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Organizational Matters



Team

• Lecture: Tobias Knopp (tobias.knopp@tuhh.de)

• Exercise: Martin Möddel (martin.hofmann@tuhh.de)
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Disclaimer

• All lecture material is for your private use only. You are not allowed to share it.

• It is not allowed to screen capture live video sessions. You are violating the
DSGVO since no student allowed you to do that.
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Lecture

• Inverted classroom instead of classical lecture.

• Screencasts will be provided each week.

• If you wish so you can learn by yourself.

• Weekly meeting to answer your questions. Meetings will be either in-person or
virtually after weekly announcements. No hybrid meetings are planned.

• No repetition or summary, so please watch the screencast in order to ask questions.

• Meetings will close early if there are no more questions to make up for the time
you spend studying at home
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Lab Course & Exercises

Exercises will cover numerical problems related to the lecture. It will be your task to
solve these problems with the methods provided within the scope of the lecture and lab
course. The lab course aims to teach you some core programming paradigms related to
medical imaging and scientific programming.
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Lab Course & Exercises

• Programming based exercises cover larger topics (e.g inverse problems)

• You usually will have multiple weeks to solve an exercise.

• Exercise to be solved with the Julia programming language.

• Exercises are designed to be solved in groups with 2-4 people, which you set up in
self organization in Stud.IP.

• The solution must be a single Julia file: GroupL_ExerciseN.jl where N is the
number of the exercise sheet and L is the group number. No other naming scheme
or file extension (like zip) are allowed.

• The solutions are uploaded into the corresponding group folder in Stud.IP.

• You can earn at most 10% bonus for the exam.
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Lab Course & Exercises

• You can seek help from each other using the Stud.IP forum.

• You can ask questions regarding the exercise sheets in the weekly meeting taking
place within the second part of the lecture time slot where Martin will take over.

• Solutions will be provided after the topic is closed.

• Screencasts will discuss solutions in more detail.
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Literature

• Bildgebende Verfahren in der Medizin; O. Dössel; Springer, Berlin, 2016

• The Mathematics of Medical Imaging: A Beginner’s Guide; T. Feemann; Springer,
2015
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Content

• Foundations
• Introduction to Medical Imaging
• Signal Processing

• Inverse Problems
• Introduction to Inverse Problems
• Physical Principles of Computed

Tomography
• Analytical Image Reconstruction

• Discrete Inverse Problems
• Physical Principles of Magnetic

Particle Imaging

• Regularization Techniques

• Iterative Reconstruction

• Advanced Sampling Methods

• Physical Principles of Magnetic
Resonance Imaging

• Nonequidistant Fast-Fourier
Transform

• Compressed Sensing

• Learning-Based Image
Reconstruction

8



Medical Imaging

Prof. Dr. Tobias Knopp

October 17, 2022

Institute für Biomedizinische Bildgebung



Introduction to Medical Imaging



Introduction to Medical Imaging

Radiology

• discipline within medicine

• deals with imaging of the human body for diagnostic and therapeutic purposes

Medical Imaging

• Make images of the inner human body

• usually non- or minimally invasive (in contrast to surgical interventions)
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Sample Image
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Computer Tomograph
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Sample Image
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Sample Videos

• https://www.youtube.com/watch?v=Wh4aEc4yPh0

• https://www.youtube.com/watch?v=o9EEszvO8PU
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Clinically Relevant Imaging Methods

• X-Ray imaging

• computed tomography (CT)

• magnetic resonance imaging (MRI)

• sonography (ultrasound)

• positron emission tomography (PET)

• single-photon emission computed tomography (SPECT)

• magnetic particle imaging (MPI, pre-clinical)

• optical methods (e.g. microscopy, optical coherence tomography (OCT) )
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Classification of Imaging Methods

• projection vs. tomographic method

• requires radiation or not

• uses a tracer or not
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Projection vs. Tomographic Methods

Projection Methods

• Image a line integral through along a certain angle

• Depth information is lost

• Example: X-ray imaging

Tomographic Methods

• tomography derived from greek words tomos (engl. slice) and graphein (engl.
drawing)

• is capable of determining slice images of the inner human body without invasive
surgery

• Example: CT, MRI, PET, SPECT, OCT, Ultrasound, MPI
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Ionizing Radiation

Ionizing radiation is harmful for patient and operator

Ionizing Radiation
X-ray, CT, PET, SPECT

Free of Ionizing Radiation
MRI, MPI, Ultrasound and optical methods (OCT)
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Tracer

Some imaging techniques use tracer material that is injected prior to an examination

Tracer Based
PET, SPECT, MPI

Works Without a Tracer
MRI, X-ray, CT, Ultrasound, and optical methods (OCT)

However, in X-ray, CT, and MRI tracer is also used as contrast agent
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Tracer Example
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Sample Image

⇒ Magnetic resonance imaging (MRI) 12



Sample Image

⇒ X-ray 13



Sample Image

⇒ Computed tomography (CT) 14



Sample Image

⇒ Positron emission tomography (PET)
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Sample Image

⇒ Optical coherence tomography (OCT)
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Tomographic Imaging

Goal
Make slice or volume images from 3D objects without the need to actually cut the
object.

Tissue is not imaged directly but instead a certain physical parameter I is imaged

Example
MRI: density of hydrogen CT: absorption coefficient for X-rays.
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Tomographic Imaging

Mathematically

I : R4 → R, I (x , y , z , t).

Very often imaging is restricted to static objects (I (x , y , z)) or 2D planes (I (x , y))
through an object.
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Tomographic Imaging

Remark

• For some imaging modalities (e.g. CT) I carries some physical quantity and in turn
has a physical unit.

• For the mathematical treatment we will usually omit the units
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Imaging Performance

The following metrics are used to compare imaging methods

• Image contrast

• Spatial resolution

• Temporal resolution

• Sensitivity
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Spatial Resolution

Resolution defines the ability of a system to distinguish two dots.

−3 −2 −1 0 1 2 3
x / mm

0.0

0.5

1.0

−3 −2 −1 0 1 2 3
0.0

0.5

1.0
1.5 mm gap

−3 −2 −1 0 1 2 3
0.0

0.5

1.0
1.0 mm gap

−3 −2 −1 0 1 2 3
x / mm

0.0

0.5

1.0
0.5 mm gap

Distinguished is usually defined as
a property that holds true if the
signal value at the gap is less than
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Spatial Resolution

Notes

• Resolution can be defined on both continuous and discrete signals

• In general: resolution ̸= pixel resolution

• Each dimension has its own resolution named after its dimension name: spatial
resolution, temporal resolution, spectral resolution

Example
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Contrast

• Essential in order to differentiate different structures

• No contrast ⇒ no differentiation

• Example: Ibone = Itissue would be problematic

Definition

C =
max{I} −min{I}
max{I}+min{I}

.
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Contrast

Example
For instance the function

f (x) = 1 + α sin(2πx), |α| ≤ 1

has the contrast

C =
1 + α− (1 − α)

1 + α+ 1 − α
=

2α
2

= α.
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Contrast

As is shown in the following figure, the function f (x) has high contrast for large α and
small contrast for small α.
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Signal to Noise Ratio (SNR)

Defines how noisy a signal is. The SNR is formally a property of a single random
variable (with mean or expected value µ and standard deviation σ) and defined as

SNR =
µ

σ

For (dimensional) signals one can define a global SNR. To this end one can take a
mean value in the numerator and the standard deviation in a signal-free region as the
denominator.
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Color Mapping

• Tomographic image I (x , y) carries real valued information (e.g. 3.9343)

• How to display it on the computer screen

⇒ Map real value to color
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Color Mapping

Gray colormap
A gray color c is usually represented in number form as an element of [0, 1] where 0 is
the color black and 1 is the color white. In-between all shades of gray are defined.

