Module 2: Linear Programs (Finding a Feasible Solution)

Consider

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}.$$

Consider

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}.$$

To run Simplex, we need a feasible basis.

Consider

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}.$$

To run Simplex, we need a feasible basis.

Question

How do we find a feasible basis?

Consider

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}.$$

To run Simplex, we need a feasible basis.

Question

How do we find a feasible basis?

An easier question,

Consider

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}.$$

To run Simplex, we need a feasible basis.

Question

How do we find a feasible basis?

An easier question,

Question

How do we find a feasible solution?

Consider

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}.$$

To run Simplex, we need a feasible basis.

Question

How do we find a feasible basis?

An easier question,

Question

How do we find a feasible solution?

These two questions are equivalent.

Consider

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}.$$

To run Simplex, we need a feasible basis.

Question

How do we find a feasible basis?

An easier question,

Question

How do we find a feasible solution?

These two questions are equivalent.

Exercise

There is an algorithm that, given a feasible solution, finds a feasible basis.

Consider

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}.$$

To run Simplex, we need a feasible basis.

Question

How do we find a feasible basis?

An easier question,

Question

How do we find a feasible solution?

These two questions are equivalent.

Exercise

There is an algorithm that, given a feasible solution, finds a feasible basis.

We will focus on the second question.

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}$$

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}$$

Algorithm 1

<u>INPUT:</u> A, b, c, and a feasible solution

<u>OUTPUT</u>: Optimal solution/detect LP unbounded.

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}$$

Algorithm 1

<u>INPUT:</u> A, b, c, and a feasible solution

<u>OUTPUT</u>: Optimal solution/detect LP unbounded.

OK Simplex + exercise

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}$$

Algorithm 1

<u>INPUT:</u> A, b, c, and a feasible solution

<u>OUTPUT</u>: Optimal solution/detect LP unbounded.

Algorithm 2

 $\underline{\text{INPUT:}} \quad A, b, c.$

<u>OUTPUT:</u> Feasible solution/detect there is none.

OK Simplex + exercise

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}$$

Algorithm 1

<u>INPUT:</u> A, b, c, and a feasible solution

<u>OUTPUT</u>: Optimal solution/detect LP unbounded.

Algorithm 2

 $\underline{\text{INPUT:}} \quad A, b, c.$

OUTPUT: Feasible solution/detect there is none.

OK Simplex + exercise

HOW?

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}$$

Algorithm 1

<u>INPUT:</u> A, b, c, and a feasible solution

<u>OUTPUT:</u> Optimal solution/detect LP unbounded.

Algorithm 2

 $\underline{\text{INPUT:}} \quad A, b, c.$

<u>OUTPUT:</u> Feasible solution/detect there is none.

We will show that...

OK Simplex + exercise

HOW?

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}$$

Algorithm 1

<u>INPUT:</u> A, b, c, and a feasible solution

<u>OUTPUT:</u> Optimal solution/detect LP unbounded.

Algorithm 2

<u>INPUT:</u> A, b, c.

<u>OUTPUT:</u> Feasible solution/detect there is none.

We will show that...

Proposition

We can use Algorithm 1 to get Algorithm 2.

OK Simplex + exercise

HOW?

A First Example

A First Example

Problem: Find a feasible solution/detect none exist for

$$\begin{array}{ccc} \max & (1,2,-1,3)x \\ \text{s.t.} & \\ & \begin{pmatrix} 1 & 5 & 2 & 1 \\ -2 & -9 & 0 & 3 \end{pmatrix} x = \begin{pmatrix} 7 \\ -13 \end{pmatrix} \\ & x \ge \mathbf{0} \end{array}$$

A First Example

Problem: Find a feasible solution/detect none exist for

$$\max (1, 2, -1, 3)x$$

s.t.
$$\begin{pmatrix} 1 & 5 & 2 & 1 \\ -2 & -9 & 0 & 3 \end{pmatrix} x = \begin{pmatrix} 7 \\ -13 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

Remark

It does not depend on the objective function.

$$\begin{pmatrix} 1 & 5 & 2 & 1 \\ -2 & -9 & 0 & 3 \end{pmatrix} x = \begin{pmatrix} 7 \\ -13 \end{pmatrix} \text{ and } x \ge \mathbf{0} \quad (\star)$$

$$\begin{pmatrix} 1 & 5 & 2 & 1 \\ -2 & -9 & 0 & 3 \end{pmatrix} x = \begin{pmatrix} 7 \\ -13 \end{pmatrix} \quad \text{and} \quad x \ge \mathbf{0} \quad (\star)$$

Step 1. Multiply the equations such that the RHS is non-negative.

$$\begin{pmatrix} 1 & 5 & 2 & 1 \\ -2 & -9 & 0 & 3 \end{pmatrix} x = \begin{pmatrix} 7 \\ -13 \end{pmatrix} \text{ and } x \ge \mathbf{0} \quad (\star)$$

Step 1. Multiply the equations such that the RHS is non-negative.

$$\begin{pmatrix} 1 & 5 & 2 & 1 \\ 2 & 9 & 0 & -3 \end{pmatrix} x = \begin{pmatrix} 7 \\ 13 \end{pmatrix}$$

$$egin{pmatrix} 1 & 5 & 2 & 1 \ 2 & 9 & 0 & -3 \end{pmatrix} x = egin{pmatrix} 7 \ 13 \end{pmatrix} \qquad ext{and} \qquad x \geq \mathbf{0} \qquad (\star)$$

Step 1. Multiply the equations such that the RHS is non-negative. OK

$$egin{pmatrix} 1 & 5 & 2 & 1 \ 2 & 9 & 0 & -3 \end{pmatrix} x = egin{pmatrix} 7 \ 13 \end{pmatrix} \qquad ext{and} \qquad x \geq \mathbf{0} \qquad (\star)$$

Step 1. Multiply the equations such that the RHS is non-negative. OKStep 2. Construct the auxiliary problem.

