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Iterative Reconstruction



Iterative Reconstruction

The SVD is a very advanced tool but what if

• The system matrix is sparse

• The system matrix is huge and does not fit into the main memory

In the second case, one usually has a formula for the matrix elements, which implies
that the entire system matrix does not need to be setup in memory.

In both cases it is better to use iterative solvers.
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Iterative Reconstruction

There are various iterative solvers, of which several can be grouped into the following
two classes

• Krylov subspace methods

• Row- or column action methods

There are further classes, which we will, however not discuss at this point.

Iterative solver do not require element-wise access to the system matrix. Instead they
require operations involving the system matrix. This can for instance be

• Matrix-vector multiplications with A or AH, or

• Operations involving the matrix rows or columns.
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Kaczmarz Method

• Also names algebraic reconstruction technique (ART) in the context of computed
tomography.

• Fixed-point iteration, which converges to the solution x of the linear system
Ax = b if it exists.

• Let l ≥ 1 be the iteration number and x0 = 0 be the start vector, then the
Kaczmarz iteration is defined as

xl+1 = xl +
bj −Aj,·x

l

∥AT
j,·∥22

AH
j,·

• Row index j is usually chosen to sweep over all matrix rows so that one has two
nested for loops and j = lmodM .
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Kaczmarz Method – Derivation

Let us consider the j-th equation of the linear system Ax = b. It can be expressed as

Aj,·x = bj .

Normalization of the vector Aj,· yields

0 =
bj

∥AT
j,·∥2

− Aj,·

∥AT
j,·∥2

x

= d− nHx,

where, d =
bj

∥AT
j,·∥2

and n =
AH

j,·
∥AT

j,·∥2
This is a hyperplane (e.g. line / plane in 2D and

3D) equation in Hessian normal form. Each vector within the hyperplane is orthogonal
to the normal vector n and d is the distance to the origin. n points in direction of the
hyperplane and for an orthogonal projection we just need to know the distance of a
point to the plane.
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Kaczmarz Method – Derivation

The distance of an arbitrary point x̃ to the plane is

dist(x̃) = d− nHx̃

To project x̃ onto the hyperplane, one thus has to add dist(x̃)n to x̃, i.e.

x̃+ dist(x̃)n = x̃+ (d− nHx̃)n

= x̃+

(
bj

∥AT
j,·∥2

− Aj,·

∥AT
j,·∥2

x̃

)
AH

j,·

∥AT
j,·∥2

= x̃+
bj −Aj,·x̃

∥AT
j,·∥22

AH
j,·

Converting this into an iteration process, we end up with the Kaczmarz iteration.
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Kaczmarz Method – Geometric Interpretation

Consider 2× 2 linear system(
A1,1 A1,2

A2,1 A2,2

)(
x1

x2

)
=

(
b1

b2

)

In this case each equation of the linear system describes a line in the R2. In the point
where the lines intersect, the linear system has its solution.

The Kaczmarz iteration performs in each step an orthogonal projection on the
hyperplane spanned by the j-th matrix row and the corresponding j-th element of the
right hand side.
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Kaczmarz Method – Geometric Interpretation

−1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0
x1 − 2x2 = 3
x1 + 5x2 = −4
iteration

7



Kaczmarz Method – Convergence

Convergence speed (i.e. number of required iterations) depends on the similarity of
successive matrix rows. If successive matrix rows are similar, more iterations are
required.

Example: Convolution matrix
1 1 1 0 0 0

0 1 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 1


⟨A1,·,A2,·⟩2 = 2

but
⟨A1,·,A4,·⟩2 = 0

→ not clever to run over matrix rows in
order
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Randomized Kaczmarz Method

There are two possible ways to improve the convergence speed of the Kaczmarz method

• If the structure of the system matrix is known, run through the matrix such that
successive row indices have a small inner product

• Otherwise: Run in random order through the matrix rows

The second option is known as the Randomized Kaczmarz and can be shown to
converge faster then the non-random Kaczmarz.
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Regularized Kaczmarz

Kaczmarz method can be shown to solve

∥x∥2 → min subject to Ax = b

This problem is considered if the linear system is under-determined and has infinite
solutions. In contrast, the problem

∥Ax− b∥2 → min

is considered for over-determined linear systems. Furthermore, for ill-conditioned linear
systems one actually wants to solve

∥Ax− b∥22 + λ∥x∥22 → min

How can this be done with Kaczmarz method?
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Regularized Kaczmarz

Apply Kaczmarz algorithm to an extended system

(
A λ

1
2 I
)

︸ ︷︷ ︸
˜A∈CM×(N+M)

(
x

v

)
︸ ︷︷ ︸

x̃∈C(N+M)

= b

Here, v ∈ CM in an auxiliary vector. Multiplying out yields

Ax+ λ
1
2v = b

⇒v = −λ− 1
2 (Ax− b)

Thus, the auxiliary vector will be the scaled residual after convergence.

