Module 4: Duality Theory (Strong Duality)

	(P_{max})			(P _{min})	
max subject to	$c^{\top}x$ $Ax?b$ $x?0$	\geq constraint \geq 0 variable free variable	≥ 0 variable free variable ≤ 0 variable \geq constraint = constraint \leq constraint	min subject to	$b^{\top}y$ $A^{\top}y?c$ $y?0$

Last lecture: we described a method to construct the dual of a general linear program.

	(P_{max})			(P _{min})	
max subject to	$c^{\top}x$ $Ax?b$ $x?0$	$= \text{constraint}$ $\geq \text{constraint}$ $\geq 0 \text{ variable}$ free variable		min subject to	$b^{\top}y$ $A^{\top}y?c$ $y?0$
		≤ 0 variable	\leq constraint		

Last lecture: we described a method to construct the dual of a general linear program.

E.g.: consider the primal LP, (P), on the right

$$\max (2, -1, 3)x \qquad (P)$$

s.t. $\begin{pmatrix} 1 & 0 & -1 \\ 0 & -2 & 1 \\ 1 & 1 & 0 \end{pmatrix} x \stackrel{\leq}{=} \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$
 $x_1 \ge 0, x_2 \le 0, x_3$ free

	(P_{max})			(P _{min})	
max subject to	$c^{\top}x$ $Ax?b$ $x?0$	$= \text{constraint}$ $\geq \text{constraint}$ $\geq 0 \text{ variable}$ free variable	≥ 0 variable free variable ≤ 0 variable \geq constraint = constraint \leq constraint	min subject to	$b^{\top}y$ $A^{\top}y?c$ $y?0$

Last lecture: we described a method to construct the dual of a general linear program.

E.g.: consider the primal LP, (P), on the right $-a \max LP$ that falls in the left (P_{max}) part of the table. $\max (2, -1, 3)x \qquad (P)$ s.t. $\begin{pmatrix} 1 & 0 & -1 \\ 0 & -2 & 1 \\ 1 & 1 & 0 \end{pmatrix} x \stackrel{\leq}{=} \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$ $x_1 \ge 0, x_2 \le 0, x_3$ free

	(\mathbb{P}_{\max})			(P _{min})	
		\leq constraint	\geq 0 variable		
max	$c^{\top}x$	= constraint	free variable	min	$b^{\top}y$
subject to		\geq constraint	\leq 0 variable	subject to	
	Ax?b	≥ 0 variable	\geq constraint		$A^{\top}y$? c
	<i>x</i> ? 0	free variable	= constraint		y?0
		≤ 0 variable	\leq constraint		-

Last lecture: we described a method to construct the dual of a general linear program.

E.g.: consider the primal LP, (P), on the right $-a \max LP$ that falls in the left (P_{max}) part of the table.

 \rightarrow The dual of (P) is a min LP.

$$\max (2, -1, 3)x \qquad (P)$$

s.t. $\begin{pmatrix} 1 & 0 & -1 \\ 0 & -2 & 1 \\ 1 & 1 & 0 \end{pmatrix} x \stackrel{\leq}{=} \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$
 $x_1 \ge 0, x_2 \le 0, x_3$ free

	(P_{max})		(P _{min})	
max subject to	$c^{\top}x$ $Ax?b$ $x?0$	$= constraint$ $\geq constraint$ $\geq 0 variable$ free variable	min subject to	$b^{\top}y$ $A^{\top}y?c$ $y?0$

$$\max (2, -1, 3)x \qquad (\mathsf{P}) \qquad \min (2, 1, -2)y \qquad (\mathsf{D})$$

s.t. $\begin{pmatrix} 1 & 0 & -1 \\ 0 & -2 & 1 \\ 1 & 1 & 0 \end{pmatrix} x \stackrel{\leq}{=} \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} \qquad \text{s.t. } \begin{pmatrix} 1 & 0 & 1 \\ 0 & -2 & 1 \\ -1 & 1 & 0 \end{pmatrix} y \stackrel{?}{=} \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$
 $x_1 \ge 0, x_2 \le 0, x_3 \text{ free} \qquad y \stackrel{?}{=} 0$