$$egin{pmatrix} 1 & 5 & 2 & 1 \ 2 & 9 & 0 & -3 \ \end{pmatrix} x = egin{pmatrix} 7 \ 13 \ \end{pmatrix}$$
 and $x \ge \mathbf{0}$ (*)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min $x_5 + x_6$ s.t. $\begin{pmatrix} 1 & 5 & 2 & 1 & 1 & 0 \\ 2 & 9 & 0 & -3 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 7 \\ 13 \end{pmatrix}$ $x \ge \mathbf{0}$

$$egin{pmatrix} 1 & 5 & 2 & 1 \ 2 & 9 & 0 & -3 \ \end{pmatrix} x = egin{pmatrix} 7 \ 13 \ \end{pmatrix}$$
 and $x \ge \mathbf{0}$ (*)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min $x_5 + x_6$ s.t. $\begin{pmatrix} 1 & 5 & 2 & 1 & 1 & 0 \\ 2 & 9 & 0 & -3 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 7 \\ 13 \end{pmatrix}$ $x \ge \mathbf{0}$

 x_5, x_6 are the auxiliary variables

$$egin{pmatrix} 1 & 5 & 2 & 1 \ 2 & 9 & 0 & -3 \ \end{pmatrix} x = egin{pmatrix} 7 \ 13 \ \end{pmatrix}$$
 and $x \ge \mathbf{0}$ (*)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min $x_5 + x_6$ s.t. $\begin{pmatrix} 1 & 5 & 2 & 1 & 1 & 0 \\ 2 & 9 & 0 & -3 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 7 \\ 13 \end{pmatrix}$ $x \ge \mathbf{0}$

 x_5, x_6 are the auxiliary variables

Remark

The auxiliary problem is

$$egin{pmatrix} 1 & 5 & 2 & 1 \ 2 & 9 & 0 & -3 \end{pmatrix} x = egin{pmatrix} 7 \ 13 \end{pmatrix} \qquad ext{and} \qquad x \geq \mathbf{0} \qquad (\star)$$

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min $x_5 + x_6$ s.t. $\begin{pmatrix} 1 & 5 & 2 & 1 & 1 & 0 \\ 2 & 9 & 0 & -3 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 7 \\ 13 \end{pmatrix}$ $x \ge \mathbf{0}$

 x_5, x_6 are the auxiliary variables

Remark

The auxiliary problem is

• feasible, since $(0, 0, 0, 0, 7, 13)^{\top}$ is a solution, and

$$egin{pmatrix} 1 & 5 & 2 & 1 \ 2 & 9 & 0 & -3 \end{pmatrix} x = egin{pmatrix} 7 \ 13 \end{pmatrix} \qquad ext{and} \qquad x \geq \mathbf{0} \qquad (\star)$$

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min $x_5 + x_6$ s.t. $\begin{pmatrix} 1 & 5 & 2 & 1 & 1 & 0 \\ 2 & 9 & 0 & -3 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 7 \\ 13 \end{pmatrix}$ $x \ge \mathbf{0}$

 x_5, x_6 are the auxiliary variables

Remark

The auxiliary problem is

- feasible, since $(0, 0, 0, 0, 7, 13)^{\top}$ is a solution, and
- bounded, as 0 is the lower bound.

$$egin{pmatrix} 1 & 5 & 2 & 1 \ 2 & 9 & 0 & -3 \end{pmatrix} x = egin{pmatrix} 7 \ 13 \end{pmatrix} \qquad ext{and} \qquad x \geq \mathbf{0} \qquad (\star)$$

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min $x_5 + x_6$ s.t. $\begin{pmatrix} 1 & 5 & 2 & 1 & 1 & 0 \\ 2 & 9 & 0 & -3 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 7 \\ 13 \end{pmatrix}$ $x \ge \mathbf{0}$

 x_5, x_6 are the auxiliary variables

Remark

The auxiliary problem is

- feasible, since $(0, 0, 0, 0, 7, 13)^{\top}$ is a solution, and
- bounded, as 0 is the lower bound.

Therefore, the auxiliary problem has an optimal solution.

$$egin{pmatrix} 1 & 5 & 2 & 1 \ 2 & 9 & 0 & -3 \end{pmatrix} x = egin{pmatrix} 7 \ 13 \end{pmatrix} \qquad ext{and} \qquad x \geq \mathbf{0} \qquad (\star)$$

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min $x_5 + x_6$ s.t. $\begin{pmatrix} 1 & 5 & 2 & 1 & 1 & 0 \\ 2 & 9 & 0 & -3 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 7 \\ 13 \end{pmatrix}$ $x \ge \mathbf{0}$

 x_5, x_6 are the auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

$$egin{pmatrix} 1 & 5 & 2 & 1 \ 2 & 9 & 0 & -3 \ \end{pmatrix} x = egin{pmatrix} 7 \ 13 \ \end{pmatrix}$$
 and $x \ge \mathbf{0}$ (*)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min $x_5 + x_6$ s.t. $\begin{pmatrix} 1 & 5 & 2 & 1 & 1 & 0 \\ 2 & 9 & 0 & -3 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 7 \\ 13 \end{pmatrix}$ $x \ge \mathbf{0}$

 x_5, x_6 are the auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

 $(2, 1, 0, 0, 0, 0)^{\top}$ is an optimal solution to the auxiliary problem,

$$egin{pmatrix} 1 & 5 & 2 & 1 \ 2 & 9 & 0 & -3 \ \end{pmatrix} x = egin{pmatrix} 7 \ 13 \ \end{pmatrix}$$
 and $x \ge \mathbf{0}$ (*)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min $x_5 + x_6$ s.t. $\begin{pmatrix} 1 & 5 & 2 & 1 & 1 & 0 \\ 2 & 9 & 0 & -3 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 7 \\ 13 \end{pmatrix}$ $x \ge \mathbf{0}$

 x_5, x_6 are the auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

 $(2, 1, 0, 0, 0, 0)^{\top}$ is an optimal solution to the auxiliary problem, since $x_5 = x_6 = 0$.

$$egin{pmatrix} 1 & 5 & 2 & 1 \ 2 & 9 & 0 & -3 \ \end{pmatrix} x = egin{pmatrix} 7 \ 13 \ \end{pmatrix}$$
 and $x \ge \mathbf{0}$ (*)

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct the auxiliary problem.

min $x_5 + x_6$ s.t. $\begin{pmatrix} 1 & 5 & 2 & 1 & 1 & 0 \\ 2 & 9 & 0 & -3 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 7 \\ 13 \end{pmatrix}$ $x \ge \mathbf{0}$

 x_5, x_6 are the auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

 $(2, 1, 0, 0, 0, 0)^{\top}$ is an optimal solution to the auxiliary problem, since $x_5 = x_6 = 0$.

Therefore, $(2, 1, 0, 0)^{\top}$ is a feasible solution to (*).

A Second Example
Problem: Find a feasible solution/detect none exist for

$$\begin{pmatrix} 5 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \quad \text{and} \quad x \ge \mathbf{0} \quad (\star)$$

Problem: Find a feasible solution/detect none exist for

$$\begin{pmatrix} 5 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \quad \text{and} \quad x \ge \mathbf{0} \quad (\star)$$

Step 1. Multiply the equations such that the RHS is non-negative.

