in "canonical" form.

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 2$$
$$x_4 = 1$$

Revised strategy:

Step 1. Find a feasible solution, x.

Step 2. Rewrite LP so that it is in "canonical" form.

Step 3. If x is optimal, STOP.

Step 4. If LP is unbounded, STOP.

Step 5. Find a "better" feasible solution.

The LP needs to be in "canonical" form.

$$x_1 = 0$$

$$x_2 = 0$$
$$x_3 = 2$$

$$x_4 = 1$$

- **Step 1.** Find a feasible solution, x.
- **Step 2.** Rewrite LP so that it is in "canonical" form.
- **Step 3.** If x is optimal, STOP.
- **Step 4.** If LP is unbounded, STOP.
- **Step 5.** Find a "better" feasible solution.

(1) Define what we mean by "canonical" form.

- (1) Define what we mean by "canonical" form.
- (2) Prove that we can always rewrite LPs in canonical form.

- (1) Define what we mean by "canonical" form.
- (2) Prove that we can always rewrite LPs in canonical form.

algorithm known as the **SIMPLEX**.

- (1) Define what we mean by "canonical" form.
- (2) Prove that we can always rewrite LPs in canonical form.

algorithm known as the **SIMPLEX**.

First on "To do list":

Define basis and basic solutions.

- (1) Define what we mean by "canonical" form.
- (2) Prove that we can always rewrite LPs in canonical form.

algorithm known as the **SIMPLEX**.

First on "To do list":

- Define basis and basic solutions.
- Define canonical forms.