
Scientific Programming -
Introduction to Julia Programming
Institute for Biomedical Imaging, Hamburg University of Technology

👨‍🏫 Prof. Dr.-Ing. Tobias Knopp
👨‍🏫 Dr. rer. nat. Martin Möddel

Scientific Programming - Introduction to Julia Programming
Getting Started with the REPL
Notebooks
Assignments
Printing
Functions

Higher Order Functions
Anonymous Functions
Optional Arguments
Keyword Arguments
Evaluation Strategy
Methods

Arithmetic Operators
Ranges and Vectors

Vectors
Ranges

Control Flow
Conditional Evaluation
Short-Circuit Evaluation
Repeated Evaluation

Custom and Composite Types
Packages and Modules

Package Ecosystem
Using Packages

Visualization

Table of Contents

Getting Started with the REPL
Julia code can be run in various ways:

The easiest way is to start the Julia REPL. REPL stands for Read Eval Print Loop and is what is
often known as a terminal or console. The REPL is characterized by being an interactive
environoment. One can basically inspect the code while running it. When you start Julia from
the command line you will get a promt like this

julia> 1 + 1

2

What happens is that the expression 1+1 is read. Then it is evaluated. And finally the result is printed.
All this is repeated in an infinite loop. So its a Read Eval Print Loop.

It is also possible to execute a Julia script that has the extension .jl by running

 > julia myscript.jl

Note

One common question being asked when learning a new programming language is: What is a
good IDE (Integrated Development Environment) for the language?

We actually encourage that you start with a simple text editor and the REPL and learn how to
master programming in this way. As editors we suggest

* vim

* vscode

* gedit

just to name a few. vim is a tool, which you should get used to anyway since you will have
situations where you are on a server and want to change some code without a graphical frontend.

Note that vscode is actually a full featured Julia IDE with the appropriate plugin being installed.
So if you want to give that a go feel free to play around with its features.

Notebooks
In this course we use Pluto.jl for both the lecture and the exercise. Pluto is a so-called notebook system
which is helpful in an interactive setting. Pluto is similar to Jupyter or Mathematica but has some
advantages compared to Jupyter. In particular the current document is a plain Julia file that you can
also execute in the Julia REPL or open in a plain text editor like vim or vscode. Here are some Pluto
features:

One can mix code, text, and images freely.
Notebooks are an implementation of literate programming proposed by Donald Knuth.
Notebooks are actually a little bit more, the term literate computing is often used for notebook
systems.
In notebook systems one has cells that are executed in order.
Notebooks are also handy to capture the plotting results being generated during a calculation.
Pluto also has a nice help function (see live docs in the lower right)

But we should note that despite these many advantages, notebook systems also have disadvantages:

They do not scale well when modularizing code.
Video explaining several disadvantage of notebook systems on YouTube.

Note

We encourage you to use the REPL early although the first exercises are all done using Pluto
notebooks. The reason is that this help us putting the tasks into small chunks that you can solve
step by step. In a real project you will develop the code in a package and only use notebooks as a
frontend.

Note

Within this notebook you will sometime see expressions like

with_terminal() do

...

end

or

begin

...

end

or

let ...

...

end

You can simply ignore these enclosing code blocks. Both are necessary in Pluto to display multiple
expressions within a single cell. From time to time Julia code is not entered as real code but just
as text as is done within this note. We do this when we don't want the code to run, for example
because the above code is not complete.

Assignments
Values can be assigned to variables using the assignment operator

a 30 =

Coming from a language with static typing one immediately observes that the type of the variable
does not need to be declared. This is usual for a language with a dynamic type system. But of course a
still has a concrete type. Lets inspect that:

Int64

This makes sense since the literal 30 apparently is an integer. Julia's default integer type has 64 bit.
Here, are some elementary types:

Float64

String

a = 30⋅

typeof(a)⋅

typeof(0.4)⋅

typeof("Test")⋅

Bool

Irrational{:π}

That is interesting, why isn't the type of the constant pi a Float64 ? Maybe because pi does not fit
into a 64-bit floating point number. Lets convert it

3.141592653589793

This brings us to an interesting aspect. What if we want a variable b to be of a specific type. Can this
somehow be enforced? The answer is yes and the syntax is as follows

π = 3.1415926535897...

