
CO 250: Introduction to Optimization
Module 2: Linear Programs (Canonical Forms)



Consider
max

{
c>x : Ax = b, x ≥ 0

}
(P)

Definition

Let B be a basis of A. Then (P) is in canonical form for B if

(P1) AB = I, and

(P2) cj = 0 for all j ∈ B.

max (0 0 2 4)x

s.t. (
1 0 1 −1
0 1 1 2

)
x =

(
1
2

)
x1, x2, x3, x4 ≥ 0

Canonical form for
B = {1, 2}
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Definition

Let B be a basis of A. Then (P) is in canonical form for B if

(P1) AB = I, and
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Canonical form for
B = {2, 3}



Consider
max

{
c>x : Ax = b, x ≥ 0

}
(P)

Idea

For any basis B we can “rewrite” (P) so that it is in canonical form for a
basis B and such that the resulting LP behaves the same as (P).

More formally, we will show the following:

Proposition

For any basis B, there exists (P’) in canonical form for B such that

(1) (P) and (P’) have the same feasible region, and

(2) feasible solutions have the same objective value for (P) and (P’).
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Illustration with an Example

max (0 0 2 4)︸ ︷︷ ︸
c

x

s.t. (
1 0 1 −1
0 1 1 2

)
︸ ︷︷ ︸

A

x =

(
1
2

)
︸︷︷︸

b

x1, x2, x3, x4 ≥ 0

(P)

Question

How do we rewrite (P) in canonical form for basis B = {2, 3}?

(P1) Replace Ax = b by A′x = b′ with A′{2,3} = I.

(P2) Replace c>x by c̄>x + z̄ where c̄2 = c̄3 = 0 and z̄ is a constant.
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Rewriting Constraints – Example
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0 1 1 2

)
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A
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)−1(
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0 1 1 2

)
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0 1
1 1

)−1(
1
2

)
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−1 1 0 3
1 0 1 −1

)
x =

(
1
1
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Rewriting Constraints – General

Consider the system Ax = b with basis B of A.

(P1) Replace Ax = b by A′x = b′ with A′B = I for some basis B.

Ax = b

A−1
B A︸ ︷︷ ︸
A′

x = A−1
B b︸ ︷︷ ︸
b′

Remarks

• A′B = I.

• Ax = b and A′x = b′ have the same set of solutions.
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Rewriting the Objective Function – Example

max z = (0 0 2 4)︸ ︷︷ ︸
c>

x

s.t. (
1 0 1 −1
0 1 1 2

)
︸ ︷︷ ︸

A

x =

(
1
2

)
︸︷︷︸

b

x1, x2, x3, x4 ≥ 0

(P2) Replace c>x by c̄>x + z̄ where c̄2 = c̄3 = 0 and z̄ is a constant.

Step 1. Construct a new objective function by
• multiplying constraint 1 by y1,
• multiplying constraint 2 by y2, and
• adding the resulting constraints to the objective function.

Step 2. Choose y1, y2 to get c̄2 = c̄3 = 0.
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y>Ax = y>b
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z =
[
c> − y>A

]︸ ︷︷ ︸
c̄>

x + y>b︸︷︷︸
z̄

Question

How do we choose y such that c̄B = 0 for a basis B?

0> = c̄>B = c>B − y>AB

y>AB = c>B

A>By = cB

y =
(
A>B
)−1

cB

Remark

For any non-singular matrix M ,

(M>)−1 = (M−1)> =: M−>
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Recap

Proposition

Let B be a basis of A,

max c>x

s.t.

Ax = b

x ≥ 0

(P)

max
[
c> − y>A

]
︸ ︷︷ ︸

c̄

x + y>b

s.t.

A−1
B A︸ ︷︷ ︸
A′

x = A−1
B b

x ≥ 0

(P’)

where y = A−>B cB . Then

(1) (P’) is in canonical form for basis B, i.e., c̄B = 0 and A′B = I.

(2) (P) and (P’) have the same feasible region.

(3) Feasible solutions have the same objective value for (P) and (P’).
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