	(P_{max})		(P _{min})	
max subject to	$c^{\top}x$ $Ax?b$ $x?0$	$= constraint$ $\geq constraint$ $\geq 0 variable$ free variable	min subject to	$b^{\top}y$ $A^{\top}y?c$ $y?0$

$$\max (2, -1, 3)x \qquad (\mathsf{P}) \qquad \min (2, 1, -2)y \qquad (\mathsf{D}) \\ \text{s.t.} \begin{pmatrix} 1 & 0 & -1 \\ 0 & -2 & 1 \\ 1 & 1 & 0 \end{pmatrix} x \stackrel{\leq}{=} \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} \qquad \text{s.t.} \begin{pmatrix} 1 & 0 & 1 \\ 0 & -2 & 1 \\ -1 & 1 & 0 \end{pmatrix} y \stackrel{?}{=} \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \\ x_1 \ge 0, x_2 \le 0, x_3 \text{ free} \qquad y_1 \ge 0, y_2 \text{ free, } y_3 \le 0$$

	(P_{max})		(P _{min})	
max subject to	$c^{\top}x$ $Ax?b$ $x?0$	$= constraint$ $\geq constraint$ $\geq 0 variable$ free variable	min subject to	$b^{\top}y$ $A^{\top}y?c$ $y?0$

$$\max (2, -1, 3)x \qquad (\mathsf{P}) \qquad \min (2, 1, -2)y \qquad (\mathsf{D})$$

s.t. $\begin{pmatrix} 1 & 0 & -1 \\ 0 & -2 & 1 \\ 1 & 1 & 0 \end{pmatrix} x \stackrel{\leq}{=} \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} \qquad \text{s.t.} \begin{pmatrix} 1 & 0 & 1 \\ 0 & -2 & 1 \\ -1 & 1 & 0 \end{pmatrix} y \stackrel{\geq}{=} \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$
 $x_1 \ge 0, x_2 \le 0, x_3 \text{ free} \qquad y_1 \ge 0, y_2 \text{ free}, y_3 \le 0$

$$\max (2, -1, 3)x \qquad (\mathsf{P}) \qquad \min (2, 1, -2)y \qquad (\mathsf{D}) \\ \text{s.t.} \begin{pmatrix} 1 & 0 & -1 \\ 0 & -2 & 1 \\ 1 & 1 & 0 \end{pmatrix} x \stackrel{\leq}{=} \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} \qquad \text{s.t.} \begin{pmatrix} 1 & 0 & 1 \\ 0 & -2 & 1 \\ -1 & 1 & 0 \end{pmatrix} y \stackrel{\geq}{=} \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \\ x_1 \ge 0, x_2 \le 0, x_3 \text{ free} \qquad y_1 \ge 0, y_2 \text{ free}, y_3 \le 0$$

Weak Duality Theorem

if \bar{x} is feasible for (P) and \bar{y} is feasible for (D),

$$\implies c^T \bar{x} \le b^T \bar{y}$$

$$\max (2, -1, 3)x \qquad (\mathsf{P}) \qquad \min (2, 1, -2)y \qquad (\mathsf{D}) \\ \text{s.t.} \begin{pmatrix} 1 & 0 & -1 \\ 0 & -2 & 1 \\ 1 & 1 & 0 \end{pmatrix} x \stackrel{\leq}{=} \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} \qquad \text{s.t.} \begin{pmatrix} 1 & 0 & 1 \\ 0 & -2 & 1 \\ -1 & 1 & 0 \end{pmatrix} y \stackrel{\geq}{=} \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \\ x_1 \ge 0, x_2 \le 0, x_3 \text{ free} \qquad y_1 \ge 0, y_2 \text{ free}, y_3 \le 0$$

Weak Duality Theorem

if \bar{x} is feasible for (P) and \bar{y} is feasible for (D),

$$\implies c^T \bar{x} \le b^T \bar{y}$$

If $c^T \bar{x} = b^T \bar{y}$, then both \bar{x} and \bar{y} are optimal.