Problem: Find a feasible solution/detect none exist for

$$\begin{pmatrix} 5 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \quad \text{and} \quad x \ge \mathbf{0} \quad (\star)$$

Step 1. Multiply the equations such that the RHS is non-negative. OK

Problem: Find a feasible solution/detect none exist for

$$\begin{pmatrix} 5 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \quad \text{and} \quad x \ge \mathbf{0} \quad (\star)$$

Step 1. Multiply the equations such that the RHS is non-negative. OKStep 2. Construct the auxiliary problem.

Problem: Find a feasible solution/detect none exist for

$$\begin{pmatrix} 5 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \quad \text{and} \quad x \ge \mathbf{0} \quad (\star)$$

Step 1. Multiply the equations such that the RHS is non-negative. OKStep 2. Construct the auxiliary problem.

min $z = x_4 + x_5$ s.t. $\begin{pmatrix} 5 & 1 & 1 & 1 & 0 \\ -1 & 1 & 2 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ $x \ge \mathbf{0}$

Problem: Find a feasible solution/detect none exist for

$$\begin{pmatrix} 5 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \quad \text{and} \quad x \ge \mathbf{0} \quad (\star)$$

Step 1. Multiply the equations such that the RHS is non-negative. OKStep 2. Construct the auxiliary problem.

min $z = x_4 + x_5$ s.t. $\begin{pmatrix} 5 & 1 & 1 & 1 & 0 \\ -1 & 1 & 2 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ $x \ge 0$

 x_4, x_5 are the auxiliary variables

Problem: Find a feasible solution/detect none exist for

$$\begin{pmatrix} 5 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \quad \text{and} \quad x \ge \mathbf{0} \quad (\star)$$

Step 1. Multiply the equations such that the RHS is non-negative. OKStep 2. Construct the auxiliary problem.

min $z = x_4 + x_5$ s.t. $\begin{pmatrix} 5 & 1 & 1 & 1 & 0 \\ -1 & 1 & 2 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ $x \ge \mathbf{0}$

 x_4, x_5 are the auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

Problem: Find a feasible solution/detect none exist for

$$\begin{pmatrix} 5 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \quad \text{and} \quad x \ge \mathbf{0} \quad (\star)$$

Step 1. Multiply the equations such that the RHS is non-negative. OKStep 2. Construct the auxiliary problem.

min $z = x_4 + x_5$ s.t. $\begin{pmatrix} 5 & 1 & 1 & 1 & 0 \\ -1 & 1 & 2 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ $x \ge 0$

 x_4, x_5 are the auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

 $(0, 0, 1, 0, 3)^{\top}$ is an optimal solution to the auxiliary problem.

Problem: Find a feasible solution/detect none exist for

$$\begin{pmatrix} 5 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \quad \text{and} \quad x \ge \mathbf{0} \quad (\star)$$

Step 1. Multiply the equations such that the RHS is non-negative. OKStep 2. Construct the auxiliary problem.

min $z = x_4 + x_5$ s.t. $\begin{pmatrix} 5 & 1 & 1 & 1 & 0 \\ -1 & 1 & 2 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ $x \ge 0$

 x_4, x_5 are the auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

 $(0, 0, 1, 0, 3)^{\top}$ is an optimal solution to the auxiliary problem. However, $(0, 0, 1)^{\top}$ is NOT a solution to (*).

$$\begin{pmatrix} 5 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \quad \text{and} \quad x \ge \mathbf{0} \quad (\star)$$

min
$$z = x_4 + x_5$$

s.t.
 $\begin{pmatrix} 5 & 1 & 1 & 1 & 0 \\ -1 & 1 & 2 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$
 $x \ge \mathbf{0}$

the auxiliary problem optimal solution $(0,0,1,0,3)^{\top}$

$$\begin{pmatrix} 5 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \quad \text{and} \quad x \ge \mathbf{0} \quad (\star)$$

min
$$z = x_4 + x_5$$

s.t.
 $\begin{pmatrix} 5 & 1 & 1 & 1 & 0 \\ -1 & 1 & 2 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$
 $x \ge \mathbf{0}$

$$\begin{pmatrix} 5 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \quad \text{and} \quad x \ge \mathbf{0} \quad (\star)$$

min
$$z = x_4 + x_5$$

s.t.
 $\begin{pmatrix} 5 & 1 & 1 & 1 & 0 \\ -1 & 1 & 2 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ $x \ge \mathbf{0}$

Claim

 (\star) does not have a solution.

$$\begin{pmatrix} 5 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \quad \text{and} \quad x \ge \mathbf{0} \quad (\star)$$

min
$$z = x_4 + x_5$$

s.t.
 $\begin{pmatrix} 5 & 1 & 1 & 1 & 0 \\ -1 & 1 & 2 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ $x \ge \mathbf{0}$

Claim

 (\star) does not have a solution.

Proof

$$\begin{pmatrix} 5 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \quad \text{and} \quad x \ge \mathbf{0} \quad (\star)$$

min
$$z = x_4 + x_5$$

s.t.
 $\begin{pmatrix} 5 & 1 & 1 & 1 & 0 \\ -1 & 1 & 2 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$
 $x \ge \mathbf{0}$

Claim

 (\star) does not have a solution.

Proof

Suppose, for a contradiction, (*) has a solution x'_1, x'_2, x'_3 .

$$\begin{pmatrix} 5 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \quad \text{and} \quad x \ge \mathbf{0} \quad (\star)$$

min
$$z = x_4 + x_5$$

s.t.
 $\begin{pmatrix} 5 & 1 & 1 & 1 & 0 \\ -1 & 1 & 2 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ $x \ge \mathbf{0}$

Claim

 (\star) does not have a solution.

Proof

Suppose, for a contradiction, (*) has a solution x'_1, x'_2, x'_3 .

Then, $(x'_1, x'_2, x'_3, 0, 0)^{\top}$ is a feasible solution to the auxiliary problem,

$$\begin{pmatrix} 5 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \quad \text{and} \quad x \ge \mathbf{0} \quad (\star)$$

min
$$z = x_4 + x_5$$

s.t.
 $\begin{pmatrix} 5 & 1 & 1 & 1 & 0 \\ -1 & 1 & 2 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ $x \ge \mathbf{0}$

Claim

 (\star) does not have a solution.

