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Inverse Problems



Inverse Problems

Recall

input system output

direct problem

inverse problem
Remarks

• So far we have learned that the existence and the uniqueness are important
properties of an ill-posed problem.

• Next we will discuss what can further impact the solution negatively.
• In particular we discuss the ill-posedness of an inverse problem
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Definition

Hadamard: An inverse problem is well-posed if the following conditions are fulfilled:

• Existence: The problem must have a solution.

• Uniqueness: There must be only one solution to the problem.

• Stability: The solution must depend continuously on the data.

Otherwise, the problem is ill-posed.

Remark

The last condition of Hadamard is tailored towards continuous inverse problems. For
discrete ill-posed problems one usually considers the condition number of the system
matrix as a metric for the ill-posedness.
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Example - Existence

Consider the problem (
1

2

)
x =

(
1

2.2

)
.

It has no solution since x cannot be equal to 1 and 1.1 at the same time. But what we
can do is to solve the existence issue by considering the least squares problem

argminx

∥∥∥∥∥
(
1

2

)
x−

(
1

2.2

)∥∥∥∥∥
2

2

.

It has a unique solution x = 1.08.
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Example - Uniqueness

An example of an inverse problem where the uniqueness is not given is the
underdetermined system

x1 + x2 = 1.

It has infinite solutions. One can enforce a solution by adding the additional restriction
that the solution x = (x1, x2)

T should have minimum 2-norm, i.e. ∥x∥22 = (x21 + x22) is
minimum. In this case the unique solution is given by x1 = x2 =

1
2 .
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Example - Stability

The stability issue essentially means that small changes in the measurements can lead
to very large changes in the solution.

Example:

A =

0.16 0.1

0.17 0.11

2.02 1.29

 A

(
1

1

)
=

0.26

0.28

3.31

 =: b
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Example - Stability

Now lets assume the measurement b is disturbed by noise, i.e. b̃ = b+

 0.01

−0.03

0.02

,

which is about 1% noise.

The least squares solution argminx∥Ax− b̃∥2 is in this case given by

(
7.01

−8.4

)
. It has

nothing in common with the true solution

(
1

1

)
. The reason for this is that the matrix

A is ill-conditioned. Ill-conditioned problems are effectively underdetermined.
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Example - Stability

For instance the vector (−1.00, 1.57)T is almost in the nullspace of A since

A

(
−1.00

1.57

)
=

−0.0030

0.0027

0.0053


Hence one can add large amounts of this vector to a potential solution, with only minor
impact on the right hand side. Minor perturbations of the right hand side (due to noise)
thus can lead to large differences in the calculated solution.
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Discrete Linear Inverse Problems



Discrete Linear Inverse Problems

A discrete and linear inverse problem can be formulated as a linear system of equations

Ax = b

where A ∈ CM×N is the system matrix, x ∈ CN is the input vector and b ∈ CM is the
output vector.
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Discrete Linear Inverse Problems

In reality the measurement vector b is affected by (additive) noise ε such that one
actually measures

b̃ = b+ ε.

Hence the actual inverse problem reads

Ax ≈ b̃ = b+ ε.

Note that that the relation between the model Ax and the measurement b̃ is thus only
a approximation.
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Least Squares Approach

The standard approach to solve an inconsistent linear system of equation is to minimize
the difference between Ax and b̃. This is named the residual vector

r := Ax− b̃

and the least squares approach is to minimized the norm of the residual vector:

xLS = argmin
x

∥r∥22 = argmin
x

∥Ax− b̃∥22. (1)
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Least Squares Approach

The least squares problem can be reformulated as a linear system of equations:

Theorem
The least squares problem (1) is equivalent to the normal equation of first kind

AHAx = AHb̃.

and always has a solution.
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Least Squares Approach - Proof Equivalence

To simplify the proof we assume that A, x, and b̃ are real. Let x∗ satisfy
AHAx∗ = AHb̃ then for any x ∈ RN

∥Ax− b̃∥22 =∥A(x∗ + x− x∗)− b̃∥22
=(A(x∗ + x− x∗)− b̃)T(A(x∗ + x− x∗)− b̃)

=((Ax∗ − b̃) +A(x− x∗))
T((Ax∗ − b̃) +A(x− x∗))

