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Non-Equidistant Fast Fourier Transform

The non-equidistant fast Fourier transform (NFFT) is an approximative algorithm that
performs the non-equidistant discrete Fourier transform (NDFT) efficiently.

Definition
The NDFT is defined as

fj = f (xj) =

N
2 −1∑

k=−N
2

f̂ke−2πikxj , j = 0, . . . ,M − 1

It takes a sequence of N equidistantly distributed samples f̂k and calculates the Fourier
sum at M non-equidistant sampling nodes xj ∈ [−0.5, 0.5).
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Non-Equidistant Fast Fourier Transform

Remarks

• Naive NDFT would require O(MN) arithmetic operations

• The FFT requires xj to be equidistant, i.e.

xj = −1
2
+

j

N
, j = 0, . . . ,N − 1
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Key Idea of the NFFT

The key idea of the NFFT is to approximate the anharmonic complex exponential
e−2πikxj by a sum of harmonic complex exponentials

e−2πikxj︸ ︷︷ ︸
anharmonic

≈

L
2−1∑
l=− L

2

βl ,j e−2πi kl
L︸ ︷︷ ︸

harmonic

Remarks

• Harmonic here is means that the frequency γl = l
L is a multiple of the basis

frequency γ1 = 1
L .

• Similar to other approximations (or interpolations) we use a base function and shift
its frequency (c.f. spline interpolation).

• Most important point of the approximation is that the two indices k and j are not
in the exponent anymore but they are factorized. 3



Derivation of the NFFT

We consider a general window function
φ ∈ L1(R) ∩ L2(R) ∩ BV(R) and its periodization

φ̃(x̃) :=
∞∑

p=−∞
φ(x̃ + p).

The function has a uniformly convergent Fourier series

φ̃(x̃) =
∞∑

k=−∞
ck(φ̃)e−2πikx̃

with coefficients

ck(φ̃) =

∫ 1
2

− 1
2

φ̃(x̃)e2πikx̃ dx̃

9^1
:

- E k

Note: The sign is flipped compared to the regular definition of the Fourier series. 4



Derivation of the NFFT

We now substitute x̃ by x̃ = x − x ′ with x ∈ R yielding with dx̃
dx ′ = −1

ck(φ̃) =

∫ x− 1
2

x+ 1
2

φ̃(x − x ′)e2πik(x−x ′)(−1) dx ′

periodicity
=

∫ − 1
2

1
2

φ̃(x − x ′)e2πik(x−x ′)(−1) dx ′

=

∫ 1
2

− 1
2

φ̃(x − x ′)e2πik(x−x ′) dx ′
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Derivation of the NFFT

Then we approximate the integral at equidistant nodes l
L using a rectangular

quadrature rule

ck(φ̃) ≈
1
L

L
2−1∑
l=− L

2

φ̃

(
x − l

L

)
e2πik(x− l

L
)

We will later chose L = αN where α > 1 is the so-called oversampling factor. If
ck(φ̃) ̸= 0 we obtain

e−2πikx ≈ 1
αNck(φ̃)

αN
2 −1∑

l=−αN
2

φ̃

(
x − l

αN

)
e−2πik l

αN (1)

Thus we can indeed approximate the anharmonic exponential by a sum of harmonic
exponentials (βl ,j = 1

αNck (φ̃)
φ̃
(
x − l

αN

)
).
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Derivation of the NFFT

Since φ is a kernel function we know that only few of the summands in (1) have a
significant contribution to the sum.

Key idea: Consider only significant summands such that the sum needs just be
evaluated partially.

To this end we truncate the function φ at ± m
αN and replace it by

ψ(x) :=

φ(x) if x ∈
[
− m

αN ,
m
αN

]
0 else

.

With the periodization ψ̃(x̃) :=
∑∞

p=−∞ ψ(x̃ + p) this yields our final approximation

e−2πikx ≈ 1
αNck(φ̃)

αN
2 −1∑

l=−αN
2

ψ̃

(
x − l

αN

)
e−2πik l

αN (2)
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Derivation of the NFFT

Illustration of the truncation:
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Derivation of the NFFT

We now get back to the NDFT and replace the term e−2πikx with our approximation
yielding

fj =

N
2 −1∑

k=−N
2

f̂ke−2πikxj

(2)
≈

N
2 −1∑

k=−N
2

f̂k
1

αNck(φ̃)

αN
2 −1∑

l=−αN
2

ψ̃

(
xj −

l

αN

)
e−2πik l

αN

=

αN
2 −1∑

l=−αN
2

ψ̃

(
xj −

l

αN

) N
2 −1∑

k=−N
2

f̂k
αNck(φ̃)︸ ︷︷ ︸
apodization

e−2πik l
αN

︸ ︷︷ ︸
DFT/FFT︸ ︷︷ ︸

discrete convolution
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Algorithm NFFT

Algorithm 1 Pseudocode NFFT

input: f̂k ∈ C, k = −N
2 , . . . ,

N
2 − 1, xj ∈ [−1

2 ,
1
2), j = 0, . . . ,M − 1, α > 1 and m ∈ N

output: fj ∈ C, j = 0, . . . ,M − 1

1: for k = −N
2 , . . . ,

N
2 − 1 do

2: ĝk = f̂k
αNck (φ̃)

3: end for
4: compute the data (gl)

αN
2 −1

l=−αN
2

using an FFT of (ĝk)
N
2 −1
k=−N

2
.