Float64

We call this explicit typing. You can also see in the example that the conversion from the type
Irrational{:π} to the type Float64 is done implicitly. This is because the function
convert(::Type{Float64}, ::Irrational{:π}) exists. Implicit conversion is very handy. You are

certainly used to it from other programming languages

Printing
The Julia REPL prints the value of an entered expression by default. One can omit this by putting a ;
at the end of an expression.

Note

Unlike Matlab Julia does not require semicolons in scripts that are included to suppress printing a
value. When you include a script what is printed is the last expression being evaluated.

In Julia code in files one thus needs functions to print variables and expressions. There are various
possibilities for that:

typeof(true)⋅

typeof(pi)⋅

convert(Float64, pi)⋅

b::Float64 = pi⋅

typeof(b)⋅

3

y = 3

[Info: 3

┌ Warning: What is going on?

└ @ Main.var"workspace#3" ~/tuhhCloud/Lectures/WS2223/ImageProcessing/tutorials/1. Int

Of course we can also read user input:

julia> a = readline();

Hallo

julia> @show a

a = "Hallo"

"Hallo"

Functions
One of the core concepts in all successful programming languages is the possibility of grouping
functionality in smaller, reusable code units called functions. Functions typically have arguments, a
function body, and return values.

Lets define a function that calculates square numbers

square (generic function with 1 method)

16

Seems to work. Here, a is the function argument, b is the return value and everything between the
first and the last line is the function body. Julia also has a short notation:

square(a) = a*a

which is often handy when defining small functions.

with_terminal() do
	 y = 3
	
	 println(y) # if you omit the ln, there will be no line break
	 @show y # this macro is handy since it can operate on expressions
	 @info y # this goes in direction of the logging infrastructure
	 @warn "What is going on?"
	
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

function square(a)
 b = a*a
 return b
end

⋅
⋅
⋅
⋅

square(4)⋅

Note

Functions in Julia are as for most procedural languages not the same as mathematical functions
since they can have side effects. Julia has the possibility of marking functions as pure, which
allows the compiler to apply additional optimization that are not allowed for unpure functions

Higher Order Functions
In Julia functions are regular objects of type Function . Thus they can be stored or passed around
freely, i.e. functions in Julia are first-class objects. This allows to implement higher order functions in
Julia:

foo (generic function with 1 method)

16

Such higher order functions are for instance relevant when wanting to apply scalar function to a
collection of values:

[1, 4, 9]

Anonymous Functions
Functions do not necessary need to have a name (like square in the previous example). We call a
function without a name an anonymous function. It can be defined like this:

[1, 4, 9]

(more information: Julia Documentation)

Optional Arguments
In many cases the arguments of a function can be divided into mandatory and optional arguments.
This can be done like this:

mylog (generic function with 2 methods)

Here we defined a function mylog that by default uses the exponent e for the calculation of the
logarithm. We thus can call it like this:

function foo(f::Function, arg)
	 return f(arg)
end

⋅
⋅
⋅

foo(square, 4)⋅

map(square, [1, 2, 3])⋅

map(a -> a*a, [1, 2, 3])⋅

mylog(a,b=ℯ) = log(a,b)⋅

0.9102392266268373

I.e. the second argument has been omitted. We note that the second argument to log actually
already is a positional argument.

Note

Positional arguments are usually used when a small number of arguments is optional and when
there is a clear hierachy, which argument is more optional.

(more information: Julia Documentation)

Keyword Arguments
While positional arguments are very useful, they have limitations. Lets consider the function

function foo(a=1, b=2, c=3)

...

end

One can easily call this function as

foo()

foo(1)

foo(1,2)

foo(1,2,3)

But what is if we just want to pass c to foo and use the default values for a and b ? This is not
possible.

mylog(3.0)⋅

Keyword arguments can solve this problem and are nowadays a crucial element in many Julia APIs.
The idea is to give the argument a name (i.e. key) and then it is possible to change the order of
arguments.

As an example we consider the a function

plot(x,y)

that is supposed to plot a graph with coordinates x,y . Such a function can have several parameters
such as

the line width
the line style
the color of the graph

In Julia we can define plot like this:

myplot (generic function with 1 method)

Let us see how we can call this function.

[Info: (1, "solid", "green")

[Info: (1, "solid", "blue")

[Info: (3, "dashed", "green")

Note

The semicolon is necessary when defining the keyword arguments but they are not necessary
when calling it.