General colormap
A general color c is usually represented as an RGB tuple c = (r , g , b) ∈ [0, 1]3. A
colormap f : [0, 1] → [0, 1]3 maps an input value between 0 and 1 to an output color.
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Color Mapping

Remark
The colormap is defined on the domain of real numbers in the interval [0, 1]. In practice
colormaps are build using a set of discrete colors. Using linear interpolation it is
possible to define a continuous function based on the discrete values.

Example
Let ck ∈ [0, 1]3 for k = 1, . . . ,K be K colors. Then we can define

f (α) =

cβ if β is an integer

(1 − w)c⌊β⌋ + wc⌊β⌋+1 otherwise

to be the linearly interpolated colormap with β = α(K − 1) + 1, which is α scaled to
[1,K ], and weighting w = β − ⌊β⌋.
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Color Mapping

Example Colormaps
Sequential colormaps

Greys
Purples

Blues
Greens

Oranges
Reds

YlOrBr
YlOrRd

OrRd
PuRd
RdPu
BuPu
GnBu
PuBu

YlGnBu
PuBuGn

BuGn
YlGn

Perceptually Uniform Sequential colormaps
viridis

plasma
inferno
magma
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Color Mapping

Ingredients

• a colormap f (α)

• a minimal value amin that maps to the darkest color f (0)

• a maximal value amax that maps to the brightest color f (1)
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Color Mapping

Windowing
The mapping between real valued quantity I and the color c is called windowing and
can be expressed by a function

g(a) =


0, for a ≤ amin
a−amin

amax−amin
, for amin < a < amax

1, for a ≥ amax

(1)
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Color Mapping

amin amax

0

0.2

0.4

0.6

0.8

1

Input Value

O
ut

pu
t

V
al

ue

7



Color Mapping

Algorithm
For each image pixel at position x , y calculate:

Icolorized(x , y) = f (g(I (x , y)))

Instead of amin and amax it is common to consider instead

WW = amax − amin (Window Width or Contrast)

WL =
amax + amin

2
(Window Level or Brightness)
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Color Mapping

Remark
The human eye can only differentiate a certain number of gray values. It is very
common that WW does not span the entire range of image values ([min{I},max{I}])
but WW and WL are adapted to a certain range that the radiologist wants to
differentiate. In usual applications there are usually sliders for adjusting WW and WL.
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Color Mapping
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CT Windows

In CT there one has defined dedicated windows for specific applications

WL WW
lung window -600 1600
bone window 300 2000
soft tissue window 60 360
brain window 40 80
CT angiography window 100 900
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Lung CT Example Dataset

• To play around with image contrast parameters you can download the file
lung.tif.zip from Stud.IP and unzip it.

• Then download the software ImageJ (https://imagej.nih.gov/ij/) or use the
web-based instance of ImageJ (Run ImageJ in the Browser!)

• Open the TIF image (or the unzipped TIF) in ImageJ and open the menu Image /
Adjust / Window/Level

• Play around with WW and WL and try to select different parts of the thorax slice
(e.g. the lungs, soft tissue, bones).

12
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Signal Processing

• Understanding tomographic imaging techniques requires profound knowledge of
signal processing

• In particular Fourier analysis plays an important role

• Basics of signal processing will be recapitulated
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Signal

• A signal can be seen as a message that is send from a sender to a recipient.

• Usually they transport a physical quantity

• Signals can either be discrete or continuous (i.e. a function of N or R)

• Typically a signal depends on time and/or space

2



Signal Examples

• s(x): spatial 1D signal, e.g. detector array in CT
• f (x , y): spatial 2D signal, e.g. slice through an object in CT
• c(t): temporal 1D signal, e.g. ECG

continuous signal discrete signal
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Fundamental Signals

• Heaviside step function

step(x) =

1, for x ≥ 0

0, for x < 0
(1)

• Rectangular function

rect(x) =


1, for |x | < 1

2

0.5, for |x | = 1
2

0, for |x | > 1
2

(2)

• Sinc function
si(x) = sinc(x) =

sin(πx)

πx
(3)
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Fundamental Signals

• Dirac delta distribution

δ(x − x0) =

0, for x ̸= x0

∞, for x = x0

= lim
x̃→0

1
x̃

rect(
x − x0

x̃
)
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Fundamental Signals

• The Dirac delta distribution is no function in a classical sense as ∞ can only be
considered in the limes and is not a valid function value.

• The Dirac delta distribution can be defined over the integral∫ ∞

−∞
δ(x − x0)f (x) dx = f (x0) (4)

In particular it holds that ∫ ∞

−∞
δ(x − x0) dx = 1 (5)

I.e. Dirac delta distribution has unit area.
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Systems

• A system L takes as input a function f (x) and outputs a function g(x)

g(x) = L{f (x)}

• A system is linear if
L{

∑
i

ai fi (x)} =
∑
i

aiL{fi (x)}

• A system is said to be time invariant / shift invariant if

L{f (x − x0)} = L{f }(x − x0).

This means a shift of the input signal by x0 leads to a shift by x0 of the output
signal.

• A system is said to be LTI or LSI if it is linear and time / shift invariant.
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Impulse Response and Convolution

Any LSI system can be described by a convolution integral

g(x) = L{f (x)}

=

∫ ∞

−∞
f (x̃)h(x − x̃) dx̃

= (f ∗ h)(x)

h is the so-called impulse response or point-spread function (PSF) that is obtained by
applying a Dirac delta to the LSI system

L{δ(x)} =

∫ ∞

−∞
δ(x̃)h(x − x̃) dx̃

=
subst. y=x−x̃

∫ ∞

−∞
δ(x − y)h(y) dy

=
δ is even

∫ ∞

−∞
δ(y − x)h(y) dy = h(x)
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Derivation of the Convolution Integral

Idea: express f (x) as a sum of shifted rectangular functions

f (x) = lim
x0→0

∞∑
n=−∞

f (nX0)rect
(
x − nX0

X0

)
Applying LSI properties yields

g(x) = L{f (x)} = lim
X0→0

∞∑
n=−∞

f (nX0)L
{

rect
(
x − nX0

X0

)}
=

∫ ∞

−∞
f (x̃)L{δ(x − x̃)} dx̃

=

∫ ∞

−∞
f (x̃)h(x − x̃) dx̃
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Fourier Transformation

It is known from analysis lectures that (almost) any p-periodic function s(x) can be
expanded into a Fourier series

s(x) =
∞∑

n=−∞
cne

2πi nx
p

consisting of complex sinus functions eix = cos x + i sin x . The Fourier coefficients cn

can be calculated by

cn =
1
p

∫ p/2

−p/2
s(x)e−2πi nx

p dx
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From Fourier Series to Fourier Transformation

