Module 2: Linear Programs (Basis)

Consider

$$A = \begin{pmatrix} 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Notation

Let B be a subset of column indices.

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Notation

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Notation

$$B = \{1, 2, 3\}$$

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Notation

Let B be a subset of column indices. Then A_B is a column sub-matrix of A indexed by set B.

$$B = \{1, 2, 3\} \qquad A_B = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

1. .

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Notation

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Notation

$$B=\{1,3,4\}$$

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Notation

$$B = \{1, 3, 4\} \qquad \qquad A_B = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Notation

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Notation

$$B = \{5\}$$

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Notation

$$B = \{5\} \qquad \qquad A_{\{5\}} = \begin{pmatrix} -1\\ -1\\ -1\\ -1 \end{pmatrix}$$

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Notation

Let B be a subset of column indices. Then A_B is a column sub-matrix of A indexed by set B.

$$B = \{5\} \qquad \qquad A_{\{5\}} = \begin{pmatrix} -1 \\ -1 \\ -1 \\ -1 \end{pmatrix}$$

/ 1)

Notation

 A_j denotes column j of A.

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Notation

Let B be a subset of column indices. Then A_B is a column sub-matrix of A indexed by set B.

$$B = \{5\} \qquad \qquad A_5 = \begin{pmatrix} -1\\ -1\\ -1 \end{pmatrix}$$

/ ...

Notation

 A_j denotes column j of A.

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Definition

Let B be a subset of column indices.

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Definition

Let B be a subset of column indices. B is a basis if

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Definition

Let B be a subset of column indices. B is a basis if (1) A_B is a square matrix,

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Definition

Let B be a subset of column indices. B is a basis if

(1) A_B is a square matrix,

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Definition

Let B be a subset of column indices. B is a basis if

(1) A_B is a square matrix,

(2) A_B is non-singular (columns are independent).

Is $B = \{1, 2, 3\}$ a basis?

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Definition

Let B be a subset of column indices. B is a basis if

(1) A_B is a square matrix,

Is
$$B = \{1, 2, 3\}$$
 a basis? $A_B = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Definition

Let B be a subset of column indices. B is a basis if (1) A_B is a square matrix,

Is
$$B = \{1, 2, 3\}$$
 a basis? $A_B = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ YES

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Definition

Let B be a subset of column indices. B is a basis if

(1) A_B is a square matrix,

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Definition

Let B be a subset of column indices. B is a basis if

(1) A_B is a square matrix,

(2) A_B is non-singular (columns are independent).

Is $B = \{1, 5\}$ a basis?

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Definition

Let B be a subset of column indices. B is a basis if (1) A_B is a square matrix,

Is
$$B = \{1, 5\}$$
 a basis? $A_B = \begin{pmatrix} 1 & -1 \\ 0 & -1 \\ 0 & -1 \end{pmatrix}$

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Definition

Let B be a subset of column indices. B is a basis if

(1) A_B is a square matrix,

Is
$$B = \{1, 5\}$$
 a basis? $A_B = \begin{pmatrix} 1 & -1 \\ 0 & -1 \\ 0 & -1 \end{pmatrix}$ NO
 A_B is not square

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Definition

Let B be a subset of column indices. B is a basis if

(1) A_B is a square matrix,

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Definition

Let B be a subset of column indices. B is a basis if

(1) A_B is a square matrix,

(2) A_B is non-singular (columns are independent).

Is $B = \{2, 3, 4\}$ a basis?

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Definition

Let B be a subset of column indices. B is a basis if (1) A_B is a square matrix,

Is
$$B = \{2, 3, 4\}$$
 a basis? $A_B = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$

Consider

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}$$

Definition

Let ${\cal B}$ be a subset of column indices. ${\cal B}$ is a basis if

(1) A_B is a square matrix,

Is
$$B = \{2, 3, 4\}$$
 a basis? $A_B = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ Columns of A_B are dependent

Question

Does every matrix have a basis?

Question

Does every matrix have a basis? NO.

Question

Does every matrix have a basis? NO.

$$A = \begin{pmatrix} 1 & -1 & 1 & 2 & 0 \\ 2 & 3 & 0 & 1 & 1 \\ -3 & -2 & -1 & -3 & -1 \end{pmatrix}$$

Does every matrix have a basis? NO.

$$A = \begin{pmatrix} 1 & -1 & 1 & 2 & 0 \\ 2 & 3 & 0 & 1 & 1 \\ -3 & -2 & -1 & -3 & -1 \end{pmatrix}$$

The rows of \boldsymbol{A} are dependent!

Does every matrix have a basis? NO.

$$A = \begin{pmatrix} 1 & -1 & 1 & 2 & 0 \\ 2 & 3 & 0 & 1 & 1 \\ -3 & -2 & -1 & -3 & -1 \end{pmatrix}$$

The rows of A are dependent! There are no 3 independent columns.