This Lecture: Strong Duality

	(\mathbb{P}_{\max})			(P _{min})	
		\leq constraint	\geq 0 variable		
max	$c^{\top}x$	= constraint	free variable	min	$b^{\top}y$
subject to		\geq constraint	≤ 0 variable	subject to	
_	Ax?b	≥ 0 variable	\geq constraint		$A^{\top}y$? c
	<i>x</i> ? 0	free variable	= constraint		y?0
		\leq 0 variable	\leq constraint		

Question

Can we always find feasible solutions \bar{x} and \bar{y} to a primal-dual pair, (P_{max}), (P_{min}), such that $c^T \bar{x} = b^T \bar{y}$?

This Lecture: Strong Duality

	(P_{max})			(P _{min})	
		\leq constraint	\geq 0 variable		
max	$c^{\top}x$	= constraint	free variable	min	$b^{\top}y$
subject to		\geq constraint	\leq 0 variable	subject to	
	Ax?b	≥ 0 variable	\geq constraint		$A^{\top}y$? c
	x?0	free variable	= constraint		y?0
		\leq 0 variable	\leq constraint		-

Question

Can we always find feasible solutions \bar{x} and \bar{y} to a primal-dual pair, (P_{max}), (P_{min}), such that $c^T \bar{x} = b^T \bar{y}$?

Strong Duality Theorem

If (P_{max}) has an optimal solution \bar{x} , then (P_{min}) has an optimal solution \bar{y} such that $c^T \bar{x} = b^T \bar{y}$.

Let us prove the Strong Duality Theorem in the special case where (P) is in SEF.

 $\max c^T x \qquad (\mathsf{P})$ s.t. Ax = b $x \ge 0$

Let us prove the Strong Duality Theorem in the special case where (P) is in SEF.

 $\max c^T x \qquad (\mathsf{P})$ s.t. Ax = b $x \ge 0$

$$\min b^T y \qquad (\mathsf{D})$$

s.t. $A^T y \ge c$

Let us prove the Strong Duality Theorem in the special case where (P) is in SEF.

Let's assume (P) has an optimal solution.

 $\max c^T x \qquad (\mathsf{P})$ s.t. Ax = bx > 0

$$\min b^T y \qquad (\mathsf{D})$$

s.t. $A^T y \ge c$

Let us prove the Strong Duality Theorem in the special case where (P) is in SEF.

Let's assume (P) has an optimal solution. \rightarrow 2-Phase Simplex terminates with an optimal basis *B* $\max c^T x \qquad (\mathsf{P})$ s.t. Ax = b $x \ge 0$

$$\min b^T y \qquad (\mathsf{D})$$

s.t. $A^T y \ge c$

Let us prove the Strong Duality Theorem in the special case where (P) is in SEF.

Let's assume (P) has an optimal solution. \rightarrow 2-Phase Simplex terminates with an optimal basis *B* (Why?) $\max c^T x \qquad (\mathsf{P})$ s.t. Ax = b $x \ge 0$

$$\min b^T y \qquad (\mathsf{D})$$

s.t. $A^T y \ge c$

Let us prove the Strong Duality Theorem in the special case where (P) is in SEF.

Let's assume (P) has an optimal solution. \rightarrow 2-Phase Simplex terminates with an optimal basis *B* (Why?)

We can rewrite (P) for basis B:

$$\max z = \bar{y}^T b + \bar{c}^T x \qquad (\mathsf{P}')$$

s.t. $x_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x \ge 0$

 $\max c^T x \qquad (\mathsf{P})$ s.t. Ax = b $x \ge 0$

Let us prove the Strong Duality Theorem in the special case where (P) is in SEF.

Let's assume (P) has an optimal solution. \rightarrow 2-Phase Simplex terminates with an optimal basis *B* (Why?)

We can rewrite (P) for basis B:

$$\max z = \bar{y}^T b + \bar{c}^T x \qquad (\mathsf{P}')$$

s.t. $x_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x \ge 0$

 $\max c^T x \qquad (\mathsf{P})$ s.t. Ax = b $x \ge 0$

$$\min b^T y \qquad (\mathsf{D})$$

s.t. $A^T y \ge c$

where: $\bar{y} = A_B^{-T} c_B$ $\bar{c}^T = c^T - \bar{y}^T A$

Let us prove the Strong Duality Theorem in the special case where (P) is in SEF.

