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�. Introduction

�.� Classical Regularization
From the lecture on inverse problem we know that prior knowledge is important when solving inverse
problems. Prior knowledge can help us to

reduce the noise ampli�cation caused by the inversion of the linear system
enforce uniqueness in case of undersampling (  compressed sensing)

But how did this look like:
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where  is the total variation, i.e. a norm that measures edges.

Fused-Lasso Regularization

 Regularization with Sparsifying Transform

What is the characteristic of our prior knowledge?

In the �rst case we basically just want to avoid that our solution is exploding.
In the second case we seek for a solution with only few non-zero entries.
In the third case we seek for a solution with only few edges.
In the forth case we bring additional prior knowledge in, i.e. that the wavelet coe��cients for
natural images are sparse.

What are we doing in all cases?

We try to characterize the solution space by penalizing certain characteristics of the solution .

Note

These types of regularization are very generic because we only describe the solution using certain
characteristics of the function (so-called features). For instance we know that noise has high
frequencies and thus many sharp edges. Therefore applying a TV penality reduces the amount of
noise. But what if  itself contains sharp edges? Then our prior knowledge can be wrong.

These classical approaches are said to be feature driven while the machine learning approaches we
discuss later are data driven.



�.� Time Complexity
Let us next take a look at the time complexity of classical regularization methods.

Tikhonov Regularization
The time complexity for applying Tikhonov regularization is between  and . The later
is an upper bound when using e.g. the SVD. The former is a lower bound, e.g. when applying one
CGNR iteration or one outer Kaczmarz iteration. In practice, iterative solvers are somewhere in-
between.

Advanced Regularization
Advanced regularization techniques are non-linear. They usually require an iterative algorithm,
which commonly converges much slower than linear ones. Their complexity is  where  is
the number of iterations. While the algorithmic complexity is the same as for Tikhonov
regularization, in practice  is usually a factor of  larger. This in practice is a real problem
and the reason why these methods are popular in research but o�ten not integrated into imaging
devices.

�.� Parameter Choice
Finally, one key issue with classical regularization is the dependency on the regularization
parameter(s). While there are methods for optimizing the regularization parameter (e.g. the L-
curve), in practice regularization is most o�ten done by hand. But this, again, makes it unsuitable for
clinical application, where the image generation needs to be done automatically.

�.� Summary of Challenges
We identi�ed three major challenges for classical image reconstruction:

�. The form of prior knowledge is just a heuristic and does not describe our solution space well.
�. While Tikhonov regularization is fast, more advanced techniques like TV, Fused-Lasso or -

Wavelet regularization are very expensive.
�. Parameter choice is a major problem.

All of these points can be tackled by machine learning as we will see later. Let's �rst introduce
machine learning.

�. Machine Learning
We here only roughly introduce machine learning. Let us consider a function , i.e.

and let us assume that we don't know  but we only know  data pairs  with
. We call this the training dataset. Then, the task that is solved by machine learning is to

approximate  by a function , i.e.

where  are parameters that need to be optimized. To �nd suitable parameters one
commonly solves an optimization problem that looks like

where  is a distance measure. For instance one can use the mean squared error (MSE)

The aim now is that  not only for the training data but also for unseen data.

Note

Machine learning is thus basically function approximation. It is related to interpolation but it is
not required that  for .

Thus, ML is very similar to classical function approximation where a certain basis (polynomials,
splines, ...) are used as a model .



�.� Arti�cial Neural Networks
There are many machine learning methods. Those which got very popular in the last decade are
arti�cial neural networks (ANN). These consists of several layers to which certain operations are
applied. A simple ANN with two layers can be formulated as

with

,  being matrices transforming the input vector (linear transformations). These can be
dense matrices (dense layers) or convolutions (conv layers).

,  being bias vectors.
 being a non-linear activation function.

Note

An arti�cial neural network is said to be deep if it contains various nested layers. A network is said
to be wide if it has many connections/parameters within a layer (i.e. a dense layer).

Example

The following showcases a so-called decoder/encoder ANN, which consists of several convolution
layers and down/upsampling operations.

We next outline di�ferent ways to use ANNs for image reconstruction. In all cases we consider

to be our inverse problem and we consider that we have training samples , .

�. Machine Learning for Image
Reconstruction
In the following we sketch some methods to use machine learning for image reconstruction. The
overview is not meant to be complete since the �eld of ML-based image reconstruction is still
evolving.