Does every matrix have a basis? NO.

$$A = \begin{pmatrix} 1 & -1 & 1 & 2 & 0 \\ 2 & 3 & 0 & 1 & 1 \\ -3 & -2 & -1 & -3 & -1 \end{pmatrix}$$

The rows of A are dependent! There are no 3 independent columns.

Theorem

Max number of independent columns = Max number of independent rows.

Does every matrix have a basis? NO.

$$A = \begin{pmatrix} 1 & -1 & 1 & 2 & 0 \\ 2 & 3 & 0 & 1 & 1 \\ -3 & -2 & -1 & -3 & -1 \end{pmatrix}$$

The rows of A are dependent! There are no 3 independent columns.

Theorem

Max number of independent columns = Max number of independent rows.

Remark

Let A be a matrix with independent rows. Then B is a basis if and only if B is a maximal set of independent columns of A.

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ 1 & 2 & -1 & 1 & -1\\ 0 & 1 & 0 & 1 & -1\\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2\\ 1\\ 1 \\ \end{pmatrix}}_{b}$$

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ 1 & 2 & -1 & 1 & -1\\ 0 & 1 & 0 & 1 & -1\\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2\\ 1\\ 1 \\ \end{pmatrix}}_{b}$$

Definition

Let B be a basis of A.

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ 1 & 2 & -1 & 1 & -1\\ 0 & 1 & 0 & 1 & -1\\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2\\ 1\\ 1 \\ \end{pmatrix}}_{b}$$

Definition

Let B be a basis of A.

• if $j \in B$ then x_j is a basic variable,

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ 1 & 2 & -1 & 1 & -1\\ 0 & 1 & 0 & 1 & -1\\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2\\ 1\\ 1 \\ \end{pmatrix}}_{b}$$

Definition

Let B be a basis of A.

- if $j \in B$ then x_j is a basic variable,
- if $j \notin B$ then x_j is a non-basic variable.

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ 1 & 2 & -1 & 1 & -1\\ 0 & 1 & 0 & 1 & -1\\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2\\ 1\\ 1 \\ \end{pmatrix}}_{b}$$

Definition

Let B be a basis of A.

- if $j \in B$ then x_j is a basic variable,
- if $j \notin B$ then x_j is a non-basic variable.

Example

Basis
$$B = \{1, 2, 4\}.$$

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ 1 & 2 & -1 & 1 & -1\\ 0 & 1 & 0 & 1 & -1\\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2\\ 1\\ 1 \\ \end{pmatrix}}_{b}$$

Definition

Let B be a basis of A.

- if $j \in B$ then x_j is a basic variable,
- if $j \notin B$ then x_j is a non-basic variable.

Example

Basis $B = \{1, 2, 4\}$. Then

• x_1, x_2, x_4 are the basic variables,

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ 1 & 2 & -1 & 1 & -1\\ 0 & 1 & 0 & 1 & -1\\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2\\ 1\\ 1 \\ \end{pmatrix}}_{b}$$

Definition

Let B be a basis of A.

- if $j \in B$ then x_j is a basic variable,
- if $j \notin B$ then x_j is a non-basic variable.

Example

Basis $B = \{1, 2, 4\}$. Then

- x_1, x_2, x_4 are the basic variables, and
- x_3, x_5 are the non-basic variables.

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ 1 & 2 & -1 & 1 & -1\\ 0 & 1 & 0 & 1 & -1\\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2\\ 1\\ 1 \\ \end{pmatrix}}_{b}$$

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ 1 & 2 & -1 & 1 & -1\\ 0 & 1 & 0 & 1 & -1\\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2\\ 1\\ 1 \\ \end{pmatrix}}_{b}$$

Definition

x is a basic solution for basis B if

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ 1 & 2 & -1 & 1 & -1\\ 0 & 1 & 0 & 1 & -1\\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2\\ 1\\ 1 \\ \end{pmatrix}}_{b}$$

Definition

x is a basic solution for basis B if (1) Ax = b, and

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ 1 & 2 & -1 & 1 & -1\\ 0 & 1 & 0 & 1 & -1\\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2\\ 1\\ 1 \\ \end{pmatrix}}_{b}$$

Definition

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ 1 & 2 & -1 & 1 & -1\\ 0 & 1 & 0 & 1 & -1\\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2\\ 1\\ 1 \\ \end{pmatrix}}_{b}$$

Definition

$$x = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
: basic sol'n for $B = \{1, 2, 3\}$

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ 1 & 2 & -1 & 1 & -1\\ 0 & 1 & 0 & 1 & -1\\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2\\ 1\\ 1 \\ \end{pmatrix}}_{b}$$

b

Definition

$$x = \begin{pmatrix} 1\\1\\1\\0\\0 \end{pmatrix}$$
: basic sol'n for $B = \{1, 2, 3\}$ (1) $Ax =$