Let's assume (P) has an optimal solution. \rightarrow 2-Phase Simplex terminates with an optimal basis *B* (Why?)

We can rewrite (P) for basis B:

$$\max z = \bar{y}^T b + \bar{c}^T x \qquad (\mathsf{P}')$$

s.t. $x_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x \ge 0$

and: $\bar{x}_B = A_B^{-1}b$ and $\bar{x}_N = 0$

 $\max c^T x \qquad (\mathsf{P})$ s.t. Ax = b $x \ge 0$

$$\min b^T y \qquad (\mathsf{D})$$

s.t. $A^T y \ge c$

where: $\bar{y} = A_B^{-T} c_B$ $\bar{c}^T = c^T - \bar{y}^T A$

We can rewrite (P) for basis B:

$$\max z = \bar{y}^T b + \bar{c}^T x \qquad (\mathsf{P}') \qquad \max c^T x \qquad (\mathsf{P})$$

s.t. $x_B + A_B^{-1} A_N x_N = A_B^{-1} b \qquad x \ge 0$
 $x \ge 0$
$$\max c^T x \qquad (\mathsf{P})$$

s.t. $Ax = b \qquad x \ge 0$

and:
$$ar{x}_B = A_B^{-1}b$$
 and $ar{x}_N = \mathbb{0}$

Recall that (P) and (P') are equivalent!

 $\min b^T y \qquad (\mathsf{D})$ s.t. $A^T y > c$

T

where:

$$\bar{y} = A_B^{-T} c_B$$
$$\bar{c}^T = c^T - \bar{y}^T A$$

We can rewrite (P) for basis B:

$$\max z = \bar{y}^T b + \bar{c}^T x \qquad (\mathsf{P}') \qquad \max c^T x \qquad (\mathsf{P})$$

s.t. $x_B + A_B^{-1} A_N x_N = A_B^{-1} b \qquad x \ge 0$
 $x \ge 0$
$$\max c^T x \qquad (\mathsf{P})$$

s.t. $Ax = b$
 $x \ge 0$

and:
$$ar{x}_B = A_B^{-1}b$$
 and $ar{x}_N = \mathbb{0}$

Recall that (P) and (P') are equivalent! $\rightarrow \bar{x}$ is feasible in (P), and has same objective value in (P) and (P')

$$\min b^T y \qquad (\mathsf{D})$$

s.t. $A^T y \ge c$

where:

$$\bar{y} = A_B^{-T} c_B$$
$$\bar{c}^T = c^T - \bar{y}^T A$$

.....T...

We can rewrite (P) for basis B:

$$\max z = \bar{y}^T b + \bar{c}^T x \qquad (\mathsf{P'}) \qquad \max c^T x$$

s.t. $x_B + A_B^{-1} A_N x_N = A_B^{-1} b \qquad x \ge 0$
 $x \ge 0$

and:
$$\bar{x}_B = A_B^{-1}b$$
 and $\bar{x}_N = 0$

Recall that (P) and (P') are equivalent! $\rightarrow \bar{x}$ is feasible in (P), and has same objective value in (P) and (P')

$$c^T \bar{x} = \bar{y}^T b + \bar{c}^T \bar{x}$$

 $\min b^T y \qquad (\mathsf{D})$ s.t. $A^T y \ge c$

(P)

where:

$$\bar{y} = A_B^{-T} c_B$$
$$\bar{c}^T = c^T - \bar{y}^T A$$

We can rewrite (P) for basis B:

$$\max z = \bar{y}^T b + \bar{c}^T x \qquad (\mathsf{P}') \qquad \max c^T x$$

s.t. $x_B + A_B^{-1} A_N x_N = A_B^{-1} b \qquad x \ge 0$
 $x \ge 0$

and:
$$ar{x}_B = A_B^{-1}b$$
 and $ar{x}_N = \mathbb{0}$

Recall that (P) and (P') are equivalent! $\rightarrow \bar{x}$ is feasible in (P), and has same objective value in (P) and (P')

