
Medical Imaging

Prof. Dr. Tobias Knopp

14. Dezember 2022

Institut für Biomedizinische Bildgebung

Non-Equidistant Fast Fourier
Transform

Non-Equidistant Fast Fourier Transform

The non-equidistant fast Fourier transform (NFFT) is an approximative algorithm that
performs the non-equidistant discrete Fourier transform (NDFT) efficiently.

Definition
The NDFT is defined as

fj = f (xj) =

N
2 −1∑

k=−N
2

f̂ke−2πikxj , j = 0, . . . ,M − 1

It takes a sequence of N equidistantly distributed samples f̂k and calculates the Fourier
sum at M non-equidistant sampling nodes xj ∈ [−0.5, 0.5).

1

Non-Equidistant Fast Fourier Transform

Remarks

• Naive NDFT would require O(MN) arithmetic operations

• The FFT requires xj to be equidistant, i.e.

xj = −1
2
+

j

N
, j = 0, . . . ,N − 1

2

Key Idea of the NFFT

The key idea of the NFFT is to approximate the anharmonic complex exponential
e−2πikxj by a sum of harmonic complex exponentials

e−2πikxj︸ ︷︷ ︸
anharmonic

≈

L
2−1∑
l=− L

2

βl ,j e−2πi kl
L︸ ︷︷ ︸

harmonic

Remarks

• Harmonic here is means that the frequency γl = l
L is a multiple of the basis

frequency γ1 = 1
L .

• Similar to other approximations (or interpolations) we use a base function and shift
its frequency (c.f. spline interpolation).

• Most important point of the approximation is that the two indices k and j are not
in the exponent anymore but they are factorized. 3

Derivation of the NFFT

We consider a general window function
φ ∈ L1(R) ∩ L2(R) ∩ BV(R) and its periodization

φ̃(x̃) :=
∞∑

p=−∞
φ(x̃ + p).

The function has a uniformly convergent Fourier series

φ̃(x̃) =
∞∑

k=−∞
ck(φ̃)e−2πikx̃

with coefficients

ck(φ̃) =

∫ 1
2

− 1
2

φ̃(x̃)e2πikx̃ dx̃

9^1
:

- E k

Note: The sign is flipped compared to the regular definition of the Fourier series. 4

Derivation of the NFFT

We now substitute x̃ by x̃ = x − x ′ with x ∈ R yielding with dx̃
dx ′ = −1

ck(φ̃) =

∫ x− 1
2

x+ 1
2

φ̃(x − x ′)e2πik(x−x ′)(−1) dx ′

periodicity
=

∫ − 1
2

1
2

φ̃(x − x ′)e2πik(x−x ′)(−1) dx ′

=

∫ 1
2

− 1
2

φ̃(x − x ′)e2πik(x−x ′) dx ′

5

Derivation of the NFFT

Then we approximate the integral at equidistant nodes l
L using a rectangular

quadrature rule

ck(φ̃) ≈
1
L

L
2−1∑
l=− L

2

φ̃

(
x − l

L

)
e2πik(x− l

L
)

We will later chose L = αN where α > 1 is the so-called oversampling factor. If
ck(φ̃) ̸= 0 we obtain

e−2πikx ≈ 1
αNck(φ̃)

αN
2 −1∑

l=−αN
2

φ̃

(
x − l

αN

)
e−2πik l

αN (1)

Thus we can indeed approximate the anharmonic exponential by a sum of harmonic
exponentials (βl ,j = 1

αNck (φ̃)
φ̃
(
x − l

αN

)
).

6

Derivation of the NFFT

Since φ is a kernel function we know that only few of the summands in (1) have a
significant contribution to the sum.

Key idea: Consider only significant summands such that the sum needs just be
evaluated partially.

To this end we truncate the function φ at ± m
αN and replace it by

ψ(x) :=

φ(x) if x ∈
[
− m

αN ,
m
αN

]
0 else

.