In order to also express non-periodic functions by Fourier series (i.e. any general
signal/function) one can consider the limes p → ∞

s(x) = lim
p→∞

∞∑
n=−∞

cne
2πi nx

p

=
f := n

p

∫ ∞

−∞
S(f )e2πifx df =: F−1{S(f )}

Here, f := n
p is the frequency and S(f ) = S(np ) = cn is a continuous function of

frequency. This is in contrast to the discrete spectrum of the periodic Fourier series.
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From Fourier Series to Fourier Transformation

The Fourier transform S(f ) of s(x) can be calculated by

S(f ) =

∫ ∞

−∞
s(x)e−2πifx dx =: F{s(x)}

S(f ) is often called the spectrum of s(x). The Fourier relation is often indicated by

s(x) cS(f )
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Example

The Fourier transformation of the rectangular function can be calculated to be

F{rect(x)} =

∫ ∞

−∞
rect(x)e−2πifx dx

=

∫ 1
2

− 1
2

e−2πifx dx

=
i

2πf

(
e−iπf − eiπf

)
=

sin(πf )

πf
= sinc(f )

In the last step the euler formula sin(f ) = eif −e−if
2i has been used.
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Transfer Function

Instead of describing an LSI system as a convolution with the PSF h(x) one can
equivalently describe it in Fourier space by considering the transfer function
H(f ) = F{h(x)}.

Theorem
A convolution g(x) = (s ∗ h)(x) in spatial space corresponds to a multiplication in
Fourier space:

G (f ) = S(f )H(f )

where G (f ) = F{g(x)}, S(f ) = F{s(x)}, and H(f ) = F{h(x)}.
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Proof

G (f ) = F{g(x)} = F{(s ∗ h)(x)}

=

∫ ∞

−∞

∫ ∞

−∞
s(x̃)h(x − x̃) dx̃e−2πifx dx

=

∫ ∞

−∞

∫ ∞

−∞
s(x̃)h(x − x̃)e−2πif (x−x̃)e−2πif x̃ dx̃ dx

=

∫ ∞

−∞

∫ ∞

−∞
s(x̃)h(z)e−2πif x̃e−2πifz dx̃ dz

=

∫ ∞

−∞
s(x̃)e−2πif x̃ dx̃

∫ ∞

−∞
h(z)e−2πifz dz

= S(f )H(f )
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Application of the Convolution theorem

• Efficient application of filter (low pass, high pass)

• Deconvolution / image sharpening
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Discrete Fourier transformation

In order to numerically calculate Fourier coefficients one has to sample the Fourier
integral a discrete and equidistant sampling points.

This makes the Fourier coefficients periodic so that the data in both domains (spatial
and frequency) is discrete (line spectrum) and periodic.

Given a sequence s0, . . . , sN−1 the discrete Fourier transformation (DFT) is defines as

Sm =
N−1∑
n=0

sne−2πi nm
N , m = 0, . . . ,N − 1

17



Discrete Fourier transformation

The DFT is a unitary transformation and its inverse can be calculated by

sn =
1
N

N−1∑
m=0

Sme2πi nm
N , n = 0, . . . ,N − 1

When defining the vectors S := (Sm)
N−1
m=0 and s := (sn)

N−1
n=0 , and the discrete Fourier

matrix F :=
(
e−2πi nm

N

)
m=0,...,N−1;n=0,...,N−1

the DFT can be written in matrix-vector

form

S = Fs
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Fast Fourier Transformation

A naive implementation of the DFT would require O(N2) arithmetic operations.

The fast Fourier transformation is a fast algorithm capable of carrying out FFT in only
O(N logN). It uses a recursive divide and conquer principle.

Important is that the FFT can only be applied to equidistant sampling positions.
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Fast Fourier Transformation

Assumption: We will derive the DFT for N = 2r .

Basic idea: split the sum into two sums, which are itself regular DFTs.

Sm =
N−1∑
n=0

sne−2πi nm
N

=

N
2 −1∑
n=0

sne−2πi nm
N +

N
2 −1∑
n=0

sn+N
2
e−2πi

(n+N
2 )m

N

Now we will discuss two cases. m = 2l (even) and m = 2l + 1 (odd) for
l = 0, . . . , N2 − 1.
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Fast Fourier Transformation

Case m = 2l :

S2l =

N
2 −1∑
n=0

sne−2πi n2l
N +

N
2 −1∑
n=0

sn+N
2
e−2πi

(n+N
2 )2l
N

=

N
2 −1∑
n=0

sne
−2πi nl

N
2 +

N
2 −1∑
n=0

sn+N
2
e
−2πi nl

N
2 e−2πil︸ ︷︷ ︸

1

=

N
2 −1∑
n=0

(sn + sn+N
2
)e

−2πi nl
N
2︸ ︷︷ ︸

DFT length N
2
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Fast Fourier Transformation

Case m = 2l + 1:

S2l+1 =

N
2 −1∑
n=0

sne−2πi n(2l+1)
N +

N
2 −1∑
n=0

sn+N
2
e−2πi

(n+N
2 )(2l+1)
N

=

N
2 −1∑
n=0

sne
−2πi nl

N
2 e−2πi n

N +

N
2 −1∑
n=0

sn+N
2
e
−2πi nl

N
2 e−2πil︸ ︷︷ ︸

1

e−2πi n
N e−2πi 12︸ ︷︷ ︸

−1

=

N
2 −1∑
n=0

sne
−2πi nl

N
2 e−2πi n

N −

N
2 −1∑
n=0

sn+N
2
e
−2πi nl

N
2 e−2πi n

N

=

N
2 −1∑
n=0

e−2πi n
N (sn − sn+N

2
)e

−2πi nl
N
2︸ ︷︷ ︸

DFT length N
2 22



Fast Fourier Transformation

Instead of one length N DFT we can apply two length N
2 DFTs.

The transformation can be applied again and in the second step we need to apply four
length N

4 DFTs.

After r = log(N) steps we need to apply N DFTs of length 1.

In each step the algorithm needs N
2 additions, N

2 subtractions, and N
2 multiplications.

The algorithmic complexity it thus O(N) arithmetic operations.

Since the DFT requires log(N) steps, the overal time complexity is O(N log(N))

compared to O(N2) of an ordinary DFT.
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Fast Fourier Transformation

The FFT is usually implemented inplace and can be visualized as follows
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Fast Fourier Transformation

• We have derived the FFT for N = 2r

• The same can be done for other basis 3,5,7,11,13, ...

• By prime factorization one can apply the FFT to general N

• Alternatively, one can pad the vector with zeros to the next power of 2

• The most popular FFT library is the FFTW (Fastest Fourier Transform in the
West). It is used in the Julia package FFTW.jl
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Inverse Problems

In most tomographic imaging methods the task of reconstructing a slice/volume image
of the object is an inverse problem.

Let I be a multi-dimensional function describing the unknown image, O be a function
that describes the raw measurement data collected with a tomographic device and S be
an operator that maps I to O. Then, the imaging equation for any tomographic
imaging method can be written in the form

O = S(I ). (1)

Before we dive into tomography, we discuss the key terminology of inverse problems.
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Direct Problem

• Given: The input / cause (i) for a system (S)

• Task: Determine the output of the system

o = S(i) (2)

Examples:
• Given a current in a electromagnetic coil with a defined geometry. Calculate the

magnetic field in space that is generated by the current.
• Given some object within the bore of a tomographic device. Calculate the signals,

the device will measure.

