Medical Imaging

Prof. Dr. Tobias Knopp
14. Dezember 2022

Institut fiir Biomedizinische Bildgebung

Non-Equidistant Fast Fourier
Transform

Non-Equidistant Fast Fourier Transform

The non-equidistant fast Fourier transform (NFFT) is an approximative algorithm that
performs the non-equidistant discrete Fourier transform (NDFT) efficiently.

Definition
The NDFT is defined as
41
fi="f(x;) = Zfefz’”kxl, j=0,....M—-1
N

It takes a sequence of N equidistantly distributed samples f« and calculates the Fourier
sum at M non-equidistant sampling nodes x; € [-0.5,0.5).

Non-Equidistant Fast Fourier Transform

Remarks
e Naive NDFT would require O(MN) arithmetic operations
e The FFT requires x; to be equidistant, i.e.

J .
= — = =0,...,N—1
Xj +N7 J))

Key ldea of the NFFT

The key idea of the NFFT is to approximate the anharmonic complex exponential

e~ 2™k by a sum of harmonic complex exponentials
—2mikx; ~ 27r1
e E Bije
anharmonlc I——— harmonlc
Remarks

e Harmonic here is means that the frequency v, = % is a multiple of the basis

frequency v1 = 7
e Similar to other approximations (or interpolations) we use a base function and shift
its frequency (c.f. spline interpolation).
e Most important point of the approximation is that the two indices k and j are not
in the exponent anymore but they are factorized. 3

Derivation of the NFFT

We consider a general window function
¢ € LY(R) N L2(R) N BV(R) and its periodization

o0

P(x) = p(X + p)-
2o VAN

The function has a uniformly convergent Fourier series

0 2~

CRDIIC FAVAVAN

with coefficients
w?) = |

Note: The sign is flipped compared to the regular definition of the Fourier series.

NI=

@(X)eZWiki d)?

1
2

Derivation of the NFFT

We now substitute X by X = x — x” with x € R yielding with gf, =-1

(@) = / B B(x — X)) (1) dx’

N[

perio:dicity/ @(X _ X/)e27rik(x_x’)(_1)dxl

-/

2

NI

P(x — x)e2mkx=x) g/

1
2

Derivation of the NFFT

Then we approximate the integral at equidistant nodes % using a rectangular

quadrature rule
L

~ 1 d ~ / mik(x—1
(@)~ | > ¢<X—L>e2 k(x=1)

We will later chose L = aN where a > 1 is the so-called oversampling factor. If
ck($) # 0 we obtain
aN
2
e—27rikx 1

~ / —omik—L
U o mik— 1
o), 2, P aw) g

—_alN
! 2

Thus we can indeed approximate the anharmonic exponential by a sum of harmonic

1 /

exponentials (3 = e H? (x — =5)).

Derivation of the NFFT

Since ¢ is a kernel function we know that only few of the summands in (1) have a

significant contribution to the sum.

Key idea: Consider only significant summands such that the sum needs just be

evaluated partially.

To this end we truncate the function ¢ at &% and replace it by
o(x) ifxe [fﬁ, ﬁ}

0 else

U(x) =

With the periodization 1Z(>”<) = Zzoz_oc (X + p) this yields our final approximation
aN _
—27ik 1 S 7 / 27ik L 2
1KX ~ - o — 1 anN
(§] ach((ﬁ)/zan(X OéN)e ()

2

Derivation of the NFFT

Illustration of the truncation:

Derivation of the NFFT

We now get back to the NDFT and replace the term e 2™ with our approximation

yielding
N
271 _
6_ — kef27r1kxj-
__N
k=—73
N_q aN_ q
(2) Zz ;1 Zz - ik L
~ A _ 1/} Xj — e 2mik
aNeg(P) aN
k=—N |=—aN
2 2
alN N_
2 2 y
~ / fy /
= E w X J— E k _ —2mik Sy
T aN aNeg ()
|=—aN __N k
2 2
apodization

DFT/FFT

discrete convolution

Algorithm NFFT

Algorithm 1 Pseudocode NFFT

input: A eC k=-N .. %—1,)9'6[—%,%),j:O,...,I\/I—l,a>1andm€N

R)

output: f,€C,j=0,... M—1

1:

2
3
4:
5

N N
fork:—z,. ,5 —1do
. f
8k = aNa(@)
. end for
aN _q N_q
compute the data (g) 2 .y using an FFT of (&)72_ -
:forj=0,....M—1do ’ i
alN_q
2 ~ /
fj = Z gy (X_[- ozl\/)
Rt
end for

10

Complexity Analysis

The three steps have an individual time complexity of

1. O(N)
2. O(aNlog(aN))
3. O(mM)

Thus, the total complexity of the NFFT is

O(aNlog(aN) + mM) < O(NM)

11

Approximation Error

One can derive approximation error estimations for the
NFFT. For specific ¢ (i.e. Kaiser-Bessel functions) one can
show that the approximation error can be adjusted to be
lower than tha floating point precission (64 bit — o =2
and m = 6 for the Kaiser-Bessel window).

