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Computed Tomography



Computed Tomography

The aim of Computed Tomography is to reconstruct µ(x , y) from given detector data
p(ξ).

Basic idea of CT: Rotate the X-ray source and the detector (the so called gantry)
around the object.
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Computed Tomography

We differentiate the patient coordinate system (x , y) and the coordinate system of the
gantry (ξ, η)
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The unit vectors of the (ξ, η)

coordinate system are given by

nξ =

(
cos γ

sin γ

)

nη =

(
− sin γ

cos γ

)
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Computed Tomography

Change of basis
One can convert (x , y) =: r coordinates into (ξ, η) coordinates using orthogonal
projections

ξ = ⟨r ,nξ⟩ = (x , y)T

(
cos γ

sin γ

)
= x cos γ + y sin γ

η = ⟨r ,nη⟩ = (x , y)T

(
− sin γ

cos γ

)
= −x sin γ + y cos γ
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Computed Tomography

In matrix-vector form (
ξ

η

)
=

(
cos γ sin γ

− sin γ cos γ

)(
x

y

)
= Rγ

(
x

y

)

Since Rγ is orthogonal we have(
x

y

)
=

(
cos γ − sin γ

sin γ cos γ

)(
ξ

η

)
= RT

γ

(
ξ

η

)
=

(
ξ cos γ − η sin γ

ξ sin γ + η cos γ

)
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Imaging Sequence

During a CT measurement the gantry is rotated by 180◦ or 360◦ around the patient
and the projection data p(ξ, γ) are measured. The goal of CT is to reconstruct µ(x , y)
given the projection data p(ξ, γ).
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Radon Transform

The detector data p(ξ, γ) can be calculated via the integration of µ(x , y) along an
X-ray. The X-ray is described by a path δξ,γ : [a, b] → R2 at position ξ with angle γ

and interval boundaries a ∈ R at the source and a < b ∈ R at the detector. The
relation is mathematically described by the Radon transform R :

p(ξ, γ) = R{µ(x , y)}

=

∫
δξ,γ

µ(x , y) ds

The parametrization of the X-ray is given by

δξ,γ(η) = RT
γ

(
ξ

η

)
=

(
ξ cos γ − η sin γ

ξ sin γ + η cos γ

)
.
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Radon Transform

Thus, we can calculate the line integral with

p(ξ, γ) = R{µ(x , y)}

=

∫
δξ,γ

µ(x , y) ds

=

∫ b

a
µ(δξ,γ(η))

∥∥δ′ξ,γ(η)∥∥2 dη

=

∫ b

a
µ(ξ cos γ − η sin γ, ξ sin γ + η cos γ) dη

since

∥δ′ξ,γ(η)∥2 =

∥∥∥∥∥
(
sin γ

cos γ

)∥∥∥∥∥
2

= 1.
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Radon Transform

Without loss of generality we can set a = −∞ and b = ∞ since µ(x , y) can be
assumed to be zero outside the circle covered by the CT system. Thus, the Radon
transform reads

p(ξ, γ) =

∫ ∞

−∞
µ(ξ cos γ − η sin γ, ξ sin γ + η cos γ) dη

Remark
The Radon transform and the question about its invertability have been investigated by
Johann Radon already in 1917, without any concrete application in mind.
Johann Radon: Über die Bestimmung von Funktionen längs gewisser Mannigfaltigkeiten. In: Berichte über die
Verhandlungen der Königlich-Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-Physische
Klasse. Band 69, 1917, S. 262–277.
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Radon Transform as an Inverse Problem

Compare the inverse problems of radiography and CT:

Radiography

p(ξ) =

∫ ∞

−∞
µ(ξ, η) dη

Computed Tomography

p(ξ, γ) =

∫ ∞

−∞
µ(ξ cos γ − η sin γ, ξ sin γ + η cos γ) dη

Key Observation: The radiography imaging operator maps from a 2D into a 1D space
and thus looses information. The CT operator maps from a 2D space into a 2D space
and thus might preserve all information. 9



Sinogram

The raw data p(ξ, γ) is also named a sinogram and can be displayed as an image. It is
called a sinogram due to the sinus shaped structures.
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Fourier Slice Theorem

The Fourier Slice theorem provides answers the fundamental question if it is possible to
reconstruct µ(x , y) from given p(ξ, γ), i.e. it shows that the Radon operator is
bijective/invertible.