Proof

Suppose, for a contradiction, (*) has a solution x'_1, x'_2, x'_3 .

Then, $(x'_1, x'_2, x'_3, 0, 0)^{\top}$ is a feasible solution to the auxiliary problem, but that solution has of value 0. This is a contradiction.

Problem: Find a feasible solution/detect none exist for

$$Ax = b$$
 and $x \ge 0$ (*)

Problem: Find a feasible solution/detect none exist for

$$Ax = b$$
 and $x \ge 0$ (*)

Step 1. Multiply the equations such that *b* is non-negative.

Problem: Find a feasible solution/detect none exist for

$$Ax = b$$
 and $x \ge 0$ (*)

Step 1. Multiply the equations such that *b* is non-negative.

Step 2. Construct the auxiliary problem ($A \ m \times n$ matrix).

Problem: Find a feasible solution/detect none exist for

$$Ax = b$$
 and $x \ge 0$ (*)

Step 1. Multiply the equations such that b is non-negative.

Step 2. Construct the auxiliary problem ($A \ m \times n$ matrix).

min $z = x_{n+1} + \ldots + x_{n+m}$ s.t. $\begin{pmatrix} A & | & I \end{pmatrix} x = b$ $x \ge \mathbf{0}$

Problem: Find a feasible solution/detect none exist for

$$Ax = b$$
 and $x \ge 0$ (*)

Step 1. Multiply the equations such that b is non-negative.

Step 2. Construct the auxiliary problem ($A \ m \times n$ matrix).

min $z = x_{n+1} + \ldots + x_{n+m}$ s.t. $\begin{pmatrix} A & | & I \end{pmatrix} x = b$ $x \ge \mathbf{0}$

 x_{n+1},\ldots,x_{n+m} are the auxiliary variables

Problem: Find a feasible solution/detect none exist for

$$Ax = b$$
 and $x \ge 0$ (*)

Step 1. Multiply the equations such that b is non-negative.

Step 2. Construct the auxiliary problem ($A \ m \times n$ matrix).

min $z = x_{n+1} + \ldots + x_{n+m}$ s.t. $\begin{pmatrix} A & | & I \end{pmatrix} x = b$ $x \ge \mathbf{0}$

 x_{n+1},\ldots,x_{n+m} are the auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

Find a feasible solution/detect none exist for Problem:

$$Ax = b$$
 and $x \ge 0$ (*)

Step 1. Multiply the equations such that b is non-negative.

Step 2. Construct the auxiliary problem ($A \ m \times n$ matrix).

Step 3. Solve the auxiliary problem using Algorithm 1.

 $(x_1,\ldots,x_n,x_{n+1},\ldots,x_{n+m})^ op$ is an optimal solution to the auxiliary problem.

Problem: Find a feasible solution/detect none exist for

$$Ax = b$$
 and $x \ge 0$ (*)

Step 1. Multiply the equations such that b is non-negative.

Step 2. Construct the auxiliary problem $(A \ m \times n \text{ matrix})$.

min $z = x_{n+1} + \ldots + x_{n+m}$ s.t. $\begin{pmatrix} A & | & I \end{pmatrix} x = b$ $x \ge \mathbf{0}$

 x_{n+1}, \ldots, x_{n+m} are the auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

 $(x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m})^{\top}$ is an optimal solution to the auxiliary problem.

Proposition

If z = 0, then $(x_1, \ldots, x_n)^{\top}$ is a solution to (\star) .

Problem: Find a feasible solution/detect none exist for

$$Ax = b$$
 and $x \ge 0$ (*)

Step 1. Multiply the equations such that b is non-negative.

Step 2. Construct the auxiliary problem ($A \ m \times n$ matrix).

min $z = x_{n+1} + \ldots + x_{n+m}$ s.t. $\begin{pmatrix} A & | & I \end{pmatrix} x = b$ $x \ge \mathbf{0}$ s.t.

 x_{n+1}, \ldots, x_{n+m} are the auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

 $(x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m})^{\top}$ is an optimal solution to the auxiliary problem.

Proposition

If
$$z = 0$$
, then $(x_1, \ldots, x_n)^{\top}$ is a solution to (\star) .

Proof

Problem: Find a feasible solution/detect none exist for

$$Ax = b$$
 and $x \ge 0$ (*)

Step 1. Multiply the equations such that b is non-negative.

Step 2. Construct the auxiliary problem ($A \ m \times n$ matrix).

min $z = x_{n+1} + \ldots + x_{n+m}$ s.t. $\begin{pmatrix} A & | & I \end{pmatrix} x = b$ $x \ge \mathbf{0}$

 x_{n+1}, \ldots, x_{n+m} are the auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

 $(x_1,\ldots,x_n,x_{n+1},\ldots,x_{n+m})^{\top}$ is an optimal solution to the auxiliary problem.

Proposition

If
$$z = 0$$
, then $(x_1, \ldots, x_n)^{\top}$ is a solution to (\star) .

Proof When z = 0, we must have $x_{n+1} = ... = x_{n+m} = 0$. Problem: Find a feasible solution/detect none exist for

$$Ax = b$$
 and $x \ge 0$ (*)

Step 1. Multiply the equations such that b is non-negative.

Step 2. Construct the auxiliary problem ($A \ m \times n$ matrix).

min $z = x_{n+1} + \ldots + x_{n+m}$ s.t. $\begin{pmatrix} A & | & I \end{pmatrix} x = b$ $x \ge \mathbf{0}$

 x_{n+1}, \ldots, x_{n+m} are the auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

 $(x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m})^{\top}$ is an optimal solution to the auxiliary problem.

Proposition

When z > 0, then (\star) has no solution.

min
$$z = x_{n+1} + \ldots + x_{n+m}$$

s.t.
 $\begin{pmatrix} A & | & I \end{pmatrix} x = b$
 $x \ge \mathbf{0}$

the auxiliary problem optimal solution $(x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m})^\top$

Proposition

When z > 0, then (\star) has no solution.

min
$$z = x_{n+1} + \ldots + x_{n+m}$$

s.t.
 $\begin{pmatrix} A & | & I \end{pmatrix} x = b$
 $x \ge \mathbf{0}$

the auxiliary problem optimal solution $(x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m})^\top$

Proposition

When z > 0, then (\star) has no solution.

Proof

min
$$z = x_{n+1} + \ldots + x_{n+m}$$

s.t.
 $\begin{pmatrix} A & | & I \end{pmatrix} x = b$
 $x \ge \mathbf{0}$

the auxiliary problem optimal solution $(x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m})^\top$

Proposition

When z > 0, then (\star) has no solution.

