
CO 250: Introduction to Optimization
Module 4: Duality Theory (Strong Duality)
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Recap: Weak Duality

max (2,−1, 3)x (P)

s.t.

1 0 −1
0 −2 1
1 1 0

x
≤
=
≥

 2
1
−2


x1 ≥ 0, x2 ≤ 0, x3 free

min (2, 1,−2)y (D)

s.t.

 1 0 1
0 −2 1
−1 1 0

 y
≥
≤
=

 2
−1
3


y1 ≥ 0, y2 free, y3 ≤ 0

Weak Duality Theorem

if x̄ is feasible for (P) and ȳ is feasible for (D),

=⇒ cT x̄ ≤ bT ȳ

If cT x̄ = bT ȳ, then both x̄ and ȳ are optimal.
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(Pmax), (Pmin), such that cT x̄ = bT ȳ?



This Lecture: Strong Duality

Question

Can we always find feasible solutions x̄ and ȳ to a primal-dual pair,
(Pmax), (Pmin), such that cT x̄ = bT ȳ?

Strong Duality Theorem

If (Pmax) has an optimal solution x̄, then (Pmin) has an optimal
solution ȳ such that cT x̄ = bT ȳ.
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Strong Duality – for LPs in SEF

We can rewrite (P) for basis B:
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max z = ȳT b + c̄Tx (P’)

s.t. xB + A−1
B ANxN = A−1

B b

x ≥ 0

and: x̄B = A−1
B b and x̄N = 0 and

cT x̄ = bT ȳ.
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Strong Duality Theorem

Let (P) and (D) be a primal-dual pair of LPs. If (P) has an optimal
solution, then (D) has one, and their objective values equal.

Note: (P) is feasible and (D) is feasible −→ (P) cannot be unbounded

Fundamental Theorem of LP −→ (P) has an optimal solution.

Subtly different version via previous results:

Strong Duality Theorem – Feasibility Version

Let (P) and (D) be primal-dual pair of LPs. If both are feasible, then
both have optimal solutions of the same objective value.
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