When having a chain of functions it can be convenient to bundle keyword arguments and pass them
further. This can be done like this:

function myplot(x,y; width=1, style="solid", color="green")
	 @info width, style, color
	 # here do the actual plotting
end

⋅
⋅
⋅
⋅

with_terminal() do
	 x = collect(1:10)
	 y = collect(1:10)
	
	 myplot(x,y)
	 myplot(x,y;color="blue")
	 myplot(x,y;style="dashed",width=3)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

[Info: (10, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}())

[Info: (5, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}())

[Info: (5, Base.Pairs(:mysecondarg => 13))

In practice this means that it is possible to tunnel arguments into low-level functions without the
need to change the high-level interface.

(more information: Julia Documentation)

Evaluation Strategy
An interesting question when using functions is what evaluation strategy is used. Julia has call-by-
value semantics, which means that a copy is being made when passing a value to a function. It also
means that the arguments are first evaluated before they are passed to the function.

evaluationStrategy (generic function with 1 method)

[Info: 3

with_terminal() do
	 function bar(x; myarg=10, kargs...)
	 	 @info myarg, kargs
	 end
	
	 function foo(x; kargs...)
	 	 bar(x; kargs...)
	 end
	
	
	 # Lets call it without keyword arguments
	 foo(0)
	 # Lets change myarg
	 foo(0, myarg=5)
	 # And now lets pass another keyword argument
	 foo(0, myarg=5, mysecondarg=13)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

function evaluationStrategy(a)
 a = 7
 return
end

⋅
⋅
⋅
⋅

with_terminal() do
	 y = 3
	 evaluationStrategy(y)
	 @info y
end

⋅
⋅
⋅
⋅
⋅

Hence, one can see that a copy of y has been made when passing it to the function
evaluationStrategy .

However, for many types in Julia (so-called mutable types) the variable actually stores only a
reference to the data. This is similar like in C where a pointer is often used to store a reference to a
complex data type. Lets see this in action using the array datatype.

evaluationStrategy2 (generic function with 1 method)

[Info: [7]

You can see, what has changed is the data behind the reference z , its not z itself.

Methods
Functions in Julia map arguments to return values, whereas the type of the arguments matters. Thus
we can have:

foobar (generic function with 2 methods)

Lets call them:

[Info: 1

[Info: -1.0

So it seems that Julia allows the same function name for different argument types. Both functions
are still related and we call foobar a method. You can also list all functions associated with it:

function evaluationStrategy2(a)
 a[1] = 7
 return
end

⋅
⋅
⋅
⋅

with_terminal() do
	 z = [3]
	 evaluationStrategy2(z)
	 @info z
end

⋅
⋅
⋅
⋅
⋅

begin
	 foobar(x::Int) = x
	 foobar(x::Float64) = -x
end

⋅
⋅
⋅
⋅

with_terminal() do
	 @info foobar(1)
	 @info foobar(1.0)
end

⋅
⋅
⋅
⋅

┌ Info: # 2 methods for generic function "foobar":

│ [1] foobar(x::Int64) in Main.var"workspace#3" at /Users/knopp/tuhhCloud/Lectures/WS2
└ [2] foobar(x::Float64) in Main.var"workspace#3" at /Users/knopp/tuhhCloud/Lectures/W

We will not go deeper into methods at this point but will have a dedicated lecture on this important
topic.

Arithmetic Operators
Julia offers the well known arithmetic operators +,-,*,/,^ . So you can do simple calculations:

ϕ 45 =

In Julia operators are nothing special but regular functions. One can either use the infix notation

3 + 4

or the prefix notation

+(3,4)

The later is important if you want to implement an operator for a new type. In other programming
languages this is called operator overloading , in Julia the transformation from infix to postfix
notation is just syntactic sugar and done during code lowering.

Here is an example of implementing the addition for a new type:

MySuperInt(7)

with_terminal() do
	 @info methods(foobar)
end

⋅
⋅
⋅

ϕ = 3 * 4 + 17 + 2^4⋅

begin
	 import Base.+ # we need to import a method if we want to add a new function
	
	 mutable struct MySuperInt # ignore this definition for the moment
	 	 val::Int
	 end
	
	 function +(a::MySuperInt, b::MySuperInt)
	 return MySuperInt(a.val + b.val)
	 end
	
	 MySuperInt(3) + MySuperInt(4)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

Ranges and Vectors
We discuss array/vectors/ranges in more detail in the upcoming lectures. At this point we just want
to briefly introduce some basics.