Proof

Suppose, for a contradiction, (*) has a solution x_1', \ldots, x_n' .

min
$$z = x_{n+1} + \ldots + x_{n+m}$$

s.t.
 $\begin{pmatrix} A & | & I \end{pmatrix} x = b$
 $x \ge \mathbf{0}$

the auxiliary problem optimal solution $(x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m})^\top$

Proposition

When z > 0, then (\star) has no solution.

Proof

Suppose, for a contradiction, (*) has a solution x'_1, \ldots, x'_n .

Then $(x'_1, \ldots, x'_n, 0, \ldots, 0)^{ op}$ is a feasible solution to the auxiliary problem,

min
$$z = x_{n+1} + \ldots + x_{n+m}$$

s.t.
 $\begin{pmatrix} A & | & I \end{pmatrix} x = b$
 $x \ge \mathbf{0}$

the auxiliary problem optimal solution $(x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m})^\top$

Proposition

When z > 0, then (\star) has no solution.

Proof

Suppose, for a contradiction, (*) has a solution x'_1, \ldots, x'_n .

Then $(x'_1, \ldots, x'_n, 0, \ldots, 0)^{\top}$ is a feasible solution to the auxiliary problem,

but that solution has of value $\boldsymbol{0}.$

min
$$z = x_{n+1} + \ldots + x_{n+m}$$

s.t.
 $\begin{pmatrix} A & | & I \end{pmatrix} x = b$
 $x \ge \mathbf{0}$

the auxiliary problem optimal solution $(x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m})^\top$

Proposition

When z > 0, then (\star) has no solution.

Proof

Suppose, for a contradiction, (*) has a solution x'_1, \ldots, x'_n .

Then $(x_1',\ldots,x_n',0,\ldots,0)^ op$ is a feasible solution to the auxiliary problem,

but that solution has of value $0. \ \mbox{This}$ is a contradiction.

The 2-Phase Method

The 2-Phase Method

To solve

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\},\$$
To solve

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\},\$$

we proceed in two phases:

To solve

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\},\$$

we proceed in two phases:

Phase 1. Find a feasible solution/detect none exist.

To solve

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\},\$$

we proceed in two phases:

Phase 1. Find a feasible solution/detect none exist.

Phase 2. Given that feasible solution: find an optimal solution/detect LP unbounded.

To solve

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\},\$$

we proceed in two phases:

Phase 1. Find a feasible solution/detect none exist.

Phase 2. Given that feasible solution: find an optimal solution/detect LP unbounded.

Example

Solve the following LP,

$$\begin{array}{ll} \max & (1,1,1)x \\ \text{s.t.} & \\ & \begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \\ & x \geq \mathbf{0} \end{array}$$

$$\begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$
 and $x \ge \mathbf{0}$ (*)

$$egin{pmatrix} 1&2&-1\ 1&-1&1 \end{pmatrix}x=egin{pmatrix} 4\ 4 \end{pmatrix}$$
 and $x\geq \mathbf{0}$ (*)

Step 1. Multiply the equations such that the RHS is non-negative.

$$egin{pmatrix} 1&2&-1\ 1&-1&1 \end{pmatrix}x=egin{pmatrix} 4\ 4 \end{pmatrix}$$
 and $x\geq \mathbf{0}$ (\star)

Step 1. Multiply the equations such that the RHS is non-negative. OK

$$egin{pmatrix} 1&2&-1\ 1&-1&1 \end{pmatrix}x=egin{pmatrix} 4\ 4 \end{pmatrix}$$
 and $x\geq \mathbf{0}$ (\star)

Step 1. Multiply the equations such that the RHS is non-negative. OKStep 2. Construct the auxiliary problem.

$$egin{pmatrix} 1&2&-1\ 1&-1&1 \end{pmatrix}x=egin{pmatrix} 4\ 4 \end{pmatrix}$$
 and $x\geq \mathbf{0}$ (\star)

Step 1. Multiply the equations such that the RHS is non-negative. OKStep 2. Construct the auxiliary problem.

min $z = x_4 + x_5$ s.t. $\begin{pmatrix} 1 & 2 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$ $x \ge \mathbf{0}$

$$egin{pmatrix} 1&2&-1\ 1&-1&1 \end{pmatrix}x=egin{pmatrix} 4\ 4 \end{pmatrix}$$
 and $x\geq \mathbf{0}$ (\star)

Step 1. Multiply the equations such that the RHS is non-negative. OKStep 2. Construct the auxiliary problem.

min $z = x_4 + x_5$ s.t. $\begin{pmatrix} 1 & 2 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$ $x \ge \mathbf{0}$

NOT in SEF

$$egin{pmatrix} 1&2&-1\ 1&-1&1 \end{pmatrix}x=egin{pmatrix} 4\ 4 \end{pmatrix}$$
 and $x\geq \mathbf{0}$ (\star)

Step 1. Multiply the equations such that the RHS is non-negative. OKStep 2. Construct the auxiliary problem.

 $\begin{array}{ll} \max & z = -x_4 - x_5 \\ \text{s.t.} & \\ & \begin{pmatrix} 1 & 2 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \\ & x \ge \mathbf{0} \end{array}$

$$egin{pmatrix} 1&2&-1\ 1&-1&1 \end{pmatrix}x=egin{pmatrix} 4\ 4 \end{pmatrix}$$
 and $x\geq \mathbf{0}$ (\star)

Step 1. Multiply the equations such that the RHS is non-negative. OKStep 2. Construct the auxiliary problem.

 $\begin{array}{ll} \max & z = -x_4 - x_5 \\ \text{s.t.} & \\ & \begin{pmatrix} 1 & 2 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \\ & x \ge \mathbf{0} \end{array}$

In SEF

$$egin{pmatrix} 1&2&-1\ 1&-1&1 \end{pmatrix}x=egin{pmatrix} 4\ 4 \end{pmatrix}$$
 and $x\geq \mathbf{0}$ (*)

Step 1. Multiply the equations such that the RHS is non-negative. OKStep 2. Construct the auxiliary problem.

 $\begin{array}{ll} \max & z = -x_4 - x_5 \\ \text{s.t.} & \\ & \begin{pmatrix} 1 & 2 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \\ & x \ge \mathbf{0} \end{array}$

In SEF

feasible basis $B = \{4, 5\}$

$$egin{pmatrix} 1&2&-1\ 1&-1&1 \end{pmatrix}x=egin{pmatrix} 4\ 4 \end{pmatrix}$$
 and $x\geq \mathbf{0}$ (*)

Step 1. Multiply the equations such that the RHS is non-negative. OKStep 2. Construct the auxiliary problem.