What does the extended Kaczmarz calculate?
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Regularized Kaczmarz

∥x̃∥2 → min subject to Ãx̃ = b

⇔∥x̃∥22 → min subject to Ãx̃ = b

⇔∥x∥22 + ∥v∥22 → min subject to v = −λ− 1
2 (Ax− b)

⇔∥x∥22 + ∥ − λ− 1
2 (Ax− b)∥22 → min

⇔∥x∥22 + λ−1∥Ax− b∥22 → min

⇔λ∥x∥22 + ∥Ax− b∥22 → min

Thus, the extended Kaczmarz solves the Tikhonov regularized least squares problem.
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Kaczmarz – Required operations

Kaczmarz method requires two elementary operations involving the system matrix A

• An inner product α← Aj,·x̃ =

N∑
n=1

Aj,nx̃n

• A vector update x̃← x̃+ αAH
j,·

i.e. x̃n ← x̃n + αAj,n for n = 1, . . . , N

Both are vector-vector operations that can be easily accelerated in case that the system
matrix A is sparse. In that case only those indices are considered in the calculation for
which Aj,n ̸= 0.
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Kaczmarz – Required operations

To implement the (non-regularized) Kaczmarz method in a generic fashion, it can be
implemented as follows:

for i in rowIndexCycle
j = rowindex[i]
tau = dot_with_matrix_row(A, x, j)
alpha = (b[j]-tau) / normA[j]
kaczmarz_update!(A, x, j, alpha)

end

Here, dot_with_matrix_row and kaczmarz_update! are two functions that need to
be implemented for each type of matrix, for instance it can be implemented for
Matrix{Float64} and for SparseMatrixCSC{Float64, Int64}.
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Kaczmarz – Required operations

In Julia dense matrices are stored in column major order, which means that the
elements of the columns are stored next to each other in memory.

(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(1,2)

(2,2)

(3,2)

(4,2)

(5,2)

(1,3)

(2,3)

(3,3)

(4,3)

(5,3)

(1,4)

(2,4)

(3,4)

(4,4)

(5,4)

(1,5)

(2,5)

(3,5)

(4,5)

(5,5)

Performing row operations on such a data structure
is very expensive since CPU caching cannot be
utilized. To implement the Kaczmarz algorithm
efficiently, one should thus first transpose the data
and then use a transpose wrapper
julia> A = transpose(rand(3,3))
3×3 LinearAlgebra.Transpose{Float64,

Array{Float64,2}}:
0.84271 0.342911 0.555876
0.931374 0.886989 0.163034
0.0734473 0.034807 0.296932
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Conjugated Gradient



Conjugated Gradient

Conjugated Gradient (CG) is a popular Krylov subspace method that solves Ax = b for
symmetric positive definite A, i.e. zHAz > 0 for any z ̸= 0.

For general A one can apply CG to the normal equation

AHAx = AHb

Regularization can also be added.
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Conjugated Gradient

Algorithm 1 Conjugated Gradient Algorithm
1: r0 ← b−Ax0

2: v0 ← r0

3: for k = 0, . . . , N − 1 do
4: zk ← Avk

5: αk ← rH
krk

vH
kzk

6: xk+1 ← xk + αkvk

7: rk+1 ← rk − αkzk

8: βk ←
rH
k+1rk+1

rH
krk

9: vk+1 ← rk+1 + βkdk

10: end for
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Conjugated Gradient

Remarks:

• The CG algorithm converges in (less than) N iterations, often much faster.

• The convergence directly depends on the conditioning of the system matrix A.
The better it is conditioned, the faster is the convergence.

• In each iteration step 4. is the expensive one O(N2).
⇒ Total time complexity O(N3).

• If A is not stored explicitly (Fourier transform, Radon transform), the CG
algorithm allows for matrix-free calculation of the matrix-vector products.
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