Vectors
Vectors can be created and handled like this:

a = [1, 2, 3, 4]

a[3] = 3

a = [1, 2, -10, 4]

At this point you should already have seen that Julia uses 1-based indexing like Matlab.

Ranges
Ranges are vector-like objects, where the elements are not stored in memory but are created on the
fly. We use them extensively for indexing and iteration. Here are some examples ranges:

a = 1:4

a[3] = 3

collect(a) = [1, 2, 3, 4]

collect(1:2:9) = [1, 3, 5, 7, 9]

In addition to the special range syntax, there is also a function syntax that is in many cases more
flexible:

with_terminal() do
	 a = [1,2,3,4] # this is a length-4 vector
	
	 @show a
	 @show a[3] # we access elements using square brackets
	 a[3] = -10 # setting a value
	 @show a
	 nothing
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

with_terminal() do
	 a = 1:4
	
	 @show a
	 @show a[3] # we access elements using square brackets
	 @show collect(a) # convert a range into a dense vector using collect
	 @show collect(1:2:9) # every second element
	 nothing
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

collect(range(1, 4, length = 5)) = [1.0, 1.75, 2.5, 3.25, 4.0]

collect(range(1, length = 5, step = 0.5)) = [1.0, 1.5, 2.0, 2.5, 3.0]

Control Flow
Next we discuss the control flow expressions that are available in Julia

Conditional Evaluation
Quite often one wants to execute different code path depending on the value of an expression. This
is done using the well-known if statement:

"$(s) is a student!" = "Peter is a student!"

Also the ternary operator is available:

with_terminal() do

	 @show collect(range(1, 4, length=5))
	 @show collect(range(1, length=5, step=0.5))
 nothing
end

⋅
⋅
⋅
⋅
⋅
⋅

with_terminal() do
	
	 students = ["Marie", "Peter", "Klaus", "Waltraut"]
	 teachers = ["Hugo", "Jane"]
	
	 s = "Peter"
	 if s in students
	 	 @show "$s is a student!"
	 elseif s in teachers
	 @show "$s is a teacher!"
	 else
	 	 @show "$s is neither a teacher nor a student"
	 end
	 nothing
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

(b, c) = (14, 7)

One interesting question for if statements is whether they have their own scope. Lets consider the
following C code:

if(...) {

 int i = 10;

} else {

 int i = 20

}

// do something with i

This will not work, since the variable i is only locally declared in the if statement. Instead one needs
to first declare the variable:

int i;

if(...) {

 i = 10;

} else {

 i = 20

}

// do something with i

In Julia if statements do not have their own scope and thus we can do:

i = 10

with_terminal() do
	
	 a = true
	
	 b = a ? 14 : 7
	 c = !a ? 14 : 7
	
	 @show b,c
	 nothing
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

with_terminal() do
	 a = true
	
	 if a
	 	 i = 10
	 else
	 	 i = 20
	 end
	
	 @show i
	 nothing
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

Short-Circuit Evaluation
The boolean operations && and || are usually used within if statements:

don't something with Any[]

You can see that the second part in the if clause is not evaluated since a[14] actually would throw
an error. This is because of the following rules:

In the expression a && b , the subexpression b is only evaluated if a evaluates to true.
In the expression a || b the subexpression b is only evaluated if a evaluates to false.

But actually this is not limited to if statements, one can actually also use this for regular control
flow:

This is only shown in debug mode!

No error happened, we can proceed!

Note

In many cases the code remains actually more readable when sticking to simple if statements.

with_terminal() do
	
	 a = [] # I am an empty array
	
	 if !isempty(a) && a[14] == 7
	 	 println("do something with $a")
	 else
	 println("don't something with $a")
	 end
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

with_terminal() do
	
	 debug = true
	
	 debug && println("This is only shown in debug mode!")
	
 error = false
	
	 error || println("No error happened, we can proceed!")
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

Repeated Evaluation
Another very important control flow mechanism is repeated evaluation or loops. They allow to
repeat code fragments for a certain number of times. Julia supports two types, for loops and while
loops. Lets see both in action:

1 2 3 4

4 6 8

Both should be pretty clear. for loops are very powerful in Julia and can be used to loop over
containers quite easily.