=(Ax∗ − b̃)T(Ax∗ − b̃) + (A(x− x∗))
T(A(x− x∗))

+ 2(x− x∗)
T (ATAx∗ −ATb̃)︸ ︷︷ ︸

=0

=∥Ax∗ − b̃∥22 + ∥A(x− x∗)∥22
≥∥Ax∗ − b̃∥22

Thus x∗ is a solution to the least squares problem (1).
12



Least Squares Approach - Proof Existence

Now suppose x∗ is a solution to the least squares problem (1). The function

f(x) = ∥Ax− b∥22 (2)

thus has an extremum at x∗. Since f is differentiable, the gradient is zero at x∗, i.e.
∇f(x∗) = 0. Lets calculate the gradient

∂f

∂xj
f(x) =

∂f

∂xj

M∑
m=1

(
N∑

n=1

Am,nxn − bm

)2

= 2

M∑
m=1

(
N∑

n=1

Am,nxn − bm

)
Am,j

and thus

∇f(x) = AT(Ax− b)
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Least Squares Approach - Proof Equivalence

Consequently we have

∇f(x∗) = AT(Ax∗ − b) = 0

and thus the minimizer of the least squares problem is a solution of the normal equation.

14



Least Squares Approach - Proof Existence

The existence of a solution is guaranteed since

lim
∥x∥→∞

f(x) = ∞ (3)

and we can thus find a compact subset U ⊂ RN where

f(x) ≤ f(0) = ∥b∥22

Since f is continuous and U is compact, the function will have a minimum in U

according to the extreme value theorem.
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Least Squares Approach - Unique Solution

Lemma
If rank(A) = N the solution of the normal equation

AHAx = AHb̃.

is unique.

For real matrices we have rank(A) = rank(ATA). Hence ATA is a square N ×N

matrix with full rank. For such matrices an inverse always exists. The unique solution is
given by

x∗ = (ATA)−1ATb̃ (4)

The matrix A+ := (ATA)−1AT is the so-called pseudoinverse.
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Why does the Least Squares Approach often fail?

Let us consider the residual vector of the true solution x:

r = Ax− b̃ = Ax− b− ε = −ε.

Thus the true solution has a non-zero residual. The least squares approach does,
however, minimize the residual even below the “optimal“ residual of ∥ε∥2. It will in
particular find solutions with

∥r∥2 < ∥ε∥2

In this case the solution is fitted to the noise leading to undesired results.
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How can the noise amplification be quantified?

Theorem
Let Ax = b and Ax̃ = b+ ε =: b̃. Then the following inequality holds

∥x− x̃∥2
∥x∥2

≤ cond(A)
∥b− b̃∥2
∥b∥2

Thus an error in the measurement data can be amplified by the factor cond(A), which
is the condition number of A.
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Regularization

In order to handle ill-posed problems where the least squares method fails one applies
so-called regularization techniques that stabilize the solution. In particular the linear
system is exchanged with a similar system that is better conditioned.

Definition
The Tikhonov regularization technique considers the following optimization problem

xλ
LS = argmin

x
∥Ax− b̃∥22 + λ∥x∥22 (5)

Here, λ is the so-called regularization parameter
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Regularization

Theorem
The regularized least squares problem can be equivalently solved by the regularized
normal equation

(AHA+ λI)x = AHb̃.
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Regularization - Proof Equivalence

Reformulate the minimization problem

argmin
x

∥Ax− b̃∥22 + λ∥x∥22 = argmin
x

∥∥∥∥∥
(
Ax− b̃√

λIx

)∥∥∥∥∥
2

2

= argmin
x

∥∥∥∥∥
(

A√
λI

)
x−

(
b̃

0

)∥∥∥∥∥
2

2

into the standard least squares form. The normal equation of this least squares problem
is given by (

A√
λI

)T(
A√
λI

)
x =

(
A√
λI

)T(
b̃

0

)
which is equivalent to

(ATA+ λI)x = ATb̃.
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Regularization

• The regularization term (or penalty term) λ∥x∥22 controls that the solution gets
not too large.

• Regularization reduces noise in the calculated solution, i.e. it smoothes xλ
LS.

