Module 2: Linear Programs (Simplex — A First Attempt)
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Step 1. Find a feasible solution, .
Step 2. If x is optimal, STOP.
Step 3. If LP is unbounded, sTOP.

Step 4. Find a "better” feasible solution.

Many details missing!

Questions
e How do we find a feasible solution?
o How do we find a “better” solution?
o Will this ever terminate?

The siMPLEX algorithm works along these lines.

In this lecture: A first attempt at this algorithm.
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