 $\begin{array}{ll} \max & z = -x_4 - x_5 \\ \text{s.t.} \\ & \begin{pmatrix} 1 & 2 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \\ & x \ge \mathbf{0} \end{array}$

In SEF

feasible basis $B = \{4, 5\}$

$$egin{pmatrix} 1&2&-1\ 1&-1&1 \end{pmatrix}x=egin{pmatrix} 4\ 4 \end{pmatrix}$$
 and $x\geq \mathbf{0}$ (*)

Step 1. Multiply the equations such that the RHS is non-negative. OKStep 2. Construct the auxiliary problem.

 $\begin{array}{ll} \max & z = -x_4 - x_5 \\ \text{s.t.} & \\ & \begin{pmatrix} 1 & 2 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \\ & x \ge \mathbf{0} \end{array}$

In SEF

feasible basis $B = \{4, 5\}$

NOT in canonical form

To rewrite $B = \{4, 5\}$ in canonical form, you can

$$egin{pmatrix} 1&2&-1\ 1&-1&1 \end{pmatrix}x=egin{pmatrix} 4\ 4 \end{pmatrix}$$
 and $x\geq \mathbf{0}$ (*)

Step 1. Multiply the equations such that the RHS is non-negative. OKStep 2. Construct the auxiliary problem.

 $\begin{array}{ll} \max & z = -x_4 - x_5 \\ \text{s.t.} & \\ & \begin{pmatrix} 1 & 2 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \\ & x \ge \mathbf{0} \end{array}$

In SEF

feasible basis $B = \{4, 5\}$

NOT in canonical form

To rewrite $B = \{4, 5\}$ in canonical form, you can

• use the formulae, OR

$$egin{pmatrix} 1&2&-1\ 1&-1&1 \end{pmatrix}x=egin{pmatrix} 4\ 4 \end{pmatrix}$$
 and $x\geq \mathbf{0}$ (\star)

Step 1. Multiply the equations such that the RHS is non-negative. OKStep 2. Construct the auxiliary problem.

 $\begin{array}{ll} \max & z = -x_4 - x_5 \\ \text{s.t.} & \\ & \begin{pmatrix} 1 & 2 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \\ & x \ge \mathbf{0} \end{array}$

In SEF

feasible basis $B = \{4, 5\}$

NOT in canonical form

To rewrite $B = \{4, 5\}$ in canonical form, you can

- use the formulae, OR
- notice $A_B = I$ and rewrite the objective function as follows...

$$egin{pmatrix} 1&2&-1\ 1&-1&1 \end{pmatrix}x=egin{pmatrix} 4\ 4 \end{pmatrix}$$
 and $x\geq \mathbf{0}$ (*)

Step 1. Multiply the equations such that the RHS is non-negative. OKStep 2. Construct the auxiliary problem.

 $\begin{array}{cccc} \max & z = -x_4 - x_5 \\ \text{s.t.} & & \begin{pmatrix} 1 & 2 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \\ & & x \ge \mathbf{0} \end{array}$

In SEF

feasible basis $B = \{4, 5\}$

$$z = (0 \quad 0 \quad 0 \quad -1 \quad -1)x$$

$$egin{pmatrix} 1&2&-1\ 1&-1&1 \end{pmatrix}x=egin{pmatrix} 4\ 4 \end{pmatrix}$$
 and $x\geq \mathbf{0}$ (*)

Step 1. Multiply the equations such that the RHS is non-negative. OKStep 2. Construct the auxiliary problem.

 $\begin{array}{ll} \max & z = -x_4 - x_5 \\ \text{s.t.} & \\ & \begin{pmatrix} 1 & 2 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \\ & x \ge \mathbf{0} \end{array}$

In SEF

feasible basis $B = \{4, 5\}$

$$z = (0 \quad 0 \quad 0 \quad -1 \quad -1)x$$

$$0 = (1 \quad 2 \quad -1 \quad 1 \quad 0)x \quad -4$$

$$egin{pmatrix} 1&2&-1\ 1&-1&1 \end{pmatrix}x=egin{pmatrix} 4\ 4 \end{pmatrix}$$
 and $x\geq \mathbf{0}$ (*)

Step 1. Multiply the equations such that the RHS is non-negative. OKStep 2. Construct the auxiliary problem.

 $\begin{array}{ll} \max & z = -x_4 - x_5 \\ \text{s.t.} & \\ & \begin{pmatrix} 1 & 2 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \\ & x \ge \mathbf{0} \end{array}$

In SEF

feasible basis $B = \{4, 5\}$

$$z = (0 \quad 0 \quad 0 \quad -1 \quad -1)x$$

$$0 = (1 \quad 2 \quad -1 \quad 1 \quad 0)x \quad -4$$

$$0 = (1 \quad -1 \quad 1 \quad 0 \quad 1)x \quad -4$$

$$egin{pmatrix} 1&2&-1\ 1&-1&1 \end{pmatrix}x=egin{pmatrix} 4\ 4 \end{pmatrix}$$
 and $x\geq \mathbf{0}$ (*)

Step 1. Multiply the equations such that the RHS is non-negative. OKStep 2. Construct the auxiliary problem.

$$\begin{array}{ll} \max & z = -x_4 - x_5 \\ \text{s.t.} & \\ & \begin{pmatrix} 1 & 2 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \\ & x \ge \mathbf{0} \end{array}$$

In SEF

feasible basis $B = \{4, 5\}$

$$z = (0 \quad 0 \quad 0 \quad -1 \quad -1)x$$

$$0 = (1 \quad 2 \quad -1 \quad 1 \quad 0)x \quad -4$$

$$0 = (1 \quad -1 \quad 1 \quad 0 \quad 1)x \quad -4$$

$$z = (2 \quad 1 \quad 0 \quad 0 \quad 0)x \quad -8$$

$$egin{pmatrix} 1&2&-1\ 1&-1&1 \end{pmatrix}x=egin{pmatrix} 4\ 4 \end{pmatrix}$$
 and $x\geq \mathbf{0}$ (*)

Step 1. Multiply the equations such that the RHS is non-negative. OKStep 2. Construct the auxiliary problem.

$$\begin{array}{ll} \max & z = \begin{pmatrix} 2 & 1 & 0 & 0 & 0 \end{pmatrix} - 8 \\ \text{s.t.} & & \begin{pmatrix} 1 & 2 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \\ & x \ge \mathbf{0} \end{array}$$