5: for j = 0, . . . ,M − 1 do

6: fj =

αN
2 −1∑

l=−αN
2

gl ψ̃

(
xj −

l

αN

)
7: end for
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Complexity Analysis

The three steps have an individual time complexity of

1. O(N)

2. O(αN log(αN))

3. O(mM)

Thus, the total complexity of the NFFT is

O(αN log(αN) +mM) ≪ O(NM)
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Approximation Error

One can derive approximation error estimations for the
NFFT. For specific φ (i.e. Kaiser-Bessel functions) one can
show that the approximation error can be adjusted to be
lower than tha floating point precission (64 bit → α = 2
and m = 6 for the Kaiser-Bessel window).
Since α and m are independent of N and M we end up
with an algorithmic complexity of

O(N logN +M) ≪ O(NM)
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Matrix-Vector Notation

The NFFT can also been expressed in matrix vector notation. Let

f̂ := (f̂k)
N
2 −1
k=−N

2
∈ CN , f := (fj)

M−1
j=0 ∈ CM

and
A :=

(
e−2πikxj

)
j=0,...,M−1;k=−N

2 ,...,
N
2 −1

∈ CM×N .

then
f = Af̂ ≈ B︸︷︷︸

convolution matrix

F︸︷︷︸
DFT matrix

D︸︷︷︸
diagonal matrix

f̂ .

Here we note that B is a sparse matrix (i.e. has only few non-zero entries).
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Implementation

The window function φ and ck(φ̃) are usually expensive to calculate and should
therefore be cached. There are two possibilities for φ

1. Create a lookup table for φ

2. Store B in a sparse matrix format (CRS / CCS)
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Adjoint NFFT

In addition to the regular NFFT one often also needs the adjoint NFFT. It maps from
non-equidistant samples to equidistant samples, wheras the NFFT is the other way
around.

f̂k =
M−1∑
j=0

fje2πikxj k = −N

2
, . . . ,

N

2
− 1

≈ 1
αNck(φ̃)

αN
2 −1∑

l=−αN
2

M−1∑
j=0

fj ψ̃

(
xj −

l

αN

)
︸ ︷︷ ︸

discrete convolution

e2πik l
αN

︸ ︷︷ ︸
DFT/FFT︸ ︷︷ ︸

apodization
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Adjoint NFFT

In matrix vector notation:
f̂ = AHf ≈ DHFHBHf
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Window Function (Kaiser-Bessel)

There are various suitable window functions for which error estimations have been
derived. The best is the Kaiser-Bessel window, which is defined as

φ(v) :=

 1
2m I0

(
bm
√

1 − (αNvm )2
)

falls |v | ≤ m
αN (b := π(2 − 1

α)),

0 falls |v | > m
αN

where Ik : C → C, k ∈ N0 is the modified Bessel function of the first kind:

Ik(x) :=
∞∑
r=0

( x2 )
2r+k

(r + k)!r !
.
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Window Function (Kaiser-Bessel)

The Fourier transform of the Kaiser-Bessel window can be shown to be

φ̂(z) =
1
αN

sinc

√(2πmz

αN

)2

− b2m2


=

1
αN

∞∑
n=0

1
(2n + 1)!

(
b2m2 −

(
2πmz

αN

)2
)n

.
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Window Function (Kaiser-Bessel)

https://en.wikipedia.org/wiki/Kaiser_window
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Multidimensional NFFT

The NDFT and the NFFT can be also formulated / derived for multidimensional signals:

NFFT

fj :=
∑
k∈I dN

f̂ke−2πikxj , j = 0, . . .M − 1

Adjoint NFFT

f̂k =
M−1∑
j=0

fje2πikx j , k ∈ I dN

where the index set I dN with N = (N0, . . . ,Nd−1)
T ∈ Nd is defined as

I dN :=

{
−N1

2
, . . . ,

N1

2
− 1
}
× · · · ×

{
−Nd

2
, . . . ,

Nd

2
− 1
}

and d is the dimensionality of the tranform. 20



Inverse NFFT

In general the adoint NFFT is not (exactly) the inverse NFFT, i.e.

AHA ̸= I

However, one can derive an approximation to the (pseudo)inverse quite efficiently.

To this end we first consider the NDFT

f (xj) =

N
2 −1∑

k=−N
2

f̂ke−2πikxj , j = 0, . . . ,M − 1

We now extend the sum to ±∞, which leads to the Fourier series

f (xj) =
∞∑

k=−∞
f̂ke−2πikxj , j = 0, . . . ,M − 1

where the coefficients f̂k have been zero-padded.
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Inverse NFFT

The Fourier coefficients f̂k can be calculated by

f̂k =

∫ 1
2

− 1
2

f (x)e2πikxj dx k = −k

2
, . . . ,

k

2
− 1

Since f is only known at the sampling nodes xj , we can only consider these when
approximating the integral by a sum. When applying a rectangular quadrature rule, one
obtains

f̂k ≈
M−1∑
j=0

wj f (xj)e2πikxj k = −k

2
, . . . ,

k

2
− 1

where wj , j = 0, . . . ,M − 1 are the quadrature weights. This is the adjoint NFFT with
a pre-weighting. In matrix-vector notation this implies AHW ≈ A+, i.e. AHWA ≈ I .
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Summary

• The NDFT is a generalization of the DFT

• The NFFT is an efficient implementation of the NDFT, which exploits a numerical
approximation of the complex exponential

• The approximation error is known and can be adjusted to reach machine precision.

• In practice the convolution usually takes most of the computation time. With
optimized parameters (α = 1.25, m = 2) it is possible to make the convolution as
fast as the FFT.

• There are various implementations of the NFFT. One reference implementation is
the C library NFFT 3 (https://github.com/NFFT/nfft). Also a Julia package
exists: https://github.com/tknopp/NFFT.jl
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