Theorem
Let P(q, γ) := F1D{p(ξ, γ)} and F (u, v) := F2D{µ(x , y)}. Furthermore let

u = q cos γ

v = q sin γ

Then it holds that

F (u, v) = F (q cos γ, q sin γ) = P(q, γ)

11



Fourier Slice Theorem
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Proof

P(q, γ) =

∫ ∞

−∞
p(ξ, γ)e−2πiξq dξ

=

∫ ∞

−∞

∫ ∞

−∞
µ(ξ cos γ − η sin γ, ξ sin γ + η cos γ)e−2πiξq dη dξ

We now make the coordinate transform

x = ξ cos γ − η sin γ

y = ξ sin γ + η cos γ

Using the Jacobian determinant we have

dx dy =

∣∣∣∣det
∂(x , y)

∂(ξ, η)

∣∣∣∣ dξ dη

=

∣∣∣∣∣det

(
cos γ − sin γ

sin γ cos γ

)∣∣∣∣∣ dξ dη = 1 dξ dη
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Proof

Thus we have

P(q, γ) =

∫ ∞

−∞

∫ ∞

−∞
µ(x , y)e−2πi(x cos γ+y sin γ)q dx dy

=

∫ ∞

−∞

∫ ∞

−∞
µ(x , y)e−2πi(x(q cos γ)+y(q sin γ)) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
µ(x , y)e−2πi(ux+vy) dx dy

= F (q cos γ, q sin γ) = F (u, v),

which completes the proof.
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Remarks

The Fourier slice theorem answers the question if µ(x , y) can be reconstructed from
p(ξ, γ) in the continuous case.

Answer
It can be reconstructed for any µ(x , y) for which the continuous Fourier transform
F (u, v) := F2D{µ(x , y)} exists. A sufficient criterion for this is that µ is a function of
the space L1(R2), i.e. µ has to fulfill

∥µ(x , y)∥1 :=

∫ ∞

−∞

∫ ∞

−∞
|µ(x , y)| dx dy < ∞
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Analytic Image Reconstruction

• The Fourier slice theorem allows to analytically solve the inverse problem of
determining the tomographic image by direct inversion of the imaging operator.

• This in turn yields a direct image reconstruction method.

• Methods that instead tackle the inverse problem in its original form are often
named algebraic image reconstruction (ART) methods.
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Fourier Based Reconstruction

Using the Fourier slice theorem one can derive the following direct reconstruction
algorithm

1. ∀γ calculate P(q, γ) = F1D{p(ξ, γ)}
2. ∀u = q cos γ, v = q sin γ calculate F (u, v) = P(q, γ)

3. calculate µ(x , y) := F−1
2D {F (u, v)}
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Practical Issue

In the discrete setting the Fourier
transforms are realized using the
FFT. However, since the FFP is
only applicable for equidistant
node points one has the situation
that the points (u, v) and
(q cos γ, v = q sin γ) do not
match.
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Practical Issue

Consequently, the Fourier based reconstruction has to resample the data in Fourier
space using e.g. interpolation techniques. Interpolation in Fourier space leads, however,
to larger numerical errors in image space.

⇒ Fourier based reconstruction usually not used in todays CT scanners.

Remark
Nowadays fast FFT for non-equidistant node points are known. Will be discussed
later in the lecture.
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Filtered Backprojection

• Standard reconstruction technique used in CT scanners

• Uses Fourier slice theorem (as well)
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Derivation

Expressing µ(x , y) in terms of its inverse Fourier transform F (u, v):

µ(x , y) =

∫ ∞

−∞

∫ ∞

−∞
F (u, v)e2πi(ux+vy) du dv

We now perform a coordinate transform from Cartesian into polar coordinates:

u = q cos γ

v = q sin γ
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Derivation

The Jacobian determinant is given by

du dv =

∣∣∣∣det
∂(u, v)

∂(q, γ)

∣∣∣∣ dq dγ

=

∣∣∣∣∣det

(
∂u
∂q

∂v
∂q

∂u
∂γ

∂v
∂γ

)∣∣∣∣∣ dq dγ

=

∣∣∣∣∣det

(
cos γ sin γ

−q sin γ q cos γ

)∣∣∣∣∣ dq dγ

= |q cos2 γ + q sin2 γ| dq dγ

= |q| dq dγ
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Derivation

Thus, we have

µ(x , y) =

∫ 2π

0

∫ ∞

0
F (q cos γ, q sin γ)e2πi(xq cos γ+yq sin γ)|q| dq dγ

=
FS theorem

∫ 2π

0

∫ ∞

0
P(q, γ)e2πi(xq cos γ+yq sin γ)|q| dq dγ

Changing the integral limits
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Derivation

yields

µ(x , y) =

∫ π

0

∫ ∞

−∞
P(q, γ)e2πiq(x cos γ+y sin γ)|q| dq dγ

The inner integral can be defined to be a function h(ξ, γ):

h(ξ, γ) =

∫ ∞

−∞
P(q, γ)|q|e2πiqξ dq

µ(x , y) =

∫ π

0
h(x cos γ + y sin γ, γ) dγ
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Algorithm