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ 1 & 2 & -1 & 1 & -1\\ 0 & 1 & 0 & 1 & -1\\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2\\ 1\\ 1 \\ \end{pmatrix}}_{b}$$

Definition

$$x = \begin{pmatrix} 1\\1\\1\\0\\0 \end{pmatrix}$$
: basic sol'n for $B = \{1, 2, 3\}$ (1) $Ax = b$ \checkmark

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ 1 & 2 & -1 & 1 & -1\\ 0 & 1 & 0 & 1 & -1\\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2\\ 1\\ 1 \\ \end{pmatrix}}_{b}$$

Definition

$$x = \begin{pmatrix} 1\\1\\1\\0\\0 \end{pmatrix}$$
: basic sol'n for $B = \{1, 2, 3\}$ (1) $Ax = b$ \checkmark
(2) $x_4 = x_5 = 0$

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ 1 & 2 & -1 & 1 & -1\\ 0 & 1 & 0 & 1 & -1\\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 2\\ 1\\ 1 \\ \end{pmatrix}}_{b}$$

Definition

$$x = \begin{pmatrix} 1\\1\\1\\0\\0 \end{pmatrix}$$
: basic sol'n for $B = \{1, 2, 3\}$
(1) $Ax = b \qquad \checkmark$
(2) $x_4 = x_5 = 0 \quad \checkmark$

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}}_{b}$$

Definition

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ 1 & 2 & -1 & 1 & -1\\ 0 & 1 & 0 & 1 & -1\\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} 2\\ 1\\ 1 \end{pmatrix}}_{b}$$

Definition

$$x = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$
: basic sol'n for $B = \{1, 3, 4\}$

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ 1 & 2 & -1 & 1 & -1\\ 0 & 1 & 0 & 1 & -1\\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} 2\\ 1\\ 1 \end{pmatrix}}_{b}$$

b

Definition

$$x = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$
: basic sol'n for $B = \{1, 3, 4\}$ (1) $Ax =$

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ 1 & 2 & -1 & 1 & -1\\ 0 & 1 & 0 & 1 & -1\\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} 2\\ 1\\ 1 \end{pmatrix}}_{b}$$

Definition

$$x = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$
: basic sol'n for $B = \{1, 3, 4\}$ (1) $Ax = b$ \checkmark

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ 1 & 2 & -1 & 1 & -1\\ 0 & 1 & 0 & 1 & -1\\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} 2\\ 1\\ 1 \end{pmatrix}}_{b}$$

Definition

$$x = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$
: basic sol'n for $B = \{1, 3, 4\}$ (1) $Ax = b$ \checkmark
(2) $x_2 = x_5 = 0$

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ 1 & 2 & -1 & 1 & -1\\ 0 & 1 & 0 & 1 & -1\\ 0 & 0 & 1 & 1 & -1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} 2\\ 1\\ 1 \end{pmatrix}}_{b}$$

Definition

$$x = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$
: basic sol'n for $B = \{1, 3, 4\}$
(1) $Ax = b \qquad \checkmark$
(2) $x_2 = x_5 = 0 \quad \checkmark$

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4\\ 1 & 0 & 1 & -1\\ 0 & 1 & 1 & 1 \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4\\ 1 & 0 & 1 & -1\\ 0 & 1 & 1 & 1 \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4\\ 1 & 0 & 1 & -1\\ 0 & 1 & 1 & 1 \\ & & & & \\ & & & \\ & & & \\ & & & \\$$

$$\begin{pmatrix} 2\\2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & -1\\ 0 & 1 & 1 & 1 \end{pmatrix} x$$

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4\\ 1 & 0 & 1 & -1\\ 0 & 1 & 1 & 1 \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

$$\begin{pmatrix} 2\\2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & -1\\0 & 1 & 1 & 1 \end{pmatrix} x = x_1 \begin{pmatrix} 1\\0 \end{pmatrix} + \underbrace{x_2}_{=0} \begin{pmatrix} 1\\0 \end{pmatrix} + \underbrace{x_3}_{=0} \begin{pmatrix} 1\\1 \end{pmatrix} + x_4 \begin{pmatrix} -1\\1 \end{pmatrix}$$

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4\\ 1 & 0 & 1 & -1\\ 0 & 1 & 1 & 1 \\ & & & & \\ & & & \\ & & & \\ & & & \\$$

$$\begin{pmatrix} 2\\2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & -1\\0 & 1 & 1 & 1 \end{pmatrix} x = x_1 \begin{pmatrix} 1\\0 \end{pmatrix} + \underbrace{x_2}_{=0} \begin{pmatrix} 1\\0 \end{pmatrix} + \underbrace{x_3}_{=0} \begin{pmatrix} 1\\1 \end{pmatrix} + x_4 \begin{pmatrix} -1\\1 \end{pmatrix} = \begin{pmatrix} 1 & -1\\0 & 1 \end{pmatrix} \begin{pmatrix} x_1\\x_4 \end{pmatrix}$$