2



Inverse Problem

• Given: The output of a system o (i.e. usually some noisy measurements)

• Task: Determine the input to the system i such that

S(i) ≈ o (3)

Examples:
• Given the magnetic field at a finite number of spatial positions. Determine the coil

geometry / current that could have been the cause for the observations.
• Given some measurements from a tomographic device. Calculate the object within

the scanner bore.
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Overview

input system output

direct problem

inverse problem
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Radiography

During a radiography the object under examination is illuminated with X-ray.

Xra . Detectorpl)
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Radiography

When the ray passes the object it will be damped/attenuation due to interactions with
the matter of the object. In particular the ray is absorbed and scattered. The
attenuation coefficient µ is given by

µ = µS + µA

where µS is the scattering coefficient and µA is the absorption coefficient. The unit of
µ is 1

m . µ is spatially dependent and thus we consider it to be a function µ : R3 → R+
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Attenuation in Homogeneous Medium

Let I : R → R+ be the intensity of the X-ray. Let it pass along the η axis. Then one
observes

I (η +∆η) = I (η)− µ∆ηI (η)

⇔I (η +∆η)− I (η) = −µ∆ηI (η)

⇔ I (η +∆η)− I (η)

∆η
= −µI (η)

When considering the limit ∆η → 0 one obtains

lim
∆η→0

I (η +∆η)− I (η)

∆η
=

dI
dη

= −µI (η),

which is an ordinary differential equation.
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Attenuation in Homogeneous Medium

By separation of variables one obtains

dI
I

= −µ dη

Integration yields ∫
1
I

dI =
∫

−µ dη

and in turn

ln |I | = −µη + c .

Exponentiation leads to

I (η) = c̃e−µη
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Attenuation in Homogeneous Medium

Using the initial condition I (0) = I0 which is the X-ray intensity at the source one
obtains the Lambert-Beer law

I (η) = I0e−µη

Note that the Lambert-Beer law is only fulfilled for homogeneous media where µ is
constant.
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Attenuation in Inhomogeneous Medium

In an inhomogeneous medium µ depends on η so that

dI
I

= −µ(η) dη.

Integration leads to ∫
1
I

dI = −
∫

µ(η) dη

so that

ln |I | = −
∫

µ(η) dη + c .

10



Attenuation in Inhomogeneous Medium

Exponentiation leads to

I (η) = c̃exp
(
−
∫

µ(η) dη
)
.

Using the initial condition I (0) = I0 one obtains

I (η) = I0exp
(
−
∫

µ(η) dη
)
.

11



Attenuation in Inhomogeneous Medium

We now only consider the intensity at the detector

ID = I (ηD) = I0exp
(
−
∫ ηD

0
µ(η) dη

)
Dividing by I0 and taking the logarithm leads to

ln(ID/I0) = −
∫ ηD

0
µ(η) dη =: −p

Here p is the so-called projection.

12



Remarks

• The intensity ID measured at the detector has always to be related to the intensity
I0 and the X-ray source.

• Typically X-ray data is visualized in the logarithmic form p = − ln(ID/I0).

• In X-ray and CT systems that source intensity can be usually adjusted to generate
different contrasts.

13



Geometries

Until now we have considered a single X-ray passing through the medium and being
detected with a single detector pixel.

In practice the source emits the X-ray in a the form of a fan (2D) or a cone (3D).

Xra . Detectorpl)
ObjectMcxy) /

.
!

t

"EID
The detected projection value is in the case
of a fan beam X-ray source a 1D function
p : R → R.
In classical radiography cone beam is used
and the detector is a 2D function
p : R2 → R.
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Parallel Beam Geometry

A major simplification that we make from now on is that the X-ray source is moved to
−∞ yielding the so-called parallel beam geometry.

Ogebjectµ cxy,
XY Dyetector pls)

Ü
15



Radiography as an Inverse Problem

We next consider radiography as an inverse problem. The system equation for the 2D
setting in parallel beam geometry reads

p(ξ) =

∫ ηD

0
µ(η, ξ) dη.

where p : R → R+ are the measured projections and µ : R2 → R+ is the attenuation
coefficient.

Direct Problem

The direct problem is easily solvable. After discretization one just has to sum up the
values of µ along the beam line.

Inverse Problem

The inverse problem reads: Given p, determine µ. Is that problem solvable?

16



Radiography as an Inverse Problem

Existence of a Solution

A solution does exist. For instance a trivial solution is

µtrivial(η, ξ) :=
p(ξ)

ηD

since ∫ ηD

0
µtrivial(η, ξ) dη =

∫ ηD

0

p(ξ)

ηD
dη =

[
η
p(ξ)

ηD

]ηD
0

= ηD
p(ξ)

ηD
= p(ξ).

17



Radiography as an Inverse Problem

Uniqueness of a Solution

The existence of a solution is a necessary condition but is that solution unique? Lets
consider

µβ(η, ξ) :=


p(ξ)
β η ≤ β

0 η > β

with β ∈ (0, ηD ], which yields∫ ηD

0
µβ(η, ξ) dη =

∫ β

0

p(ξ)

β
dη =

[
η
p(ξ)

β

]β
0
= β

p(ξ)

β
= p(ξ).

Thus, the inverse problem has infinite solutions. In practice this means that this
particular inverse problem is not solvable, i.e. it is not possible to determine µ(ξ, η)

from p(ξ).

18



Limitations of X-ray imaging
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Summary

• Radiography allows to project the attenuation coefficients along a certain direction.

• During this process depth information is lost.

• The inverse problem of determining the attenuation coefficients µ from the
projections is not solvable. Therefore, in practice, the medical doctor looks at the
projection images and tries to decompose it by incorporating prior knowledge of
the underlying anatomy.
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Computed Tomography



Computed Tomography

The aim of Computed Tomography is to reconstruct µ(x , y) from given detector data
p(ξ).

Basic idea of CT: Rotate the X-ray source and the detector (the so called gantry)
around the object.

7.

±
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Computed Tomography

We differentiate the patient coordinate system (x , y) and the coordinate system of the
gantry (ξ, η)

yay
D;
tectorp
"

.

y -
"

:^)
7g

%
.