[Info: Hans

[Info: Judith

[Info: Peter

[Info: Angelina

Now what is if you need both the element and the index in the for loop?

[Info: ("Hans", 1)

[Info: ("Judith", 2)

[Info: ("Peter", 3)

[Info: ("Angelina", 4)

with_terminal() do
 for i=1:4
	 print("$i ")
 end
	
	 println("")

 l = 4
 while l< 10
	 print("$l ")
	 l += 2
 end
	
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

with_terminal() do
 global names = ["Hans", "Judith", "Peter", "Angelina"]
	
 for name in names
 @info name	 	
 end
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅

with_terminal() do
 for (i,name) in enumerate(names)
 @info name, i	 	
 end
end

⋅
⋅
⋅
⋅
⋅

Thats cool, isn't it?

Custom and Composite Types
In many situations one wants to create new types that group several values together. In Julia this is
done by structs . For instance we can create a struct Student that has two members name and
age :

Lets create a student

s Student("Tobi", 21) =

We can access the members using the dot syntax

"Tobi"

21

Immutability
The struct that we discussed so far is a so-called immutable struct. Immutable means that we cannot
change it

setfield!: immutable struct of type Student cannot be changed

1. setproperty!(::Main.var"workspace#3".Student, ::Symbol, ::String) Base.jl:39
2. top-level scope Local: 1

@
@ [inlined]

It might not be clear at this point what the advantage of immutability is but you can basically think
of this as a hint for the compiler that allows for several optimizations that improve the execution
speed.

If you need mutability just use a mutable struct

struct Student
	 name::String
	 age::Int
end

⋅
⋅
⋅
⋅

s = Student("Tobi", 21)⋅

s.name⋅

s.age⋅

s.name = "Franz"⋅

mutable struct MutableStudent
	 name::String
	 age::Int
end

⋅
⋅
⋅
⋅

c MutableStudent("Karl", 40) =

10

What is important for structs and mutable structs is that you specify the types. If you do not do
this, it is possible that members can change their type during lifetime, which will prevent emitting
efficient code.

[Info: true

[Info: false

Packages and Modules
When developing a large codebase it is important to structure the code in a way that common
functionality is grouped together. In Julia this is done using modules . At this point in the lecture we
will not go into details of modules.

In Julia a package is a more general concept. A package can consist of one or several modules that is
grouped together such that other people can use it. Packages in Julia usually correspond to a git
repository (hosted e.g. at GitHub). Here is an example package NFFT.jl that allows for carrying a
generalization of the Fast Fourier Transform (FFT):

c = MutableStudent("Karl", 40)⋅

c.age = 10⋅

with_terminal() do
	 @info isimmutable(s)
	 @info isimmutable(c)
end

⋅
⋅
⋅
⋅

One can see that the files and folders are structured in a certain way. Furthermore one can see some
tooling that is offered in addition plain git:

Continuous Integration (CI)
Automatic generation of documentation
Code coverage

Package Ecosystem
Julia has a very large package ecosystem and thus many things to not need to be implemented by
yourself. For instance:

You need to do Spline interpolation on arbitrary dimensioned arrays? Just use Interpolations.jl
Need to solve differential equations? Just use DifferentialEquations.jl
You need to develop a neural network? Just use Flux.jl

It should be noted that the entire Julia ecosystem is, similar to wikipedia, a collection of open source
projects. Thus, the quality of packages varies greatly. But there is a certain fraction of high-quality
packages out there that are already more sophisticated than similar packages in Python or Matlab. If
you want to explore the package ecosystem you can visit JuliaHub.

Using Packages
At this point, again, we do not detail, what a package is exactly. Instead we just want to make you
aware that they exist and how they can be used.

To install a package you go into package mode by entering] and then enter (if you want to install
Interpolations.jl):

pkg> add Interpolations

That's it. After you have installed it you need to load the package. This is done in Julia by:

using Interpolations

Then all functions exported by Interpolations are brought into the current namespace and can be
used.

Visualization
There are various packages in Julia to perform visualization, i.e. plotting of functions or displaying
images. Two popular packages you should be aware of are Plots.jl and PyPlot.jl. We will mostly use
Plots.jl.

begin
	 t = range(0, 2π, length=100)
	 u = sin.(t)
	 p = plot(t, u, label="A nice sine function", lw=3)
	 xlabel!(p, "t / s")
	 ylabel!(p, "u / V")
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅