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4\\ 1 & 0 & 1 & -1\\ 0 & 1 & 1 & 1 \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\$$

$$\begin{pmatrix} 2\\2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & -1\\0 & 1 & 1 & 1 \end{pmatrix} x = x_1 \begin{pmatrix} 1\\0 \end{pmatrix} + \underbrace{x_2}_{=0} \begin{pmatrix} 1\\0 \end{pmatrix} + \underbrace{x_3}_{=0} \begin{pmatrix} 1\\1 \end{pmatrix} + x_4 \begin{pmatrix} -1\\1 \end{pmatrix} = \begin{pmatrix} 1 & -1\\0 & 1 \end{pmatrix} \begin{pmatrix} x_1\\x_4 \end{pmatrix}$$

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4\\ 1 & 0 & 1 & -1\\ 0 & 1 & 1 & 1 \\ & & & & \\ & & & \\ & & & \\ & & & \\$$

$$\begin{pmatrix} 2\\2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & -1\\0 & 1 & 1 & 1 \end{pmatrix} x$$
$$= x_1 \begin{pmatrix} 1\\0 \end{pmatrix} + \underbrace{x_2}_{=0} \begin{pmatrix} 1\\0 \end{pmatrix} + \underbrace{x_3}_{=0} \begin{pmatrix} 1\\1 \end{pmatrix} + x_4 \begin{pmatrix} -1\\1 \end{pmatrix} = \begin{pmatrix} 1 & -1\\0 & 1 \end{pmatrix} \begin{pmatrix} x_1\\x_4 \end{pmatrix}$$
$$\implies \begin{pmatrix} x_1\\x_4 \end{pmatrix} = \begin{pmatrix} 1 & -1\\0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 2\\2 \end{pmatrix}$$

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4\\ 1 & 0 & 1 & -1\\ 0 & 1 & 1 & 1 \\ & & & & \\ & & & \\ & & & \\ & & & \\$$

$$\begin{pmatrix} 2\\2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & -1\\0 & 1 & 1 & 1 \end{pmatrix} x$$
$$= x_1 \begin{pmatrix} 1\\0 \end{pmatrix} + \underbrace{x_2}_{=0} \begin{pmatrix} 1\\0 \end{pmatrix} + \underbrace{x_3}_{=0} \begin{pmatrix} 1\\1 \end{pmatrix} + x_4 \begin{pmatrix} -1\\1 \end{pmatrix} = \begin{pmatrix} 1 & -1\\0 & 1 \end{pmatrix} \begin{pmatrix} x_1\\x_4 \end{pmatrix}$$
$$\implies \begin{pmatrix} x_1\\x_4 \end{pmatrix} = \begin{pmatrix} 1 & -1\\0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 2\\2 \end{pmatrix} = \begin{pmatrix} 1 & 1\\0 & 1 \end{pmatrix} \begin{pmatrix} 2\\2 \end{pmatrix} = \begin{pmatrix} 4\\2 \end{pmatrix}$$

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4\\ 1 & 0 & 1 & -1\\ 0 & 1 & 1 & 1 \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

Problem

Find a basic solution x for the basis $B = \{1, 4\}$?

$$\begin{pmatrix} 2\\2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & -1\\0 & 1 & 1 & 1 \end{pmatrix} x$$
$$= x_1 \begin{pmatrix} 1\\0 \end{pmatrix} + \underbrace{x_2}_{=0} \begin{pmatrix} 1\\0 \end{pmatrix} + \underbrace{x_3}_{=0} \begin{pmatrix} 1\\1 \end{pmatrix} + x_4 \begin{pmatrix} -1\\1 \end{pmatrix} = \begin{pmatrix} 1 & -1\\0 & 1 \end{pmatrix} \begin{pmatrix} x_1\\x_4 \end{pmatrix}$$
$$\implies \begin{pmatrix} x_1\\x_4 \end{pmatrix} = \begin{pmatrix} 1 & -1\\0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 2\\2 \end{pmatrix} = \begin{pmatrix} 1 & 1\\0 & 1 \end{pmatrix} \begin{pmatrix} 2\\2 \end{pmatrix} = \begin{pmatrix} 4\\2 \end{pmatrix}$$

Thus, the basic solution is $x = (4, 0, 0, 2)^{\top}$.