← trafEr g) >

×

The unit vectors of the (ξ, η)

coordinate system are given by

nξ =

(
cos γ

sin γ

)

nη =

(
− sin γ

cos γ

)

2



Computed Tomography

Change of basis
One can convert (x , y) =: r coordinates into (ξ, η) coordinates using orthogonal
projections

ξ = ⟨r ,nξ⟩ = (x , y)T

(
cos γ

sin γ

)
= x cos γ + y sin γ

η = ⟨r ,nη⟩ = (x , y)T

(
− sin γ

cos γ

)
= −x sin γ + y cos γ

3



Computed Tomography

In matrix-vector form (
ξ

η

)
=

(
cos γ sin γ

− sin γ cos γ

)(
x

y

)
= Rγ

(
x

y

)

Since Rγ is orthogonal we have(
x

y

)
=

(
cos γ − sin γ

sin γ cos γ

)(
ξ

η

)
= RT

γ

(
ξ

η

)
=

(
ξ cos γ − η sin γ

ξ sin γ + η cos γ

)

4



Imaging Sequence

During a CT measurement the gantry is rotated by 180◦ or 360◦ around the patient
and the projection data p(ξ, γ) are measured. The goal of CT is to reconstruct µ(x , y)
given the projection data p(ξ, γ).

yay
D;
tectorp
"

.
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"
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Radon Transform

The detector data p(ξ, γ) can be calculated via the integration of µ(x , y) along an
X-ray. The X-ray is described by a path δξ,γ : [a, b] → R2 at position ξ with angle γ

and interval boundaries a ∈ R at the source and a < b ∈ R at the detector. The
relation is mathematically described by the Radon transform R :

p(ξ, γ) = R{µ(x , y)}

=

∫
δξ,γ

µ(x , y) ds

The parametrization of the X-ray is given by

δξ,γ(η) = RT
γ

(
ξ

η

)
=

(
ξ cos γ − η sin γ

ξ sin γ + η cos γ

)
.

6



Radon Transform

Thus, we can calculate the line integral with

p(ξ, γ) = R{µ(x , y)}

=

∫
δξ,γ

µ(x , y) ds

=

∫ b

a
µ(δξ,γ(η))

∥∥δ′ξ,γ(η)∥∥2 dη

=

∫ b

a
µ(ξ cos γ − η sin γ, ξ sin γ + η cos γ) dη

since

∥δ′ξ,γ(η)∥2 =

∥∥∥∥∥
(
sin γ

cos γ

)∥∥∥∥∥
2

= 1.

7



Radon Transform

Without loss of generality we can set a = −∞ and b = ∞ since µ(x , y) can be
assumed to be zero outside the circle covered by the CT system. Thus, the Radon
transform reads

p(ξ, γ) =

∫ ∞

−∞
µ(ξ cos γ − η sin γ, ξ sin γ + η cos γ) dη

Remark
The Radon transform and the question about its invertability have been investigated by
Johann Radon already in 1917, without any concrete application in mind.
Johann Radon: Über die Bestimmung von Funktionen längs gewisser Mannigfaltigkeiten. In: Berichte über die
Verhandlungen der Königlich-Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-Physische
Klasse. Band 69, 1917, S. 262–277.

8



Radon Transform as an Inverse Problem

Compare the inverse problems of radiography and CT:

Radiography

p(ξ) =

∫ ∞

−∞
µ(ξ, η) dη

Computed Tomography

p(ξ, γ) =

∫ ∞

−∞
µ(ξ cos γ − η sin γ, ξ sin γ + η cos γ) dη

Key Observation: The radiography imaging operator maps from a 2D into a 1D space
and thus looses information. The CT operator maps from a 2D space into a 2D space
and thus might preserve all information. 9



Sinogram

The raw data p(ξ, γ) is also named a sinogram and can be displayed as an image. It is
called a sinogram due to the sinus shaped structures.

−0.5 0 0.5
−0.5

0

0.5

x

y

Object µ(x, y)

0 π 2π

− 1√
2

0

1√
2

γ
ξ

Sinogram p(ξ, γ)
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Fourier Slice Theorem

The Fourier Slice theorem provides answers the fundamental question if it is possible to
reconstruct µ(x , y) from given p(ξ, γ), i.e. it shows that the Radon operator is
bijective/invertible.

Theorem
Let P(q, γ) := F1D{p(ξ, γ)} and F (u, v) := F2D{µ(x , y)}. Furthermore let

u = q cos γ

v = q sin γ

Then it holds that

F (u, v) = F (q cos γ, q sin γ) = P(q, γ)

11



Fourier Slice Theorem

12



Proof

P(q, γ) =

∫ ∞

−∞
p(ξ, γ)e−2πiξq dξ

=

∫ ∞

−∞

∫ ∞

−∞
µ(ξ cos γ − η sin γ, ξ sin γ + η cos γ)e−2πiξq dη dξ

We now make the coordinate transform

x = ξ cos γ − η sin γ

y = ξ sin γ + η cos γ

Using the Jacobian determinant we have

dx dy =

∣∣∣∣det
∂(x , y)

∂(ξ, η)

∣∣∣∣ dξ dη

=

∣∣∣∣∣det

(
cos γ − sin γ

sin γ cos γ

)∣∣∣∣∣ dξ dη = 1 dξ dη

13



Proof

Thus we have

P(q, γ) =

∫ ∞

−∞

∫ ∞

−∞
µ(x , y)e−2πi(x cos γ+y sin γ)q dx dy

=

∫ ∞

−∞

∫ ∞

−∞
µ(x , y)e−2πi(x(q cos γ)+y(q sin γ)) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
µ(x , y)e−2πi(ux+vy) dx dy

= F (q cos γ, q sin γ) = F (u, v),

which completes the proof.

14



Remarks

The Fourier slice theorem answers the question if µ(x , y) can be reconstructed from
p(ξ, γ) in the continuous case.

Answer
It can be reconstructed for any µ(x , y) for which the continuous Fourier transform
F (u, v) := F2D{µ(x , y)} exists. A sufficient criterion for this is that µ is a function of
the space L1(R2), i.e. µ has to fulfill

∥µ(x , y)∥1 :=

∫ ∞

−∞

∫ ∞

−∞
|µ(x , y)| dx dy < ∞

15



Analytic Image Reconstruction

• The Fourier slice theorem allows to analytically solve the inverse problem of
determining the tomographic image by direct inversion of the imaging operator.

• This in turn yields a direct image reconstruction method.

• Methods that instead tackle the inverse problem in its original form are often
named algebraic image reconstruction (ART) methods.

16



Fourier Based Reconstruction

Using the Fourier slice theorem one can derive the following direct reconstruction
algorithm

1. ∀γ calculate P(q, γ) = F1D{p(ξ, γ)}
2. ∀u = q cos γ, v = q sin γ calculate F (u, v) = P(q, γ)

3. calculate µ(x , y) := F−1
2D {F (u, v)}

17



Practical Issue

In the discrete setting the Fourier
transforms are realized using the
FFT. However, since the FFP is
only applicable for equidistant
node points one has the situation
that the points (u, v) and
(q cos γ, v = q sin γ) do not
match.

18



Practical Issue

Consequently, the Fourier based reconstruction has to resample the data in Fourier
space using e.g. interpolation techniques. Interpolation in Fourier space leads, however,
to larger numerical errors in image space.

⇒ Fourier based reconstruction usually not used in todays CT scanners.

Remark
Nowadays fast FFT for non-equidistant node points are known. Will be discussed
later in the lecture.