In SEF

feasible basis $B = \{4, 5\}$

$$egin{pmatrix} 1&2&-1\ 1&-1&1 \end{pmatrix}x=egin{pmatrix} 4\ 4 \end{pmatrix}$$
 and $x\geq \mathbf{0}$ (*)

Step 1. Multiply the equations such that the RHS is non-negative. OKStep 2. Construct the auxiliary problem.

$$\begin{array}{ll} \max & z = \begin{pmatrix} 2 & 1 & 0 & 0 & 0 \end{pmatrix} - 8 \\ \text{s.t.} & & \begin{pmatrix} 1 & 2 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \\ & x \ge \mathbf{0} \end{array}$$

In SEF

feasible basis $B = \{4, 5\}$

canonical form for ${\cal B}$

$$egin{pmatrix} 1&2&-1\ 1&-1&1 \end{pmatrix}x=egin{pmatrix} 4\ 4 \end{pmatrix}$$
 and $x\geq \mathbf{0}$ (*)

Step 1. Multiply the equations such that the RHS is non-negative. OKStep 2. Construct the auxiliary problem.

 $\begin{array}{ll} \max & z = \begin{pmatrix} 2 & 1 & 0 & 0 & 0 \end{pmatrix} - 8 \\ \text{s.t.} & & \begin{pmatrix} 1 & 2 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \\ & x \ge \mathbf{0} \end{array}$

In SEF

feasible basis $B = \{4, 5\}$

canonical form for ${\cal B}$

Step 3. Solve the auxiliary problem using Simplex, starting from *B*.

$$egin{pmatrix} 1&2&-1\ 1&-1&1 \end{pmatrix}x=egin{pmatrix} 4\ 4 \end{pmatrix}$$
 and $x\geq \mathbf{0}$ (*)

Step 1. Multiply the equations such that the RHS is non-negative. OKStep 2. Construct the auxiliary problem.

 $\begin{array}{ll} \max & z = \begin{pmatrix} 2 & 1 & 0 & 0 & 0 \end{pmatrix} - 8 \\ \text{s.t.} & & \begin{pmatrix} 1 & 2 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \\ & x \ge \mathbf{0} \end{array}$

In SEF

feasible basis $B = \{4, 5\}$

canonical form for ${\cal B}$

Step 3. Solve the auxiliary problem using Simplex, starting from B.

 $B = \{1, 4\}$ is an optimal basis with the basic solution $(4, 0, 0, 0, 0)^{\top}$.

$$egin{pmatrix} 1&2&-1\ 1&-1&1 \end{pmatrix}x=egin{pmatrix} 4\ 4 \end{pmatrix}$$
 and $x\geq \mathbf{0}$ (*)

Step 1. Multiply the equations such that the RHS is non-negative. OKStep 2. Construct the auxiliary problem.

 $\begin{array}{ll} \max & z = \begin{pmatrix} 2 & 1 & 0 & 0 & 0 \end{pmatrix} - 8 \\ \text{s.t.} & & \begin{pmatrix} 1 & 2 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \\ & x \ge \mathbf{0} \end{array}$

In SEF feasible basis $B = \{4, 5\}$ canonical form for B

Step 3. Solve the auxiliary problem using Simplex, starting from B.

 $B = \{1, 4\}$ is an optimal basis with the basic solution $(4, 0, 0, 0, 0)^{\top}$. z = 0 implies that $(4, 0, 0)^{\top}$ is a feasible solution for (*).

$$\max (2, -1, 2)x$$
s.t.
$$\begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$x \ge \mathbf{0}$$

$$\max (2, -1, 2)x$$

s.t.
$$\begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

Remark

 $(4,0,0)^{\top}$ is a basic solution.

max
$$(2, -1, 2)x$$

s.t.
 $\begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$
 $x \ge \mathbf{0}$

Remark

 $(4,0,0)^{\top}$ is a basic solution.

Exercise

Show that this will always be the case!

$$\max (2, -1, 2)x$$
s.t.
$$\underbrace{\begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix}}_{A} x = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$x \ge \mathbf{0}$$

$$\max (2, -1, 2)x$$
s.t.
$$\underbrace{\begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix}}_{A} x = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$x \ge \mathbf{0}$$

Question

For what basis, B, is $x = (4, 0, 0)^{\top}$ a basic solution?

$$\max (2, -1, 2)x$$
s.t.
$$\underbrace{\begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix}}_{A} x = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$x \ge \mathbf{0}$$

Question

For what basis, B, is $x = (4, 0, 0)^{\top}$ a basic solution?

 $x_1 \neq 0$

$$\max (2, -1, 2)x$$
s.t.
$$\underbrace{\begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix}}_{A} x = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$x \ge \mathbf{0}$$

Question

For what basis, B, is $x = (4, 0, 0)^{\top}$ a basic solution?

 $x_1 \neq 0 \implies 1 \in B$

$$\max (2, -1, 2)x$$
s.t.
$$\underbrace{\begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix}}_{A} x = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$x \ge \mathbf{0}$$

Question

For what basis, B, is $x = (4, 0, 0)^{\top}$ a basic solution?

 $x_1 \neq 0 \implies 1 \in B$

Cardinality of maximal set of independent columns of A = Cardinality of maximal set of independent rows of A = 2

$$\max (2, -1, 2)x$$
s.t.
$$\underbrace{\begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix}}_{A} x = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$x \ge \mathbf{0}$$

Question

For what basis, B, is $x = (4, 0, 0)^{\top}$ a basic solution?

 $x_1 \neq 0 \implies 1 \in B$

Cardinality of maximal set of independent columns of A = Cardinality of maximal set of independent rows of A = 2

Thus, for some $i \in \{2, 3\}$, columns 1 and i of A are independent.

$$\max (2, -1, 2)x$$
s.t.
$$\underbrace{\begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix}}_{A} x = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$x \ge \mathbf{0}$$

Question

For what basis, B, is $x = (4, 0, 0)^{\top}$ a basic solution?

 $x_1 \neq 0 \implies 1 \in B$

Cardinality of maximal set of independent columns of A = Cardinality of maximal set of independent rows of A = 2

Thus, for some $i \in \{2,3\}$, columns 1 and i of A are independent.