With the periodization ψ̃(x̃) :=
∑∞

p=−∞ ψ(x̃ + p) this yields our final approximation

e−2πikx ≈ 1
αNck(φ̃)

αN
2 −1∑

l=−αN
2

ψ̃

(
x − l

αN

)
e−2πik l

αN (2)

7

Derivation of the NFFT

Illustration of the truncation:

111
' '

)
'

¥ Er IN ¥
' '

n

' I

8

Derivation of the NFFT

We now get back to the NDFT and replace the term e−2πikx with our approximation
yielding

fj =

N
2 −1∑

k=−N
2

f̂ke−2πikxj

(2)
≈

N
2 −1∑

k=−N
2

f̂k
1

αNck(φ̃)

αN
2 −1∑

l=−αN
2

ψ̃

(
xj −

l

αN

)
e−2πik l

αN

=

αN
2 −1∑

l=−αN
2

ψ̃

(
xj −

l

αN

) N
2 −1∑

k=−N
2

f̂k
αNck(φ̃)︸ ︷︷ ︸
apodization

e−2πik l
αN

︸ ︷︷ ︸
DFT/FFT︸ ︷︷ ︸

discrete convolution
9

Algorithm NFFT

Algorithm 1 Pseudocode NFFT

input: f̂k ∈ C, k = −N
2 , . . . ,

N
2 − 1, xj ∈ [−1

2 ,
1
2), j = 0, . . . ,M − 1, α > 1 and m ∈ N

output: fj ∈ C, j = 0, . . . ,M − 1

1: for k = −N
2 , . . . ,

N
2 − 1 do

2: ĝk = f̂k
αNck (φ̃)

3: end for
4: compute the data (gl)

αN
2 −1

l=−αN
2

using an FFT of (ĝk)
N
2 −1
k=−N

2
.

5: for j = 0, . . . ,M − 1 do

6: fj =

αN
2 −1∑

l=−αN
2

gl ψ̃

(
xj −

l

αN

)
7: end for

10

Complexity Analysis

The three steps have an individual time complexity of

1. O(N)

2. O(αN log(αN))

3. O(mM)

Thus, the total complexity of the NFFT is

O(αN log(αN) +mM) ≪ O(NM)

11

Approximation Error

One can derive approximation error estimations for the
NFFT. For specific φ (i.e. Kaiser-Bessel functions) one can
show that the approximation error can be adjusted to be
lower than tha floating point precission (64 bit → α = 2
and m = 6 for the Kaiser-Bessel window).
Since α and m are independent of N and M we end up
with an algorithmic complexity of

O(N logN +M) ≪ O(NM)

12

Matrix-Vector Notation

The NFFT can also been expressed in matrix vector notation. Let

f̂ := (f̂k)
N
2 −1
k=−N

2
∈ CN , f := (fj)

M−1
j=0 ∈ CM

and
A :=

(
e−2πikxj

)
j=0,...,M−1;k=−N

2 ,...,
N
2 −1

∈ CM×N .

then
f = Af̂ ≈ B︸︷︷︸

convolution matrix

F︸︷︷︸
DFT matrix

D︸︷︷︸
diagonal matrix

f̂ .

Here we note that B is a sparse matrix (i.e. has only few non-zero entries).

13

Implementation

The window function φ and ck(φ̃) are usually expensive to calculate and should
therefore be cached. There are two possibilities for φ

1. Create a lookup table for φ

2. Store B in a sparse matrix format (CRS / CCS)

14

Adjoint NFFT

In addition to the regular NFFT one often also needs the adjoint NFFT. It maps from
non-equidistant samples to equidistant samples, wheras the NFFT is the other way
around.

f̂k =
M−1∑
j=0

fje2πikxj k = −N

2
, . . . ,

N

2
− 1

≈ 1
αNck(φ̃)