19



Filtered Backprojection

• Standard reconstruction technique used in CT scanners

• Uses Fourier slice theorem (as well)

20



Derivation

Expressing µ(x , y) in terms of its inverse Fourier transform F (u, v):

µ(x , y) =

∫ ∞

−∞

∫ ∞

−∞
F (u, v)e2πi(ux+vy) du dv

We now perform a coordinate transform from Cartesian into polar coordinates:

u = q cos γ

v = q sin γ

21



Derivation

The Jacobian determinant is given by

du dv =

∣∣∣∣det
∂(u, v)

∂(q, γ)

∣∣∣∣ dq dγ

=

∣∣∣∣∣det

(
∂u
∂q

∂v
∂q

∂u
∂γ

∂v
∂γ

)∣∣∣∣∣ dq dγ

=

∣∣∣∣∣det

(
cos γ sin γ

−q sin γ q cos γ

)∣∣∣∣∣ dq dγ

= |q cos2 γ + q sin2 γ| dq dγ

= |q| dq dγ

22



Derivation

Thus, we have

µ(x , y) =

∫ 2π

0

∫ ∞

0
F (q cos γ, q sin γ)e2πi(xq cos γ+yq sin γ)|q| dq dγ

=
FS theorem

∫ 2π

0

∫ ∞

0
P(q, γ)e2πi(xq cos γ+yq sin γ)|q| dq dγ

Changing the integral limits

un F un F
T

" |:-. .
.
.
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Derivation

yields

µ(x , y) =

∫ π

0

∫ ∞

−∞
P(q, γ)e2πiq(x cos γ+y sin γ)|q| dq dγ

The inner integral can be defined to be a function h(ξ, γ):

h(ξ, γ) =

∫ ∞

−∞
P(q, γ)|q|e2πiqξ dq

µ(x , y) =

∫ π

0
h(x cos γ + y sin γ, γ) dγ

24



Algorithm

With this we now can formulate the filtered backprojection algorithm (input p(ξ, γ),
output µ(x , y)):

1. ∀γ calculate P(q, γ) = F1D{p(ξ, γ)} =
∫∞
−∞ p(ξ, γ)e−2πiqξ dξ

2. ∀γ calculate h(ξ, γ) =
∫∞
−∞ P(q, γ)|q|e2πiqξ dq

3. calculate µ(x , y) =
∫ π
0 h(x cos γ + y sin γ, γ) dγ

25



Remarks

• The first two steps of the algorithm apply the filter |q| in Fourier space. |q| is a
high pass or edge filter.

• Instead of applying the filter in Fourier space one can alternatively apply it directly
in spatial domain.

Issue
What is the Fourier transform of |q|?

26



Fourier transform of |q|

Consider:

wε(ξ) =
ε2 − (2πξ)2

(ε2 − (2πξ)2)2
c s |q|e−ε|q|

In the limit ε → 0 one obtains
|q|e−ε|q| → |q|

and
w0(ξ) = − 1

(2πξ)2

27



Fourier transform of |q|

⇒ If the Fourier integrals converge (depends on p(ξ, γ)!) we can apply the filter in
image space via a convolution:

h(ξ, γ) = (p(ξ̃, γ) ∗ w0(ξ̃))(ξ)

Since w0(ξ) has “local” support (after truncation), the convolution can be effectively
applied in image space. This has been done in first generation CTs.

28



Backprojection

Lets have a look at the inner part of the filtered backprojection, i.e. the integration

f (x , y) =

∫ π

0
h(x cos γ + y sin γ, γ) dγ

Here,
ξ = x cos γ + y sin γ

describes a line within R2.

There are now two interpretation of the integration

29



Backprojection – Interpretation 1

• One selects a certain pixels x , y

• Then, for each angle γ one throws the
shortest line to the detector and pics
the value.

• Thus, pixels are successively filled.

30



Backprojection – Interpretation 2

• Entire projection is projected back in a
single step over the entire xy plane.

• The backprojected data are added to
an image buffer.

31



Interpolation

Remark In a discrete setting the filtered backprojection requires an interpolation step.

h︸︷︷︸
sampled at equidistant nodes

( x cos γ + y cos γ︸ ︷︷ ︸
In dependence of γ non-regular

, γ)

This interpolation is uncritical, since it happens in spatial domain so that numerical
errors have only local effects.

32



Discretization

Number of angles

L ∈ N: γl =
l
Lπ, l = 0, . . . , L− 1

Number of detector pixels

M ∈ N: ξm = A
(
m+0.5

M − 0.5
)
, m = 0, . . . ,M − 1

where A is the size of the detector.

Number of image pixels

Nx ∈ N: xnx = Ωx

(
nx+0.5
Nx

− 0.5
)
, nx = 0, . . . ,Nx − 1

Ny ∈ N: yny = Ωy

(
ny+0.5
Ny

− 0.5
)
, ny = 0, . . . ,Ny − 1

where Ωx and Ωy are the side lengths of the image.
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Time Complexity

Filtered Backprojection

O(LM logM + N2L) =
if L≈N≈M

O(N2 logN + N3) = O(N3)

Fourier Slice based Reconstruction

O(N2 logN)

Thus, FBP is a little bit slower, which is usually not critical in practice.

34



Parallel Implementation

The FBP can be impemented in a massively parallelized fashion. In particular
reconstruction can already start during data acquisition.

→ low latency

35



Filtering

In practice the projection p(ξ, γ) are affected by noise

p(ξ, γ) = ptrue(ξ, γ) + ε(ξ, γ)

The ramp filter |p| leads to a noise amplification since the noise F{ε(ξ, γ)} is
frequency independent.

→ It is thus important to band-limit the filter

36



Filtering

• Illustration of the noise
amplification of analytical
image reconstruction.

• While low frequency
components are signal
dominated, high
frequencies are noise
dominated (upper right).

• High pass filter amplifies
noise (lower left and
right).

37



Filtering

Ram-Lak Filter (Ramachandran - Lakshminarayan)

Replace |q| with |q|rect( q
2a)

38



Filtering

Shepp-Logan Filter

Replace |q| with |q|rect( q
2a)sinc(qa )

39



Summary

• CT is an extension of radiography where the gantry is rotated.

• This solves the uniqueness issue of radiography and in turn allows for solving the
inverse problem.

• The imaging operator can be analytically inverted and allows for direct image
reconstruction.

• The inversion of the Radon transform is noise amplifying. This can mitigated by
filtering.
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Inverse Problems

Recall

input system output

direct problem

inverse problem
Remarks

• So far we have learned that the existence and the uniqueness are important
properties of an ill-posed problem.

• Next we will discuss what can further impact the solution negatively.
• In particular we discuss the ill-posedness of an inverse problem

1



Definition

Hadamard: An inverse problem is well-posed if the following conditions are fulfilled:

• Existence: The problem must have a solution.

• Uniqueness: There must be only one solution to the problem.

• Stability: The solution must depend continuously on the data.

Otherwise, the problem is ill-posed.

Remark

The last condition of Hadamard is tailored towards continuous inverse problems. For
discrete ill-posed problems one usually considers the condition number of the system
matrix as a metric for the ill-posedness.

2



Example - Existence

Consider the problem (
1

2

)
x =

(
1

2.2

)
.

It has no solution since x cannot be equal to 1 and 1.1 at the same time. But what we
can do is to solve the existence issue by considering the least squares problem

argminx

∥∥∥∥∥
(
1

2

)
x−

(
1

2.2

)∥∥∥∥∥
2

2

.

It has a unique solution x = 1.08.

3



Example - Uniqueness

An example of an inverse problem where the uniqueness is not given is the
underdetermined system

x1 + x2 = 1.

It has infinite solutions. One can enforce a solution by adding the additional restriction
that the solution x = (x1, x2)

T should have minimum 2-norm, i.e. ∥x∥22 = (x21 + x22) is
minimum. In this case the unique solution is given by x1 = x2 =

1
2 .