 $c^T \bar{x} = \bar{y}^T b + \bar{c}^T \bar{x}$ $= \bar{y}^T b + \bar{c}_N^T \bar{x}_N$

s.t.
$$Ax = b$$

 $x \ge 0$

(P)

$$\min b^T y \qquad (\mathsf{D}) \\ \text{s.t. } A^T y \ge c$$

where: - - T

$$\bar{y} = A_B^{-1} c_B$$
$$\bar{c}^T = c^T - \bar{y}^T A$$

We can rewrite (P) for basis B:

$$\max z = \bar{y}^T b + \bar{c}^T x \qquad (\mathsf{P}')$$

s.t. $x_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x \ge 0$

and:
$$ar{x}_B = A_B^{-1}b$$
 and $ar{x}_N = \mathbb{0}$

Recall that (P) and (P') are equivalent! $\rightarrow \bar{x}$ is feasible in (P), and has same objective value in (P) and (P')

$$c^T \bar{x} = \bar{y}^T b + \bar{c}^T \bar{x}$$
$$= \bar{y}^T b + \bar{c}_N^T \bar{x}_N$$
$$= b^T \bar{y}$$

 $\max c^T x \qquad (\mathsf{P})$ s.t. Ax = b $x \ge 0$

$$\min b^T y \qquad (\mathsf{D})$$

s.t. $A^T y \ge c$

where: - - T

$$\bar{y} = A_B^{-1} c_B$$
$$\bar{c}^T = c^T - \bar{y}^T A$$

We can rewrite (P) for basis B:

$$\max z = \bar{y}^T b + \bar{c}^T x \qquad (\mathsf{P}')$$

s.t. $x_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x \ge 0$

and:
$$ar{x}_B = A_B^{-1}b$$
 and $ar{x}_N = \mathbb{O}$

Recall that (P) and (P') are equivalent! $\rightarrow \bar{x}$ is feasible in (P), and has same objective value in (P) and (P')

$$c^T \bar{x} = \bar{y}^T b + \bar{c}^T \bar{x}$$
$$= \bar{y}^T b + \bar{c}_N^T \bar{x}_N$$
$$= b^T \bar{y}$$

Goal: Show that \bar{y} is dual feasible.

 $\max c^T x \qquad (\mathsf{P})$ s.t. Ax = b $x \ge 0$

$$\min b^T y \qquad (\mathsf{D})$$

s.t. $A^T y \ge c$

where: $\bar{y} = A_B^{-T} c_B$ $\bar{c}^T = c^T - \bar{y}^T A$

We can rewrite (P) for basis B:

$$\max z = \bar{y}^T b + \bar{c}^T x \qquad (\mathsf{P}') \qquad \max c^T x \qquad (\mathsf{P})$$

s.t. $x_B + A_B^{-1} A_N x_N = A_B^{-1} b \qquad x \ge 0$
 $x \ge 0$

and:
$$\bar{x}_B = A_B^{-1}b$$
 and $\bar{x}_N = 0$ and $c^T \bar{x} = b^T \bar{y}$.

$$\min b^T y \qquad (\mathsf{D}) \\ \text{s.t. } A^T y \ge c$$

where:

$$\bar{y} = A_B^{-T} c_B$$
$$\bar{c}^T = c^T - \bar{y}^T A$$

We can rewrite (P) for basis B:

and: $\bar{x}_B = A_B^{-1}b$ and $\bar{x}_N = 0$ and $c^T \bar{x} = b^T \bar{y}$.

 $\min b^T y \qquad (\mathsf{D}) \\ \text{s.t. } A^T y \ge c$

(D)

Note that B is an optimal basis $\longrightarrow \bar{c} \leq 0$

where: $\bar{y} = A_B^{-T} c_B$ $\bar{c}^T = c^T - \bar{y}^T A$

We can rewrite (P) for basis B:

$$\max z = \bar{y}^T b + \bar{c}^T x \qquad (\mathsf{P}') \qquad \max c^T x \qquad (\mathsf{P})$$

s.t. $x_B + A_B^{-1} A_N x_N = A_B^{-1} b \qquad x \ge 0$
 $x \ge 0$

and:
$$\bar{x}_B = A_B^{-1}b$$
 and $\bar{x}_N = 0$ and $c^T \bar{x} = b^T \bar{y}$.