• Regularization does, however, also introduces a bias (i.e. systematic “global“
deviation) between x and xλ

LS.

• In practice one has to trade of between a too noise and a too smooth solution by
appropriate choice of lambda.
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Influence of the regularization parameter
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How to Choose the Regularization Parameter?

Choosing λ is a challenging problem in practice. What is often done is to compute
various solutions for different λ and plot the solution norm ∥xλ

LS∥2 versus the residual
norm ∥Axλ

LS − b̃∥22
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How to Choose the Regularization Parameter?

This curve typically has an L-curved shape and the best promise is usually found in the
corner of the L. The corner is that point where the residual is close to minimal but the
solution norm ∥xλ

LS∥2 is still not “blown up“ due noise amplification.
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Singular Value Decomposition



Singular Value Decomposition

The singular value decomposition is a matrix decomposition that allows to

• solve a linear system of equations

• apply regularization efficiently

• understand ill-posed problems, i.e. do a fine grained analysis of the ill-posedness of
an inverse problem
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Singular Value Decomposition

As before we consider the linear system

Ax ≈ b̃ = b+ ε where A ∈ CM×N

Theorem
Any M ×N matrix can be decomposed into

A = UΣV H

where U ∈ CM×r and V ∈ CN×r are rectangular with orthogonal columns and
r = rank(A) ≤ min(M,N). The diagonal matrix

Σ = diag(σ) ∈ Rr×r
+

contains the singular values σ = (σ1, . . . , σr)
T in descending order.

(without proof) 27



Singular Value Decomposition

Remarks

• The SVD is not unique but at least one SVD exists

• Calculating the SVD has a complexity of O(N3) if M ≈ N . It thus has the same
complexity as Gaussian Elimination. The constant infront of the N3 factor is large
though

• We have defined the compact SVD. There is also a non-compat version

A =ŨΣ̃Ṽ
H

where Ũ ∈ CM×M and Ṽ ∈ CN×N are unitary (Ũ
H
Ũ = I, Ṽ

H
Ṽ = I) and

Σ = RM×N is a rectangular diagonal matrix that may contain zero entries at its
main diagonal.
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Solving Linear Systems

In the following we consider r = N , M ≥ N , i.e. an overdetermined system, where V

is square and unitary, i.e. the inverse exists.

Ax = b

⇒UΣV Hx = b

⇒UHU︸ ︷︷ ︸
I

ΣV Hx = UHb

⇒Σ−1Σ︸ ︷︷ ︸
I

V Hx = Σ−1UHb

⇒x = V Σ−1UHb
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Solving Linear Systems

Remark: The matrix V Σ−1UH is the same as the pseudo inverse A+ = (AHA)−1AH.

A+ = (AHA)−1AH

= (V ΣUHUΣV H)−1V ΣUH

= (V ΣΣV H)−1V ΣUH

= (V Σ2V H)−1V ΣUH

= (V H)−1︸ ︷︷ ︸
V

Σ−2V −1V ΣUH

= V Σ−2ΣUH

= V Σ−1UH
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Solving Linear Systems

Theorem: The solution x = V Σ−1UH can also be expressed as

x =

r∑
i=1

UH
·,ib

σi
V ·,i

Proof: (
V ·,1 · · · V ·,r

)
1
σ1

. . .
1
σr


UH

·,1
...

UH
·,r

 b

=
(
V ·,1 · · · V ·,r

)
1
σ1
UH

·,1b
...

1
σr
UH

·,rb


=

r∑
i=1

UH
·,ib

σi
V ·,i

31



SVD for Ill-Posed Problems

Let us have a look at the SVD based solution in case of a noisy linear system. If we
insert b̃ = b+ ε then we have

x̃ =

r∑
i=1

UH
·,i(b+ ε)

σi
V ·,i

=

r∑
i=1

UH
·,ib

σi
V ·,i +

r∑
i=1

UH
·,iε

σi
V ·,i

The numerator in the right sum has a constant standard deviation independently of r.
The denominator, however, decreases with increasing i for ill-posed problems.