4



Example - Stability

The stability issue essentially means that small changes in the measurements can lead
to very large changes in the solution.

Example:

A =

0.16 0.1

0.17 0.11

2.02 1.29

 A

(
1

1

)
=

0.26

0.28

3.31

 =: b

5



Example - Stability

Now lets assume the measurement b is disturbed by noise, i.e. b̃ = b+

 0.01

−0.03

0.02

,

which is about 1% noise.

The least squares solution argminx∥Ax− b̃∥2 is in this case given by

(
7.01

−8.4

)
. It has

nothing in common with the true solution

(
1

1

)
. The reason for this is that the matrix

A is ill-conditioned. Ill-conditioned problems are effectively underdetermined.

6



Example - Stability

For instance the vector (−1.00, 1.57)T is almost in the nullspace of A since

A

(
−1.00

1.57

)
=

−0.0030

0.0027

0.0053


Hence one can add large amounts of this vector to a potential solution, with only minor
impact on the right hand side. Minor perturbations of the right hand side (due to noise)
thus can lead to large differences in the calculated solution.

7
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Discrete Linear Inverse Problems

A discrete and linear inverse problem can be formulated as a linear system of equations

Ax = b

where A ∈ CM×N is the system matrix, x ∈ CN is the input vector and b ∈ CM is the
output vector.

8



Discrete Linear Inverse Problems

In reality the measurement vector b is affected by (additive) noise ε such that one
actually measures

b̃ = b+ ε.

Hence the actual inverse problem reads

Ax ≈ b̃ = b+ ε.

Note that that the relation between the model Ax and the measurement b̃ is thus only
a approximation.

9



Least Squares Approach

The standard approach to solve an inconsistent linear system of equation is to minimize
the difference between Ax and b̃. This is named the residual vector

r := Ax− b̃

and the least squares approach is to minimized the norm of the residual vector:

xLS = argmin
x

∥r∥22 = argmin
x

∥Ax− b̃∥22. (1)

10



Least Squares Approach

The least squares problem can be reformulated as a linear system of equations:

Theorem
The least squares problem (1) is equivalent to the normal equation of first kind

AHAx = AHb̃.

and always has a solution.

11



Least Squares Approach - Proof Equivalence

To simplify the proof we assume that A, x, and b̃ are real. Let x∗ satisfy
AHAx∗ = AHb̃ then for any x ∈ RN

∥Ax− b̃∥22 =∥A(x∗ + x− x∗)− b̃∥22
=(A(x∗ + x− x∗)− b̃)T(A(x∗ + x− x∗)− b̃)

=((Ax∗ − b̃) +A(x− x∗))
T((Ax∗ − b̃) +A(x− x∗))

=(Ax∗ − b̃)T(Ax∗ − b̃) + (A(x− x∗))
T(A(x− x∗))

+ 2(x− x∗)
T (ATAx∗ −ATb̃)︸ ︷︷ ︸

=0

=∥Ax∗ − b̃∥22 + ∥A(x− x∗)∥22
≥∥Ax∗ − b̃∥22

Thus x∗ is a solution to the least squares problem (1).
12



Least Squares Approach - Proof Existence

Now suppose x∗ is a solution to the least squares problem (1). The function

f(x) = ∥Ax− b∥22 (2)

thus has an extremum at x∗. Since f is differentiable, the gradient is zero at x∗, i.e.
∇f(x∗) = 0. Lets calculate the gradient

∂f

∂xj
f(x) =

∂f

∂xj

M∑
m=1

(
N∑

n=1

Am,nxn − bm

)2

= 2

M∑
m=1

(
N∑

n=1

Am,nxn − bm

)
Am,j

and thus

∇f(x) = AT(Ax− b)

13



Least Squares Approach - Proof Equivalence

Consequently we have

∇f(x∗) = AT(Ax∗ − b) = 0

and thus the minimizer of the least squares problem is a solution of the normal equation.

14



Least Squares Approach - Proof Existence

The existence of a solution is guaranteed since

lim
∥x∥→∞

f(x) = ∞ (3)

and we can thus find a compact subset U ⊂ RN where

f(x) ≤ f(0) = ∥b∥22

Since f is continuous and U is compact, the function will have a minimum in U

according to the extreme value theorem.
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Least Squares Approach - Unique Solution

Lemma
If rank(A) = N the solution of the normal equation

AHAx = AHb̃.

is unique.

For real matrices we have rank(A) = rank(ATA). Hence ATA is a square N ×N

matrix with full rank. For such matrices an inverse always exists. The unique solution is
given by

x∗ = (ATA)−1ATb̃ (4)

The matrix A+ := (ATA)−1AT is the so-called pseudoinverse.

16



Why does the Least Squares Approach often fail?

Let us consider the residual vector of the true solution x:

r = Ax− b̃ = Ax− b− ε = −ε.

Thus the true solution has a non-zero residual. The least squares approach does,
however, minimize the residual even below the “optimal“ residual of ∥ε∥2. It will in
particular find solutions with

∥r∥2 < ∥ε∥2

In this case the solution is fitted to the noise leading to undesired results.

17



How can the noise amplification be quantified?

Theorem
Let Ax = b and Ax̃ = b+ ε =: b̃. Then the following inequality holds

∥x− x̃∥2
∥x∥2

≤ cond(A)
∥b− b̃∥2
∥b∥2

Thus an error in the measurement data can be amplified by the factor cond(A), which
is the condition number of A.

18
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Regularization

In order to handle ill-posed problems where the least squares method fails one applies
so-called regularization techniques that stabilize the solution. In particular the linear
system is exchanged with a similar system that is better conditioned.

Definition
The Tikhonov regularization technique considers the following optimization problem

xλ
LS = argmin

x
∥Ax− b̃∥22 + λ∥x∥22 (5)

Here, λ is the so-called regularization parameter

19



Regularization

Theorem
The regularized least squares problem can be equivalently solved by the regularized
normal equation

(AHA+ λI)x = AHb̃.

20



Regularization - Proof Equivalence

Reformulate the minimization problem

argmin
x

∥Ax− b̃∥22 + λ∥x∥22 = argmin
x

∥∥∥∥∥
(
Ax− b̃√

λIx

)∥∥∥∥∥
2

2

= argmin
x

∥∥∥∥∥
(

A√
λI

)
x−

(
b̃

0

)∥∥∥∥∥
2

2

into the standard least squares form. The normal equation of this least squares problem
is given by (

A√
λI

)T(
A√
λI

)
x =

(
A√
λI

)T(
b̃

0

)
which is equivalent to

(ATA+ λI)x = ATb̃.
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Regularization

• The regularization term (or penalty term) λ∥x∥22 controls that the solution gets
not too large.

• Regularization reduces noise in the calculated solution, i.e. it smoothes xλ
LS.

• Regularization does, however, also introduces a bias (i.e. systematic “global“
deviation) between x and xλ

LS.

• In practice one has to trade of between a too noise and a too smooth solution by
appropriate choice of lambda.

22



Influence of the regularization parameter

λ
4

λ
3

λ
2

λ
1

λ
0

Original phantom

L curve

10−18 10−17 10−16

residual norm

100

101

102

103

so
lu

tio
n

no
rm

λ0
λ1

λ2
λ3

λ4

23



How to Choose the Regularization Parameter?