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4\\ 1 & 0 & 1 & -1\\ 0 & 1 & 1 & 1 \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

Problem

Find a basic solution x for the basis $B = \{1, 4\}$?

$$\begin{pmatrix} 2\\2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & -1\\0 & 1 & 1 & 1 \end{pmatrix} x$$
$$= x_1 \begin{pmatrix} 1\\0 \end{pmatrix} + \underbrace{x_2}_{=0} \begin{pmatrix} 1\\0 \end{pmatrix} + \underbrace{x_3}_{=0} \begin{pmatrix} 1\\1 \end{pmatrix} + x_4 \begin{pmatrix} -1\\1 \end{pmatrix} = \begin{pmatrix} 1 & -1\\0 & 1 \end{pmatrix} \begin{pmatrix} x_1\\x_4 \end{pmatrix}$$
$$\implies \begin{pmatrix} x_1\\x_4 \end{pmatrix} = \begin{pmatrix} 1 & -1\\0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 2\\2 \end{pmatrix} = \begin{pmatrix} 1 & 1\\0 & 1 \end{pmatrix} \begin{pmatrix} 2\\2 \end{pmatrix} = \begin{pmatrix} 4\\2 \end{pmatrix}$$

Thus, the basic solution is $x = (4, 0, 0, 2)^{\top}$.

Question

Did we have a choice for a basic solution x given $B = \{1, 4\}$?

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4\\ 1 & 0 & 1 & -1\\ 0 & 1 & 1 & 1 \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

Problem

Find a basic solution x for the basis $B = \{1, 4\}$?

$$\begin{pmatrix} 2\\2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & -1\\0 & 1 & 1 & 1 \end{pmatrix} x$$
$$= x_1 \begin{pmatrix} 1\\0 \end{pmatrix} + \underbrace{x_2}_{=0} \begin{pmatrix} 1\\0 \end{pmatrix} + \underbrace{x_3}_{=0} \begin{pmatrix} 1\\1 \end{pmatrix} + x_4 \begin{pmatrix} -1\\1 \end{pmatrix} = \begin{pmatrix} 1 & -1\\0 & 1 \end{pmatrix} \begin{pmatrix} x_1\\x_4 \end{pmatrix}$$
$$\implies \begin{pmatrix} x_1\\x_4 \end{pmatrix} = \begin{pmatrix} 1 & -1\\0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 2\\2 \end{pmatrix} = \begin{pmatrix} 1 & 1\\0 & 1 \end{pmatrix} \begin{pmatrix} 2\\2 \end{pmatrix} = \begin{pmatrix} 4\\2 \end{pmatrix}$$

Thus, the basic solution is $x = (4, 0, 0, 2)^{\top}$.

Question

Did we have a choice for a basic solution x given $B = \{1, 4\}$? NO!

Proposition

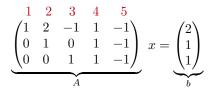
Consider Ax = b and a basis B of A. Then there exists a unique basic solution x for B.

Proposition

```
Consider Ax = b and a basis B of A.
Then there exists a unique basic solution x for B.
```

Proposition

```
Consider Ax = b and a basis B of A.
Then there exists a unique basic solution x for B.
```



Proposition

For B

```
Consider Ax = b and a basis B of A.
Then there exists a unique basic solution x for B.
```

$$=\{1,2,4\}, \underbrace{\begin{pmatrix}1 & 2 & 3 & 4 & 5\\ \begin{pmatrix}1 & 2 & -1 & 1 & -1\\ 0 & 1 & 0 & 1 & -1\\ 0 & 0 & 1 & 1 & -1\end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix}2\\1\\1\end{pmatrix}}_{b}$$

Proposition

```
Consider Ax = b and a basis B of A.
Then there exists a unique basic solution x for B.
```

For
$$B = \{1, 2, 4\}$$
,

$$A_B = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ \begin{pmatrix} 1 & 2 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix} \quad \text{and} \quad x_B = \begin{pmatrix} x_1 \\ x_2 \\ x_4 \end{pmatrix} \quad \text{(basic variables)}$$

Proposition

```
Consider Ax = b and a basis B of A.
Then there exists a unique basic solution x for B.
```

Before we proceed with the proof, let's look at some conventions.

$$For B = \{1, 2, 4\},$$

$$A_B = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & -1 \end{pmatrix} A = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{ and } x_B = \begin{pmatrix} x_1 \\ x_2 \\ x_4 \end{pmatrix} \text{ (basic variables)}$$

columns of A_B and elements of x_B are ordered by B!

Proposition

Consider Ax = b and a basis B of A. Then there exists a unique basic solution x for B.

