
CO 250: Introduction to Optimization
Module 2: Linear Programs (Finding a Feasible Solution)



The Problem

Consider
max

{

c⊤x : Ax = b, x ≥ 0
}

.

T run Simplex, we need a feasible basis.

Question

How do we find a feasible basis?

An easier question,

Question

How do we find a feasible solution?

These tw questions are equivalent.

Exercise

There is an algorithm that, given a feasible solution, finds a feasible basis.

We will focus on the second question.
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HOW?

We will show that...
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We can use Algorithm to get Algorithm .
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x ≥ 0
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}

,
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Phase 2. Given that feasible solution:
find an optimal solution/detect LP unbounded.
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max (1, 1, 1)x

s.t.
(
1 2 −1
1 −1 1

)

x =

(
4
4

)

x ≥ 0
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Remark
(4, 0, 0)⊤ is a basic solution.

Exercise
Show that this will always be the case!
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For what basis, B, is x = (4, 0, 0)⊤ a basic solution?

x1 = 0 1 ∈ B

Cardinality of maximal set of independent columns of A =
Cardinality of maximal set of independent rows of A = 2

Thus, or some i ∈ {2, 3}, columns 1 and i of A are independent.

In this case, we can pick i = 2. In particular, B = {1, 2} is a basis.
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Phase 2. Find an optimal solution/detect LP unbounded.

max (1, 1, 1)x

s.t.
(
1 2 −1
1 −1 1

)

x =

(
4
4

)

x ≥ 0

B = {1, 2} is a feasible basis (from Phase 1).

We can now solve the problem using Simplex, starting from B.

x = (0, 8, 12)⊤ is an optimal solution.



Phase 2. Find an optimal solution/detect LP unbounded.

max (1, 1, 1)x

s.t.
(
1 2 −1
1 −1 1

)

x =

(
4
4

)

x ≥ 0

B = {1, 2} is a feasible basis (from Phase 1).

We can now solve the problem using Simplex, starting from B.

x = (0, 8, 12)⊤ is an optimal solution.



Phase 2. Find an optimal solution/detect LP unbounded.

max (1, 1, 1)x

s.t.
(
1 2 −1
1 −1 1

)

x =

(
4
4

)

x ≥ 0

B = {1, 2} is a feasible basis (from Phase 1).

We can now solve the problem using Simplex, starting from B.

x = (0, 8, 12)⊤ is an optimal solution.



Consequences

Theorem
max

{

c⊤x : Ax = b, x ≥
}

Exactly one of the following holds for the LP:

(A) it is infeasible,

(B) it is unbounded, r

(C) it has an optimal solution that is basic.

Proof

Run 2-Phase method with Simplex using Bland’s rule.
(Recall that Bland’s rule ensures that Simplex terminates.)
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Fundamental Theorem of Linear Programming

Consider an arbitrary LP. Exactly one of the following holds:

(A) it is infeasible,

(B) it is unbounded, r

(C) it has an optimal solution.

Proof

Convert the LP into an equivalent LP in SEF.

Apply the previous theorem.
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Recap

• Using 2-Phase + the Simplex algorithm, we can solve arbitrary LPs.

• We proved the fundamental theorem of linear programming.

We have given a bare bone version of the Simplex procedure.

Careful implementation is key to having a practical algorithm.

If Simplex were a bike,

Sergio Schnitzler/Hemera/Thinkstock

State of the art implementation

gamegfx/iStock/Thinkstock

Our implementation



Recap

• Using 2-Phase + the Simplex algorithm, we can solve arbitrary LPs.

• We proved the fundamental theorem of linear programming.

We have given a bare bone version of the Simplex procedure.

Careful implementation is key to having a practical algorithm.

If Simplex were a bike,

Sergio Schnitzler/Hemera/Thinkstock

State of the art implementation

gamegfx/iStock/Thinkstock

Our implementation



Recap

• Using 2-Phase + the Simplex algorithm, we can solve arbitrary LPs.

• We proved the fundamental theorem of linear programming.

We have given a bare bone version of the Simplex procedure.

Careful implementation is key to having a practical algorithm.

If Simplex were a bike,

Sergio Schnitzler/Hemera/Thinkstock

State of the art implementation

gamegfx/iStock/Thinkstock

Our implementation



Recap

• Using 2-Phase + the Simplex algorithm, we can solve arbitrary LPs.

• We proved the fundamental theorem of linear programming.

We have given a bare bone version of the Simplex procedure.

Careful implementation is key to having a practical algorithm.

If Simplex were a bike,

Sergio Schnitzler/Hemera/Thinkstock

State of the art implementation

gamegfx/iStock/Thinkstock

Our implementation



Recap

• Using 2-Phase + the Simplex algorithm, we can solve arbitrary LPs.

• We proved the fundamental theorem of linear programming.

We have given a bare bone version of the Simplex procedure.

Careful implementation is key to having a practical algorithm.

If Simplex were a bike,

Sergio Schnitzler/Hemera/Thinkstock

State of the art implementation

gamegfx/iStock/Thinkstock

Our implementation



Recap

• Using 2-Phase + the Simplex algorithm, we can solve arbitrary LPs.

• We proved the fundamental theorem of linear programming.

We have given a bare bone version of the Simplex procedure.

Careful implementation is key to having a practical algorithm.

If Simplex were a bike,

Sergio Schnitzler/Hemera/Thinkstock

State of the art implementation

gamegfx/iStock/Thinkstock

Our implementation



Recap

• Using 2-Phase + the Simplex algorithm, we can solve arbitrary LPs.

• We proved the fundamental theorem of linear programming.

We have given a bare bone version of the Simplex procedure.

Careful implementation is key to having a practical algorithm.

If Simplex were a bike,

Sergio Schnitzler/Hemera/Thinkstock

State of the art implementation

gamegfx/iStock/Thinkstock

Our implementation



Recap

• Using 2-Phase + the Simplex algorithm, we can solve arbitrary LPs.

• We proved the fundamental theorem of linear programming.

We have given a bare bone version of the Simplex procedure.

Careful implementation is key to having a practical algorithm.

If Simplex were a bike,

Sergio Schnitzler/Hemera/Thinkstock

State of the art implementation

gamegfx/iStock/Thinkstock

Our implementation
Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