In this case, we can pick i = 2.
Phase 1. $(4,0,0)^{\top}$ is a feasible solution for

$$\max (2, -1, 2)x$$
s.t.
$$\underbrace{\begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix}}_{A} x = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$x \ge \mathbf{0}$$

Question

For what basis, B, is $x = (4, 0, 0)^{\top}$ a basic solution?

 $x_1 \neq 0 \implies 1 \in B$

Cardinality of maximal set of independent columns of A = Cardinality of maximal set of independent rows of A = 2

Thus, for some $i \in \{2, 3\}$, columns 1 and i of A are independent.

In this case, we can pick i = 2. In particular, $B = \{1, 2\}$ is a basis.

Phase 2. Find an optimal solution/detect LP unbounded.

$$\max (1, 1, 1)x$$

s.t.
$$\begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$
$$x \ge \mathbf{0}$$

 $B = \{1, 2\}$ is a feasible basis (from Phase 1).

Phase 2. Find an optimal solution/detect LP unbounded.

$$\begin{array}{ll} \max & (1,1,1)x\\ \text{s.t.} & \\ & \begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \\ & x \geq \mathbf{0} \end{array}$$

 $B = \{1, 2\}$ is a feasible basis (from Phase 1).

We can now solve the problem using Simplex, starting from B.

Phase 2. Find an optimal solution/detect LP unbounded.

$$\begin{array}{ll} \max & (1,1,1)x\\ \text{s.t.} & \\ & \begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix}\\ & x \geq \mathbf{0} \end{array}$$

 $B = \{1, 2\}$ is a feasible basis (from Phase 1).

We can now solve the problem using Simplex, starting from B.

 $x = (0, 8, 12)^{\top}$ is an optimal solution.

Theorem

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}$$

Theorem

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}$$

Exactly one of the following holds for the LP:

Theorem

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}$$

Exactly one of the following holds for the LP: (A) it is infeasible,

Theorem

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}$$

Exactly one of the following holds for the LP:

- (A) it is infeasible,
- (B) it is unbounded, or

Theorem

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}$$

Exactly one of the following holds for the LP:

(A) it is infeasible,

(B) it is unbounded, or

(C) it has an optimal solution

Theorem

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}$$

Exactly one of the following holds for the LP:

(A) it is infeasible,

(B) it is unbounded, or

(C) it has an optimal solution that is basic.

Theorem

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}$$

Exactly one of the following holds for the LP:

(A) it is infeasible,

(B) it is unbounded, or

(C) it has an optimal solution that is basic.

Proof

Theorem

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}$$

Exactly one of the following holds for the LP:

(A) it is infeasible,

(B) it is unbounded, or

(C) it has an optimal solution that is basic.

Proof

Run 2-Phase method with Simplex using Bland's rule.

Theorem

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}$$

Exactly one of the following holds for the LP:

(A) it is infeasible,

(B) it is unbounded, or

(C) it has an optimal solution that is basic.

Proof

Run 2-Phase method with Simplex using Bland's rule. (Recall that Bland's rule ensures that Simplex terminates.)

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}$$

Exactly one of the following holds for the LP:

- (A) it is infeasible,
- (B) it is unbounded, or
- (C) it has an optimal solution that is basic.

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}$$

Exactly one of the following holds for the LP:

- (A) it is infeasible,
- (B) it is unbounded, or
- (C) it has an optimal solution that is basic.

Remark

A finite number of basis implies a finite number of basic solutions.

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}$$

Exactly one of the following holds for the LP:

- (A) it is infeasible,
- (B) it is unbounded, or
- (C) it has an optimal solution that is basic.

Remark

A finite number of basis implies a finite number of basic solutions.

If a LP has at least two feasible solutions and one optimal solution,

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}$$

Exactly one of the following holds for the LP:

- (A) it is infeasible,
- (B) it is unbounded, or
- (C) it has an optimal solution that is basic.

Remark

A finite number of basis implies a finite number of basic solutions.

If a LP has at least two feasible solutions and one optimal solution,

Consider an arbitrary LP.

Consider an arbitrary LP. Exactly one of the following holds:

Consider an arbitrary LP. Exactly one of the following holds: (A) it is infeasible,

Consider an arbitrary LP. Exactly one of the following holds:

- (A) it is infeasible,
- (B) it is unbounded, or

Consider an arbitrary LP. Exactly one of the following holds:

- (A) it is infeasible,
- (B) it is unbounded, or
- (C) it has an optimal solution.

Consider an arbitrary LP. Exactly one of the following holds:

- (A) it is infeasible,
- (B) it is unbounded, or
- (C) it has an optimal solution.

Proof

Consider an arbitrary LP. Exactly one of the following holds:

- (A) it is infeasible,
- (B) it is unbounded, or
- (C) it has an optimal solution.

Proof

Convert the LP into an equivalent LP in SEF.

Consider an arbitrary LP. Exactly one of the following holds:

(A) it is infeasible,

(B) it is unbounded, or

(C) it has an optimal solution.

Proof

Convert the LP into an equivalent LP in SEF.

Apply the previous theorem.

• Using 2-Phase + the Simplex algorithm, we can solve arbitrary LPs.

- Using 2-Phase + the Simplex algorithm, we can solve arbitrary LPs.
- We proved the fundamental theorem of linear programming.

- Using 2-Phase + the Simplex algorithm, we can solve arbitrary LPs.
- We proved the fundamental theorem of linear programming.

We have given a bare bone version of the Simplex procedure.

- Using 2-Phase + the Simplex algorithm, we can solve arbitrary LPs.
- We proved the fundamental theorem of linear programming.

We have given a bare bone version of the Simplex procedure.

Careful implementation is key to having a practical algorithm.

- Using 2-Phase + the Simplex algorithm, we can solve arbitrary LPs.
- We proved the fundamental theorem of linear programming.

We have given a bare bone version of the Simplex procedure.

Careful implementation is key to having a practical algorithm.

If Simplex were a bike,

- Using 2-Phase + the Simplex algorithm, we can solve arbitrary LPs.
- We proved the fundamental theorem of linear programming.

We have given a bare bone version of the Simplex procedure.

Careful implementation is key to having a practical algorithm.

If Simplex were a bike,

Sergio Schnitzler/Hemera/Thinkstock

State of the art implementation

- Using 2-Phase + the Simplex algorithm, we can solve arbitrary LPs.
- We proved the fundamental theorem of linear programming.

We have given a bare bone version of the Simplex procedure.

Careful implementation is key to having a practical algorithm.

If Simplex were a bike,

Sergio Schnitzler/Hemera/Thinkstock

State of the art implementation

gamegfx/iStock/Thinkstock

Our implementation