Proposition

Consider Ax = b and a basis B of A. Then there exists a unique basic solution x for B.

$$b = Ax$$

Proposition

Consider Ax = b and a basis B of A. Then there exists a unique basic solution x for B.

$$b = Ax = \sum_{j} A_{j} x_{j}$$

Proposition

Consider Ax = b and a basis B of A. Then there exists a unique basic solution x for B.

$$b = Ax = \sum_{j} A_{j}x_{j}$$
$$= \sum_{j \in B} A_{j}x_{j} + \sum_{j \notin B} A_{j} \underbrace{x_{j}}_{=0}$$

Proposition

Consider Ax = b and a basis B of A. Then there exists a unique basic solution x for B.

$$b = Ax = \sum_{j} A_{j}x_{j}$$
$$= \sum_{j \in B} A_{j}x_{j} + \sum_{j \notin B} A_{j} \underbrace{x_{j}}_{=0}$$
$$= \sum_{j \in B} A_{j}x_{j} = A_{B}x_{B}$$

Proposition

Consider Ax = b and a basis B of A. Then there exists a unique basic solution x for B.

Proof

$$b = Ax = \sum_{j} A_{j}x_{j}$$
$$= \sum_{j \in B} A_{j}x_{j} + \sum_{j \notin B} A_{j} \underbrace{x_{j}}_{=0}$$
$$= \sum_{j \in B} A_{j}x_{j} = A_{B}x_{B}$$

Since B is a basis, it implies A_B is non-singular, i.e., A_B^{-1} exists.

Proposition

Consider Ax = b and a basis B of A. Then there exists a unique basic solution x for B.

Proof

$$b = Ax = \sum_{j} A_{j}x_{j}$$
$$= \sum_{j \in B} A_{j}x_{j} + \sum_{j \notin B} A_{j} \underbrace{x_{j}}_{=0}$$
$$= \sum_{j \in B} A_{j}x_{j} = A_{B}x_{B}$$

Since B is a basis, it implies A_B is non-singular, i.e., A_B^{-1} exists. Hence, $x_B = A_B^{-1}b$.

Definition

Consider Ax = b with independent rows.

Definition

Consider Ax = b with independent rows. Vector x is a basic solution if it is a basic solution for some basis B.

Definition

Consider Ax = b with independent rows. Vector x is a basic solution if it is a basic solution for some basis B.

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 1 \\ -1 & 1 & 0 & 2 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 6 \\ 3 \end{pmatrix}}_{b}$$

Definition

Consider Ax = b with independent rows. Vector x is a basic solution if it is a basic solution for some basis B.

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 1 \\ -1 & 1 & 0 & 2 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 6 \\ 3 \end{pmatrix}}_{b}$$

Question

Is $x = (0, 0, 3, 0, 3)^{\top}$ basic?

Definition

Consider Ax = b with independent rows. Vector x is a basic solution if it is a basic solution for some basis B.

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 1 \\ -1 & 1 & 0 & 2 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 6 \\ 3 \end{pmatrix}}_{b}$$

Question

Is $x = (0, 0, 3, 0, 3)^{\top}$ basic? YES!

Definition

Consider Ax = b with independent rows. Vector x is a basic solution if it is a basic solution for some basis B.

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 1 \\ -1 & 1 & 0 & 2 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 6 \\ 3 \end{pmatrix}}_{b}$$

Question

Is $x = (0, 0, 3, 0, 3)^{\top}$ basic? YES!

Definition

Consider Ax = b with independent rows. Vector x is a basic solution if it is a basic solution for some basis B.

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 1 \\ -1 & 1 & 0 & 2 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 6 \\ 3 \end{pmatrix}}_{b}$$

Question

Is $x = (0, 0, 3, 0, 3)^{\top}$ basic? YES!

(1) Ax = b

Definition

Consider Ax = b with independent rows. Vector x is a basic solution if it is a basic solution for some basis B.

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 1 \\ -1 & 1 & 0 & 2 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 6 \\ 3 \end{pmatrix}}_{b}$$

Question

Is $x = (0, 0, 3, 0, 3)^{\top}$ basic? YES!

(1)
$$Ax = b$$
 \checkmark

Definition

Consider Ax = b with independent rows. Vector x is a basic solution if it is a basic solution for some basis B.

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ 3 & 2 & 1 & 4 & 1\\ -1 & 1 & 0 & 2 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 6\\ 3 \end{pmatrix}}_{b}$$

Question

Is $x = (0, 0, 3, 0, 3)^{\top}$ basic? YES!

Is x basic for $B = \{3, 5\}$? (1) Ax = b(2) $x_1 = x_2 = x_4 = 0$

Definition

Consider Ax = b with independent rows. Vector x is a basic solution if it is a basic solution for some basis B.

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5\\ 3 & 2 & 1 & 4 & 1\\ -1 & 1 & 0 & 2 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 6\\ 3 \end{pmatrix}}_{b}$$

Question

Is $x = (0, 0, 3, 0, 3)^{\top}$ basic? YES!