_

 $\min b^T y \qquad (\mathsf{D})$ s.t. $A^T y \ge c$

Note that B is an optimal basis $\longrightarrow \bar{c} \leq \mathbb{O}$

$$\rightarrow \quad c^{T} - \bar{y}^{T} A \leq \mathbb{0} \qquad \qquad \text{where:} \\ \bar{y} = A_{B}^{-T} c_{B} \\ \bar{c}^{T} = c^{T} - \bar{y}^{T} A$$

We can rewrite (P) for basis B:

and:
$$\bar{x}_B = A_B^{-1}b$$
 and $\bar{x}_N = 0$ and $c^T \bar{x} = b^T \bar{y}$.

Note that B is an optimal basis $\longrightarrow \bar{c} \leq \mathbb{O}$

$$\longrightarrow \quad c^T - \bar{y}^T A \le 0$$

Equivalently, $A^T \bar{y} \ge c$,

 $\min b^T y \qquad (\mathsf{D}) \\ \text{s.t. } A^T y \ge c$

(D)

where: $\bar{y} = A_B^{-T} c_B$ $\bar{c}^T = c^T - \bar{y}^T A$

.....T...

We can rewrite (P) for basis B:

and:
$$\bar{x}_B = A_B^{-1}b$$
 and $\bar{x}_N = 0$ and $c^T \bar{x} = b^T \bar{y}$.

Note that B is an optimal basis $\longrightarrow \bar{c} \leq \mathbb{O}$

$$\longrightarrow c^T - \bar{y}^T A \le 0$$

Equivalently, $A^T \bar{y} \ge c$, meaning \bar{y} is dual feasible!

$$\min b^T y \qquad (\mathsf{D}) \\ \text{s.t. } A^T y \ge c$$

(ח)

where: $\bar{y} = A_B^{-T} c_B$ $\bar{c}^T = c^T - \bar{y}^T A$

mor aT a

Let (P) and (D) be a primal-dual pair of LPs. If (P) has an optimal solution, then (D) has one, and their objective values equal.

Let (P) and (D) be a primal-dual pair of LPs. If (P) has an optimal solution, then (D) has one, and their objective values equal.

Note: (P) is feasible and (D) is feasible \rightarrow (P) cannot be unbounded

Let (P) and (D) be a primal-dual pair of LPs. If (P) has an optimal solution, then (D) has one, and their objective values equal.

Note: (P) is feasible and (D) is feasible \rightarrow (P) cannot be unbounded Fundamental Theorem of LP \rightarrow (P) has an optimal solution.

Let (P) and (D) be a primal-dual pair of LPs. If (P) has an optimal solution, then (D) has one, and their objective values equal.

Note: (P) is feasible and (D) is feasible \rightarrow (P) cannot be unbounded Fundamental Theorem of LP \rightarrow (P) has an optimal solution.

Subtly different version via previous results:

Strong Duality Theorem – Feasibility Version

Let (P) and (D) be primal-dual pair of LPs. If both are feasible, then both have optimal solutions of the same objective value.

(P) (D)	optimal solution	unbounded	infeasible
optimal solution			
unbounded			
infeasible			

(P) (D)	optimal solution	unbounded	infeasible
optimal solution	possible (1)		
unbounded			possible <u>6</u>
infeasible		possible (8)	

• (1), (6), and (8) many examples exist

(P) (D)	optimal solution	unbounded	infeasible
optimal solution	possible (1)	impossible (2)	
unbounded			possible <u>6</u>
infeasible		possible (8)	

- (1), (6), and (8) many examples exist
- (2) follows directly from Weak Duality as follows:

(P) (D)	optimal solution	unbounded	infeasible
optimal solution	possible (1)	impossible (2)	
unbounded			possible <u>6</u>
infeasible		possible (8)	

- (1), (6), and (8) many examples exist
- (2) follows directly from Weak Duality as follows:

 $\max c^T x \quad (\mathsf{P})$ s.t. Ax = b $x \ge 0$

Suppose, for a contradiction, that (D) has an optimal solution \bar{y} .