αN
2 −1∑

l=−αN
2

M−1∑
j=0

fj ψ̃

(
xj −

l

αN

)
︸ ︷︷ ︸

discrete convolution

e2πik l
αN

︸ ︷︷ ︸
DFT/FFT︸ ︷︷ ︸

apodization

15

Adjoint NFFT

In matrix vector notation:
f̂ = AHf ≈ DHFHBHf

16

Window Function (Kaiser-Bessel)

There are various suitable window functions for which error estimations have been
derived. The best is the Kaiser-Bessel window, which is defined as

φ(v) :=

 1
2m I0

(
bm
√

1 − (αNvm)2
)

falls |v | ≤ m
αN (b := π(2 − 1

α)),

0 falls |v | > m
αN

where Ik : C → C, k ∈ N0 is the modified Bessel function of the first kind:

Ik(x) :=
∞∑
r=0

(x2)
2r+k

(r + k)!r !
.

17

Window Function (Kaiser-Bessel)

The Fourier transform of the Kaiser-Bessel window can be shown to be

φ̂(z) =
1
αN

sinc

√(2πmz

αN

)2

− b2m2


=

1
αN

∞∑
n=0

1
(2n + 1)!

(
b2m2 −

(
2πmz

αN

)2
)n

.

18

Window Function (Kaiser-Bessel)

https://en.wikipedia.org/wiki/Kaiser_window

19

https://en.wikipedia.org/wiki/Kaiser_window

Multidimensional NFFT

The NDFT and the NFFT can be also formulated / derived for multidimensional signals:

NFFT

fj :=
∑
k∈I dN

f̂ke−2πikxj , j = 0, . . .M − 1

Adjoint NFFT

f̂k =
M−1∑
j=0

fje2πikx j , k ∈ I dN

where the index set I dN with N = (N0, . . . ,Nd−1)
T ∈ Nd is defined as

I dN :=

{
−N1

2
, . . . ,

N1

2
− 1
}
× · · · ×

{
−Nd

2
, . . . ,

Nd

2
− 1
}

and d is the dimensionality of the tranform. 20

Inverse NFFT

In general the adoint NFFT is not (exactly) the inverse NFFT, i.e.

AHA ̸= I

However, one can derive an approximation to the (pseudo)inverse quite efficiently.

To this end we first consider the NDFT

f (xj) =

N
2 −1∑

k=−N
2

f̂ke−2πikxj , j = 0, . . . ,M − 1

We now extend the sum to ±∞, which leads to the Fourier series

f (xj) =
∞∑

k=−∞
f̂ke−2πikxj , j = 0, . . . ,M − 1

where the coefficients f̂k have been zero-padded.
21

Inverse NFFT

The Fourier coefficients f̂k can be calculated by

f̂k =

∫ 1
2

− 1
2

f (x)e2πikxj dx k = −k

2
, . . . ,

k

2
− 1

Since f is only known at the sampling nodes xj , we can only consider these when
approximating the integral by a sum. When applying a rectangular quadrature rule, one
obtains

f̂k ≈
M−1∑
j=0

wj f (xj)e2πikxj k = −k

2
, . . . ,

k

2
− 1

where wj , j = 0, . . . ,M − 1 are the quadrature weights. This is the adjoint NFFT with
a pre-weighting. In matrix-vector notation this implies AHW ≈ A+, i.e. AHWA ≈ I .

22

Summary

• The NDFT is a generalization of the DFT

• The NFFT is an efficient implementation of the NDFT, which exploits a numerical
approximation of the complex exponential

• The approximation error is known and can be adjusted to reach machine precision.

• In practice the convolution usually takes most of the computation time. With
optimized parameters (α = 1.25, m = 2) it is possible to make the convolution as
fast as the FFT.

• There are various implementations of the NFFT. One reference implementation is
the C library NFFT 3 (https://github.com/NFFT/nfft). Also a Julia package
exists: https://github.com/tknopp/NFFT.jl

23

https://github.com/NFFT/nfft
https://github.com/tknopp/NFFT.jl

	Non-Equidistant Fast Fourier Transform