(1)
$$Ax = b$$
 \checkmark
(2) $x_1 = x_2 = x_4 = 0$ \checkmark

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 1 \\ -1 & 1 & 0 & 2 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 6 \\ 3 \end{pmatrix}}_{b}$$

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 1 \\ -1 & 1 & 0 & 2 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 6 \\ 3 \end{pmatrix}}_{b}$$

Is $x = (0, 1, 0, 1, 0)^\top$ basic?

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 1 \\ -1 & 1 & 0 & 2 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 6 \\ 3 \end{pmatrix}}_{b}$$

Is $x = (0, 1, 0, 1, 0)^{\top}$ basic? NO!

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 1 \\ -1 & 1 & 0 & 2 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 6 \\ 3 \end{pmatrix}}_{b}$$

Is $x = (0, 1, 0, 1, 0)^{\top}$ basic? NO!

Proof

By contradiction. Suppose x is basic for basis B.

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 1 \\ -1 & 1 & 0 & 2 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 6 \\ 3 \end{pmatrix}}_{b}$$

Is $x = (0, 1, 0, 1, 0)^{\top}$ basic? NO!

Proof

By contradiction. Suppose x is basic for basis B.

•
$$x_2 = 1 \neq 0$$
 implies $2 \in B$.

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 1 \\ -1 & 1 & 0 & 2 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 6 \\ 3 \end{pmatrix}}_{b}$$

Is $x = (0, 1, 0, 1, 0)^{\top}$ basic? NO!

Proof

By contradiction. Suppose x is basic for basis B.

- $x_2 = 1 \neq 0$ implies $2 \in B$.
- $x_4 = 1 \neq 0$ implies $4 \in B$.

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 1 \\ -1 & 1 & 0 & 2 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 6 \\ 3 \end{pmatrix}}_{b}$$

Is $x = (0, 1, 0, 1, 0)^{\top}$ basic? NO!

Proof

By contradiction. Suppose x is basic for basis B.

- $x_2 = 1 \neq 0$ implies $2 \in B$.
- $x_4 = 1 \neq 0$ implies $4 \in B$.

Thus,

$$A_{\{2,4\}} = \begin{pmatrix} 2 & 4\\ 1 & 2 \end{pmatrix}$$

is a column submatrix of A_B .

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 1 \\ -1 & 1 & 0 & 2 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 6 \\ 3 \end{pmatrix}}_{b}$$

Is $x = (0, 1, 0, 1, 0)^{\top}$ basic? NO!

Proof

By contradiction. Suppose x is basic for basis B.

- $x_2 = 1 \neq 0$ implies $2 \in B$.
- $x_4 = 1 \neq 0$ implies $4 \in B$.

Thus,

$$A_{\{2,4\}} = \begin{pmatrix} 2 & 4\\ 1 & 2 \end{pmatrix}$$

is a column submatrix of A_B . But the columns of $A_{\{2,4\}}$ are dependent,

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 1 \\ -1 & 1 & 0 & 2 & 1 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 6 \\ 3 \end{pmatrix}}_{b}$$

Is $x = (0, 1, 0, 1, 0)^{\top}$ basic? NO!

Proof

By contradiction. Suppose x is basic for basis B.

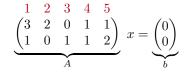
- $x_2 = 1 \neq 0$ implies $2 \in B$.
- $x_4 = 1 \neq 0$ implies $4 \in B$.

Thus,

$$A_{\{2,4\}} = \begin{pmatrix} 2 & 4\\ 1 & 2 \end{pmatrix}$$

is a column submatrix of $A_B.$ But the columns of $A_{\{2,4\}}$ are dependent, so A_B is singular and B is not a basis, a contradiction.

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ (3 & 2 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 2 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 0 \\ 0 \end{pmatrix}}_{b}$$



Note: $x = (0, 0, 0, 0, 0)^{\top}$ is a basic solution for

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 2 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 0 \\ 0 \\ b \end{pmatrix}}_{b}$$

Note: $x = (0, 0, 0, 0, 0)^{\top}$ is a basic solution for

• basis $B = \{1, 2\}$,

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 2 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 0 \\ 0 \\ b \end{pmatrix}}_{b}$$

Note: $x = (0, 0, 0, 0, 0)^{\top}$ is a basic solution for

- basis $B = \{1, 2\}$,
- basis $B'=\{1,3\}$,

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ (3 & 2 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 2 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 0 \\ 0 \\ b \end{pmatrix}}_{b}$$

Note: $x = (0, 0, 0, 0, 0)^{\top}$ is a basic solution for

- basis $B = \{1, 2\}$,
- basis $B' = \{1, 3\}$,
- basis $B'' = \{2, 4\}$,

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 2 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 0 \\ 0 \\ b \end{pmatrix}}_{b}$$

Note: $x = (0, 0, 0, 0, 0)^{\top}$ is a basic solution for

- basis $B = \{1, 2\}$,
- basis $B'=\{1,3\}$,
- basis $B^{\prime\prime}=\{2,4\}$,

Remark

A basic solution can be the basic solution for more than one basis.