(P) (D)	optimal solution	unbounded	infeasible
optimal solution	possible (1)	impossible (2)	
unbounded			possible <u>6</u>
infeasible		possible (8)	

- (1), (6), and (8) many examples exist
- (2) follows directly from Weak Duality as follows:

Suppose, for a contradiction, that (D) has an optimal solution \bar{y} . $c^T \bar{x} \leq b^T \bar{y}$ for all feasible primal solutions \bar{x} by Weak Duality $\max c^T x \quad (\mathsf{P})$ s.t. Ax = b $x \ge 0$

(P) (D)	optimal solution	unbounded	infeasible
optimal solution	possible (1)	impossible (2)	
unbounded			possible <u>6</u>
infeasible		possible (8)	

- (1), (6), and (8) many examples exist
- (2) follows directly from Weak Duality as follows:

Suppose, for a contradiction, that (D) has an optimal solution \bar{y} . $c^T \bar{x} \leq b^T \bar{y}$ for all feasible primal solutions \bar{x} by Weak Duality \longrightarrow (P) is bounded! $\max c^T x \quad (\mathsf{P})$ s.t. Ax = b $x \ge 0$

(P) (D)	optimal solution	unbounded	infeasible
optimal solution	possible (1)	impossible (2)	
unbounded	impossible (4)	impossible (5)	possible 🌀
infeasible		possible (8)	

- (1), (6), and (8) many examples exist
- (2) follows directly from Weak Duality as follows:

Suppose, for a contradiction, that (D) has an optimal solution \bar{y} . $c^T \bar{x} \leq b^T \bar{y}$ for all feasible primal solutions \bar{x} by Weak Duality \longrightarrow (P) is bounded! Similar arguments apply to (4) and (5) $\max c^T x \quad (\mathsf{P})$ s.t. Ax = b $x \ge 0$

(P) (D)	optimal solution	unbounded	infeasible
optimal solution	possible (1)	impossible (2)	impossible (3)
unbounded	impossible (4)	impossible (5)	possible <u>6</u>
infeasible	impossible (7)	possible (8)	

- (1), (6), and (8) many examples exist
- (2) follows directly from Weak Duality as follows:

Suppose, for a contradiction, that (D) has an optimal solution \bar{y} . $c^T \bar{x} \leq b^T \bar{y}$ for all feasible primal solutions \bar{x} by Weak Duality \longrightarrow (P) is bounded! Similar arguments apply to (4) and (5)

• (3), (7) follow directly from Strong Duality

 $\max c^T x \quad (\mathsf{P})$ s.t. Ax = b $x \ge 0$

(P) (D)	optimal solution	unbounded	infeasible
optimal solution	possible (1)	impossible (2)	impossible (3)
unbounded	impossible (4)	impossible (5)	possible 🌀
infeasible	impossible (7)	possible (8)	possible 🧕

- (1), (6), and (8) many examples exist
- (2) follows directly from Weak Duality as follows:

Suppose, for a contradiction, that (D) has an optimal solution \bar{y} . $c^T \bar{x} \leq b^T \bar{y}$ for all feasible primal solutions \bar{x} by Weak Duality \longrightarrow (P) is bounded!

Similar arguments apply to ④ and ⑤

- (3), (7) follow directly from Strong Duality
- I'll leave 9 for you to do as an exercise!

 $\max c^T x \quad (\mathsf{P})$ s.t. Ax = b $x \ge 0$

Recap

Strong Duality Theorem

Let (P) and (D) be a primal-dual pair of LPs. If (P) has an optimal solution, then (D) has one, and their objective values equal.

Recap

Strong Duality Theorem

Let (P) and (D) be a primal-dual pair of LPs. If (P) has an optimal solution, then (D) has one, and their objective values equal.

(P) (D)	optimal solutior	unbounded	infeasible
optimal solution	possible (1	impossible (2)	impossible 3
unbounded	impossible (4	impossible (5)	possible 6
infeasible	impossible (7	possible (8)	possible 🧕