→ The small singular values ( 1σ ) amplify the noise.
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SVD for Ill-Posed Problems

Example singular values of a discrete convolution matrix

0 20 40 60 80 100

10−3

10−2

10−1

100

101

102

i

lo
g(
σ

)

using PGFPlots, ToeplitzMatrices,
LinearAlgebra

N = 100
t = range(-1,1,length=N)
sigma = 1
a = exp.(-(t.^2)./sigma)
A = Circulant(a) |> Matrix
U,S,V = svd(A)

p = Plots.Linear(1:N, S)
p = Axis(p, ymode="log", ymin=S[end-1],

xlabel=L"$i$", ylabel=L"log($\sigma$)")

Remark: Recall that the noise amplification is bounded by the condition number
cond(A) = σ1

σr
.
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Truncated SVD

One regularization method is to neglect small
singular values that are responsible for the noise
amplification:

x̃ =

α∑
i=1

UH
·,ib̃

σi
V ·,i

where α with 1 ≤ α ≤ r is the truncation parameter
that acts like a regularization parameter.
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lo
g(
σ

)
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Truncated SVD

Remarks

• The truncation suppresses the noise amplification but it smoothes the solution (like
Tikhonov regularization).

• The truncation is a filter (rect function) that acts on the singular values. Since it
lets small singular values pass, it is a low-pass filter.
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Convolution Matrix

Note that if A is a (periodic) convolution matrix, we have

A = FΣFH

where F = U = V is the discrete Fourier matrix and the singular values in Σ contain
the transfer function (Fourier coefficients of the convolution kernel).

Filtering of singular values is thus directly related to the filtering we considered for
Fourier transformation. In fact, a Fourier transform can be defined for other bases than
the trigonometric functions.
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Tikhonov Regularization with the SVD

Next, let us investigate the relation between Tikhonov regularization and the SVD.

xλ = (AHA+ λI)−1AHb

= (V Σ2V H + λI)−1V ΣUHb

= (V (Σ2 + λI)V H)−1V ΣUHb

= (V H)−1(Σ2 + λI)−1V −1V ΣUHb

= V (Σ2 + λI)−1Σ︸ ︷︷ ︸
diag

((
σi

σ2
i
+λ

)r

i=1

)UHb

=

r∑
i=1

σiU
H
·,ib

σ2
i + λ

V ·,i =

r∑
i=1

yi
UH

·,ib

σi
V ·,i

where yi =
σ2
i

σ2
i +λ

are the filter factors.
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Tikhonov Regularization with the SVD

The following figure showcases the effect of the filter on the singular values.
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)

singular values
filter y

filtered singular values σ
y

Compare this to the
truncated SVD where
the singular values were
cutted.

Tikhonov regularizati-
on also has an effective
cutoff (at about i = 40

in this example) but the
transition is smoother.
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Tikhonov Regularization with the SVD

Remarks

• Explicit version of Tikhonov regularization

• SVD takes O(N3) but solutions for different λ can be calculated in O(N2)

→ One time cost that pays off.
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L-Curve with the SVD

The L-curve needs for γ = 1, . . . ,Γ the values

(∥Axλγ − b̃∥22, ∥xλγ∥22)

Using a linear solver without matrix decomposition (e.g. Gaussian elimination) this
requires O(N3Γ) operations.

Using a matrix decomposition technique (e.g. SVD) this requires O(N2Γ) operations.

But with the SVD we can obtain these values even faster.
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L-Curve with the SVD

Due to the orthogonality of V we have

∥Axλγ − b̃∥22 =
r∑

i=1

∣∣∣∣ λγ

σ2
i + λγ

UH
·,ib̃

∣∣∣∣2
∥xλγ∥22 =

r∑
i=1

∣∣∣∣ σi
σ2
i + λγ

UH
·,ib̃

∣∣∣∣2
One can observe that UH

·,ib̃ is independent of λ an thus can be precomputed once. In
total, an L-curve using the SVD thus can be obtained in O(N2 + ΓN) steps. For
Γ ∈ O(N) this is the same complexity as calculating the solution xλ. Furthermore, the
matrix-vector operation UHb̃ needs only to be computed once.
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Summary

• Inverse problems are hard

• They are prone to noise amplification

• They require special treatment to yield a satisfying solution

• One can reduce the noise amplification but has to live with a bias

• The come up in many real-live problems
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