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ (3 & 2 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 2 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 0 \\ 0 \\ \end{pmatrix}}_{b}$$

Note: $\boldsymbol{x} = (0, 0, 0, 0, 0)^\top$ is a basic solution for

- basis $B = \{1, 2\}$,
- basis $B' = \{1, 3\}$,
- basis $B^{\prime\prime}=\{2,4\}$, \ldots

Remark

A basic solution can be the basic solution for more than one basis.

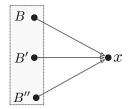
$$\underbrace{\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ (3 & 2 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 2 \end{pmatrix}}_{A} x = \underbrace{\begin{pmatrix} 0 \\ 0 \end{pmatrix}}_{b}$$

Note: $\boldsymbol{x} = (0,0,0,0,0)^\top$ is a basic solution for

- basis $B = \{1, 2\}$,
- basis $B' = \{1, 3\}$,
- basis $B^{\prime\prime}=\{2,4\}$,

Remark

A basic solution can be the basic solution for more than one basis.



Problem in SEF:

$$\max\{c^{\top}x : Ax = b, x \ge 0\}$$
(P)

Problem in SEF:

$$\max\{c^{\top}x : Ax = b, x \ge 0\}$$
(P)

Remark

If the rows of A are dependent, then either

Problem in SEF:

$$\max\{c^{\top}x : Ax = b, x \ge 0\}$$
(P)

Remark

If the rows of A are dependent, then either

• there is no solution to Ax = b; (P) is infeasible,

Problem in SEF:

$$\max\{c^{\top}x : Ax = b, x \ge 0\}$$
(P)

Remark

If the rows of A are dependent, then either

• there is no solution to Ax = b; (P) is infeasible, OR

Problem in SEF:

$$\max\{c^{\top}x : Ax = b, x \ge 0\}$$
(P)

Remark

If the rows of A are dependent, then either

- there is no solution to Ax = b; (P) is infeasible, OR
- a constraint of Ax = b can be removed without changing the solutions.

Problem in SEF:

$$\max\{c^{\top}x : Ax = b, x \ge 0\}$$
(P)

Remark

If the rows of A are dependent, then either

- there is no solution to Ax = b; (P) is infeasible, OR
- a constraint of Ax = b can be removed without changing the solutions.

\longrightarrow

Remark

We may assume, when solving (P), that rows of A are independent.

Problem in SEF:

$$\max\{c^{\top}x : Ax = b, x \ge 0\}$$
(P)

Remark

If the rows of A are dependent, then either

- there is no solution to Ax = b; (P) is infeasible, OR
- a constraint of Ax = b can be removed without changing the solutions.

Remark

We may assume, when solving (P), that rows of A are independent.

Definition

A basic solution x of Ax = b is feasible if $x \ge 0$, i.e., if it is feasible for (P).

$$Ax = b$$

where the rows of A are independent.

$$Ax = b$$

where the rows of A are independent.

Recap

(1) B is a basis if A_B is a square, non-singular matrix.

$$Ax = b$$

where the rows of A are independent.

Recap

(1) B is a basis if A_B is a square, non-singular matrix.

(2) a solution x to Ax = b, is basic for B, if $x_j = 0$ when $j \notin B$.

$$Ax = b$$

where the rows of A are independent.

Recap

(1) B is a basis if A_B is a square, non-singular matrix.

(2) a solution x to Ax = b, is basic for B, if $x_j = 0$ when $j \notin B$.

(3) x is basic if it is basic for some basis B.

$$Ax = b$$

where the rows of A are independent.

Recap

- (1) B is a basis if A_B is a square, non-singular matrix.
- (2) a solution x to Ax = b, is basic for B, if $x_j = 0$ when $j \notin B$.
- (3) x is basic if it is basic for some basis B.
- (4) Each basis has a unique associated basic solution.

$$Ax = b$$

where the rows of A are independent.

Recap

- (1) B is a basis if A_B is a square, non-singular matrix.
- (2) a solution x to Ax = b, is basic for B, if $x_j = 0$ when $j \notin B$.
- (3) x is basic if it is basic for some basis B.
- (4) Each basis has a unique associated basic solution.
- (5) Several bases can have the same basic solution.

$$Ax = b$$

where the rows of A are independent.

Recap

- (1) B is a basis if A_B is a square, non-singular matrix.
- (2) a solution x to Ax = b, is basic for B, if $x_j = 0$ when $j \notin B$.

(3) x is basic if it is basic for some basis B.

- (4) Each basis has a unique associated basic solution.
- (5) Several bases can have the same basic solution.
- (6) A basic solution is feasible if it is non-negative.