�.� Learn the Inverse Directly
The �rst idea is to directly learn the the inverse. This means we formulate

and optimize the parameters .

Pros

We can take all imperfections into account since we don't assume any (simpli�ed) physical
model.

Cons

We don't use information of the imaging operator, i.e. we learn things that we already know. In
the case of MRI the ANN  needs to learn the Fourier transform.
The ANN needs to be expressive enough to learn the (inverse) imaging operator. This requires
dense layers, which makes training much more complicated (both from the accuracy and the
training time/memory point of view).
In order to train such an ANN it needs a very large training dataset.

Example AUTOMAP
See: Zhu, B., Liu, J., Cauley, S. et al. Image reconstruction by domain-transform manifold learning.
Nature 555, 487–492 (2018)



�.� Postprocessing Networks
Learning the inverse directly is not really the best option. We next consider models that use a
traditional image reconstruction in its core and a�terwards apply the ANN in a post-processing step.

So let's assume  is a classical image reconstruction method. For instance the FFT in the
case of MRI and the FBP in the case of CT. Then a postprocessing network would be formulated as

Looks very similar but the important di�ference is that  is an ANN acting in image
space, which is a well known task in the �eld of image processing. Hence, well known network
architectures can be used here.

Pros

Less complex model needed. CNNs are su��cient.
Less training data needed.
Physics is taken into account.

Cons

Not as generic/powerful than learning the inverse.

�.� Use Neural Networks with Iterative Solver
Advanced regularization techniques usually use iterative solvers like FISTA, ADMM, CG(NR), or the
Kaczmarz method. Let us for the moment take a much more basic approach: the Landweber
iteration. Similar to the other methods it aims at solving the least squares problem

Since we want to minimize  we can iterate over  and follow the gradient in order to minimize ,
i.e. we use gradient descent:

Here,  is a relaxation factor which needs to be appropriately chosen (not discussed at this point).

Note

Side note: The conjugate gradient method follows the same approach but does not use the
steepest decent but follows conjugate directions, i.e. the history of descents is taken into account,
which accelerates convergence.

For our speci�c  we can calculate the gradient explicitly

We can more generally say that this form of iteration is written as

where DC is the function that ensures data consistency, i.e. the minimization of the residual. With this
more general formulation, DC could for instance also be one outer Kaczmarz iteration, i.e. one sweep
over all rows.

With this knowledge we can integrate machine learning into iterative algorithms. Two di�ferent
variants that are discussed next.



�.�.� Plug-and-Play Approach
The easiest and most robust way is to train a neural network for a speci�c task like denoising, super-
resolution or in general image enhancement. Then we apply the enhancement neural network a�ter
each DC step:

We call this plug and play since the neural network is not trained for the actual image reconstruction
but outside the reconstruction pipeline.

The following picture is taken from this publication and graphically showcases the plug-and-play
approach:

�.�.� Unrolled Iteration
The plug-and-play approach can be re�ned by training the network within the reconstruction
problem. In order to do so, one needs to use a �xed number of iterations and unroll the network.

For instance for  iterations we can do this by:

Now we can train , , and  in an end-to-end fashion. Here, there are two variants:

One can use di�ferent NN parameters in each iteration.
One can share the weights.

The former is more powerful but more di��cult to train because it has more parameters.

Note

What might not be obvious is that the unrolled iteration can also signi�cantly speed up the
reconstruction process. The reason is that the neural networks are not only able to do image
enhancement in the classical sense (i.e. denoising) but they can also generate short paths. This is
because the number of iterations is �xed and known during training such that the algorithm is
forced to converge in the prede�ned number of iterations. In practice, o�ten just about 
iterations are needed.

Note

All ML-based reconstruction methods we outlined were parameter-free. They need to be trained
on di�ferent noise classes and then usually can automatically adapted to a certain noise class. This
adresses a further challenge of the feature-based reconstruction methods.

�. Summary
In this short lecture we have discussed the challenges of classical (feature-based) image
reconstruction and regularization techniques. We then outlined some ways how machine learning
can be used to provide a tailored domain speci�c form of prior knowledge. You will need some �rst
experience in machine learning and the respective frameworks (Python: PyTorch, TensorFlow; Julia:
Flux.jl, Lux.jl) before you can start implementing the methods discussed in this lecture.