Since o and m are independent of N and M we end up
with an algorithmic complexity of

O(Nlog N + M) < O(NM)

relative error

relative error

001 [
1e-04
16-06 |-
10-08 |-
1e-10 |
fe-12 |
1e-14 |-

1e-16 -

0.01
1e-04
1e-06
1e-08
1e-10 -
1e-12

1e-14

1e-16

calculated error

machine precission

calculated error

machine precission

Matrix-Vector Notation

The NFFT can also been expressed in matrix vector notation. Let

2 P ! _
f.= (fk)k;% ecV, f=(HMtec”
and
A — (e—2miky Mx N
<e J)j:o,...,M—l;k: NN €C
then
f=Af ~ B F D f.
~— ~—~ ~—

convolution matrix DFT matrix diagonal matrix

Here we note that B is a sparse matrix (i.e. has only few non-zero entries).

13

Implementation

The window function ¢ and cx(@) are usually expensive to calculate and should
therefore be cached. There are two possibilities for ¢

1. Create a lookup table for ¢
2. Store B in a sparse matrix format (CRS / CCS)

14

Adjoint NFFT

In addition to the regular NFFT one often also needs the adjoint NFFT. It maps from
non-equidistant samples to equidistant samples, wheras the NFFT is the other way

around.
M—1
: N N
fe2mikg g — 1
— Je 2777770
J:
1 N1 v

~ f 7 27ri/<0+
aNeg () Z ﬂb(aN) ¢ !

|=—<N \ j=0

discrete convolution

DFT/FFT

apodization

15

Adjoint NFFT

In matrix vector notation:
f = A"f ~ D"FHBYF

16

Window Function (Kaiser-Bessel)

There are various suitable window functions for which error estimations have been
derived. The best is the Kaiser-Bessel window, which is defined as

o) :{ L <bmm> falls yv\g{,:V (b:=n(2— 1)),

0 falls |v| >

alN
where [, : C — C, k € Ny is the modified Bessel function of the first kind:
0 (§)2r+k

Ik(x) := > r+ i

r

17

Window Function (Kaiser-Bessel)

The Fourier transform of the Kaiser-Bessel window can be shown to be

p(z) = isinc 2nmz')* — b?m?
PN alN

18

Window Function (Kaiser-Bessel)

Parametric family of Kaiser windows Fourier transforms of two Kaiser windows
T T T T T T T T T T T T
1 0k i
0 - _
0.8 20 - no=8; a=2.55 -
30 _
" na=4; a=1.27
06 3 0
Q
S 50
°
-60
0.4
-70
—— ma= 1; a=0.32 80
02 — mo= 2; a=0.64 B
’ — na= 4; a=1.27 90
no= 8; a=2.55
— na=16; a=5.09 -100 Al ! '
0 1 1 1 15 10 -5 0 5 10 15
0 -n- N DFT bins

https://en.wikipedia.org/wiki/Kaiser_window

19

https://en.wikipedia.org/wiki/Kaiser_window

Multidimensional NFFT

The NDFT and the NFFT can be also formulated / derived for multidimensional signals:

NFFT
fii= Y fe?mR5 j=0,.. . M-1
kel
Adjoint NFFT
M—1 .
o= f?m*5 kel
j=0
where the index set l,ﬁ’, with N = (Np, ..., Ny_1)T € N9 is defined as

N N N, N,
d._) 0 _d Nd _
/N._{ R 1}>< x{ R 1}

and d is the dimensionality of the tranform. 20

Inverse NFFT

In general the adoint NFFT is not (exactly) the inverse NFFT, i.e.
ANA £
However, one can derive an approximation to the (pseudo)inverse quite efficiently.

To this end we first consider the NDFT
Fx)= > he o9, j=0,...,M-1

We now extend the sum to oo, which leads to the Fourier series
oo
Fog)= > he >, j=0,...,M-1
k=—00

where the coefficients f have been zero-padded.
21

Inverse NFFT

The Fourier coefficients f can be calculated by

NI

fk—/ f(x)e>™ o9 dx k:—ﬁ k

N

N

N |
|
—

Since f is only known at the sampling nodes x;, we can only consider these when

approximating the integral by a sum. When applying a rectangular quadrature rule, one
obtains

<

>

==
Q

- k k
Fx: 27leXJ' k= —— o
wif (xj)e 5 5

-1

g ey

.
Il
<}

where wj, j =0,..., M — 1 are the quadrature weights. This is the adjoint NFFT with
a pre-weighting. In matrix-vector notation this implies ATW ~ At ie. AHWA~ I.

22

e The NDFT is a generalization of the DFT
e The NFFT is an efficient implementation of the NDFT, which exploits a numerical

approximation of the complex exponential
e The approximation error is known and can be adjusted to reach machine precision.
e In practice the convolution usually takes most of the computation time. With

optimized parameters (o = 1.25, m = 2) it is possible to make the convolution as
fast as the FFT.

e There are various implementations of the NFFT. One reference implementation is
the C library NFFT 3 (https://github.com/NFFT/nfft). Also a Julia package
exists: https://github.com/tknopp/NFFT. j1

23

https://github.com/NFFT/nfft
https://github.com/tknopp/NFFT.jl

	Non-Equidistant Fast Fourier Transform