With this we now can formulate the filtered backprojection algorithm (input p(ξ, γ),
output µ(x , y)):

1. ∀γ calculate P(q, γ) = F1D{p(ξ, γ)} =
∫∞
−∞ p(ξ, γ)e−2πiqξ dξ

2. ∀γ calculate h(ξ, γ) =
∫∞
−∞ P(q, γ)|q|e2πiqξ dq

3. calculate µ(x , y) =
∫ π
0 h(x cos γ + y sin γ, γ) dγ
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Remarks

• The first two steps of the algorithm apply the filter |q| in Fourier space. |q| is a
high pass or edge filter.

• Instead of applying the filter in Fourier space one can alternatively apply it directly
in spatial domain.

Issue
What is the Fourier transform of |q|?
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Fourier transform of |q|

Consider:

wε(ξ) =
ε2 − (2πξ)2

(ε2 − (2πξ)2)2
c s |q|e−ε|q|

In the limit ε → 0 one obtains
|q|e−ε|q| → |q|

and
w0(ξ) = − 1

(2πξ)2
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Fourier transform of |q|

⇒ If the Fourier integrals converge (depends on p(ξ, γ)!) we can apply the filter in
image space via a convolution:

h(ξ, γ) = (p(ξ̃, γ) ∗ w0(ξ̃))(ξ)

Since w0(ξ) has “local” support (after truncation), the convolution can be effectively
applied in image space. This has been done in first generation CTs.
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Backprojection

Lets have a look at the inner part of the filtered backprojection, i.e. the integration

f (x , y) =

∫ π

0
h(x cos γ + y sin γ, γ) dγ

Here,
ξ = x cos γ + y sin γ

describes a line within R2.

There are now two interpretation of the integration
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Backprojection – Interpretation 1

• One selects a certain pixels x , y

• Then, for each angle γ one throws the
shortest line to the detector and pics
the value.

• Thus, pixels are successively filled.
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Backprojection – Interpretation 2

• Entire projection is projected back in a
single step over the entire xy plane.

• The backprojected data are added to
an image buffer.

31



Interpolation

Remark In a discrete setting the filtered backprojection requires an interpolation step.

h︸︷︷︸
sampled at equidistant nodes

( x cos γ + y cos γ︸ ︷︷ ︸
In dependence of γ non-regular

, γ)

This interpolation is uncritical, since it happens in spatial domain so that numerical
errors have only local effects.
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Discretization

Number of angles

L ∈ N: γl =
l
Lπ, l = 0, . . . , L− 1

Number of detector pixels

M ∈ N: ξm = A
(
m+0.5

M − 0.5
)
, m = 0, . . . ,M − 1

where A is the size of the detector.

Number of image pixels

Nx ∈ N: xnx = Ωx

(
nx+0.5
Nx

− 0.5
)
, nx = 0, . . . ,Nx − 1

Ny ∈ N: yny = Ωy

(
ny+0.5
Ny

− 0.5
)
, ny = 0, . . . ,Ny − 1

where Ωx and Ωy are the side lengths of the image.
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Time Complexity

Filtered Backprojection

O(LM logM + N2L) =
if L≈N≈M

O(N2 logN + N3) = O(N3)

Fourier Slice based Reconstruction

O(N2 logN)

Thus, FBP is a little bit slower, which is usually not critical in practice.
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Parallel Implementation

The FBP can be impemented in a massively parallelized fashion. In particular
reconstruction can already start during data acquisition.

→ low latency
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Filtering

In practice the projection p(ξ, γ) are affected by noise

p(ξ, γ) = ptrue(ξ, γ) + ε(ξ, γ)

The ramp filter |p| leads to a noise amplification since the noise F{ε(ξ, γ)} is
frequency independent.

→ It is thus important to band-limit the filter
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Filtering

• Illustration of the noise
amplification of analytical
image reconstruction.

• While low frequency
components are signal
dominated, high
frequencies are noise
dominated (upper right).

• High pass filter amplifies
noise (lower left and
right).
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Filtering

Ram-Lak Filter (Ramachandran - Lakshminarayan)

Replace |q| with |q|rect( q
2a)
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Filtering

Shepp-Logan Filter

Replace |q| with |q|rect( q
2a)sinc(qa )
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Summary

• CT is an extension of radiography where the gantry is rotated.

• This solves the uniqueness issue of radiography and in turn allows for solving the
inverse problem.

• The imaging operator can be analytically inverted and allows for direct image
reconstruction.

• The inversion of the Radon transform is noise amplifying. This can mitigated by
filtering.
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