Choosing λ is a challenging problem in practice. What is often done is to compute
various solutions for different λ and plot the solution norm ∥xλ

LS∥2 versus the residual
norm ∥Axλ

LS − b̃∥22
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How to Choose the Regularization Parameter?

This curve typically has an L-curved shape and the best promise is usually found in the
corner of the L. The corner is that point where the residual is close to minimal but the
solution norm ∥xλ

LS∥2 is still not “blown up“ due noise amplification.
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Singular Value Decomposition

The singular value decomposition is a matrix decomposition that allows to

• solve a linear system of equations

• apply regularization efficiently

• understand ill-posed problems, i.e. do a fine grained analysis of the ill-posedness of
an inverse problem

26



Singular Value Decomposition

As before we consider the linear system

Ax ≈ b̃ = b+ ε where A ∈ CM×N

Theorem
Any M ×N matrix can be decomposed into

A = UΣV H

where U ∈ CM×r and V ∈ CN×r are rectangular with orthogonal columns and
r = rank(A) ≤ min(M,N). The diagonal matrix

Σ = diag(σ) ∈ Rr×r
+

contains the singular values σ = (σ1, . . . , σr)
T in descending order.

(without proof) 27



Singular Value Decomposition

Remarks

• The SVD is not unique but at least one SVD exists

• Calculating the SVD has a complexity of O(N3) if M ≈ N . It thus has the same
complexity as Gaussian Elimination. The constant infront of the N3 factor is large
though

• We have defined the compact SVD. There is also a non-compat version

A =ŨΣ̃Ṽ
H

where Ũ ∈ CM×M and Ṽ ∈ CN×N are unitary (Ũ
H
Ũ = I, Ṽ

H
Ṽ = I) and

Σ = RM×N is a rectangular diagonal matrix that may contain zero entries at its
main diagonal.

28



Solving Linear Systems

In the following we consider r = N , M ≥ N , i.e. an overdetermined system, where V

is square and unitary, i.e. the inverse exists.

Ax = b

⇒UΣV Hx = b

⇒UHU︸ ︷︷ ︸
I

ΣV Hx = UHb

⇒Σ−1Σ︸ ︷︷ ︸
I

V Hx = Σ−1UHb

⇒x = V Σ−1UHb

29



Solving Linear Systems

Remark: The matrix V Σ−1UH is the same as the pseudo inverse A+ = (AHA)−1AH.

A+ = (AHA)−1AH

= (V ΣUHUΣV H)−1V ΣUH

= (V ΣΣV H)−1V ΣUH

= (V Σ2V H)−1V ΣUH

= (V H)−1︸ ︷︷ ︸
V

Σ−2V −1V ΣUH

= V Σ−2ΣUH

= V Σ−1UH

30



Solving Linear Systems

Theorem: The solution x = V Σ−1UH can also be expressed as

x =

r∑
i=1

UH
·,ib

σi
V ·,i

Proof: (
V ·,1 · · · V ·,r

)
1
σ1

. . .
1
σr


UH

·,1
...

UH
·,r

 b

=
(
V ·,1 · · · V ·,r

)
1
σ1
UH

·,1b
...

1
σr
UH

·,rb


=

r∑
i=1

UH
·,ib

σi
V ·,i
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SVD for Ill-Posed Problems

Let us have a look at the SVD based solution in case of a noisy linear system. If we
insert b̃ = b+ ε then we have

x̃ =

r∑
i=1

UH
·,i(b+ ε)

σi
V ·,i

=

r∑
i=1

UH
·,ib

σi
V ·,i +

r∑
i=1

UH
·,iε

σi
V ·,i

The numerator in the right sum has a constant standard deviation independently of r.
The denominator, however, decreases with increasing i for ill-posed problems.

→ The small singular values ( 1σ ) amplify the noise.
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SVD for Ill-Posed Problems

Example singular values of a discrete convolution matrix
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i

lo
g(
σ

)

using PGFPlots, ToeplitzMatrices,
LinearAlgebra

N = 100
t = range(-1,1,length=N)
sigma = 1
a = exp.(-(t.^2)./sigma)
A = Circulant(a) |> Matrix
U,S,V = svd(A)

p = Plots.Linear(1:N, S)
p = Axis(p, ymode="log", ymin=S[end-1],

xlabel=L"$i$", ylabel=L"log($\sigma$)")

Remark: Recall that the noise amplification is bounded by the condition number
cond(A) = σ1

σr
.
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Truncated SVD

One regularization method is to neglect small
singular values that are responsible for the noise
amplification:

x̃ =

α∑
i=1

UH
·,ib̃

σi
V ·,i

where α with 1 ≤ α ≤ r is the truncation parameter
that acts like a regularization parameter.
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Truncated SVD

Remarks

• The truncation suppresses the noise amplification but it smoothes the solution (like
Tikhonov regularization).

• The truncation is a filter (rect function) that acts on the singular values. Since it
lets small singular values pass, it is a low-pass filter.
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Convolution Matrix

Note that if A is a (periodic) convolution matrix, we have

A = FΣFH

where F = U = V is the discrete Fourier matrix and the singular values in Σ contain
the transfer function (Fourier coefficients of the convolution kernel).

Filtering of singular values is thus directly related to the filtering we considered for
Fourier transformation. In fact, a Fourier transform can be defined for other bases than
the trigonometric functions.
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Tikhonov Regularization with the SVD

Next, let us investigate the relation between Tikhonov regularization and the SVD.

xλ = (AHA+ λI)−1AHb

= (V Σ2V H + λI)−1V ΣUHb

= (V (Σ2 + λI)V H)−1V ΣUHb

= (V H)−1(Σ2 + λI)−1V −1V ΣUHb

= V (Σ2 + λI)−1Σ︸ ︷︷ ︸
diag

((
σi

σ2
i
+λ

)r

i=1

)UHb

=

r∑
i=1

σiU
H
·,ib

σ2
i + λ

V ·,i =

r∑
i=1

yi
UH

·,ib

σi
V ·,i

where yi =
σ2
i

σ2
i +λ

are the filter factors.
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Tikhonov Regularization with the SVD

The following figure showcases the effect of the filter on the singular values.
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filter y
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Compare this to the
truncated SVD where
the singular values were
cutted.

Tikhonov regularizati-
on also has an effective
cutoff (at about i = 40

in this example) but the
transition is smoother.
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Tikhonov Regularization with the SVD

Remarks

• Explicit version of Tikhonov regularization

• SVD takes O(N3) but solutions for different λ can be calculated in O(N2)

→ One time cost that pays off.
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L-Curve with the SVD

The L-curve needs for γ = 1, . . . ,Γ the values

(∥Axλγ − b̃∥22, ∥xλγ∥22)

Using a linear solver without matrix decomposition (e.g. Gaussian elimination) this
requires O(N3Γ) operations.

Using a matrix decomposition technique (e.g. SVD) this requires O(N2Γ) operations.

But with the SVD we can obtain these values even faster.
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L-Curve with the SVD

Due to the orthogonality of V we have

∥Axλγ − b̃∥22 =
r∑

i=1

∣∣∣∣ λγ

σ2
i + λγ

UH
·,ib̃

∣∣∣∣2
∥xλγ∥22 =

r∑
i=1

∣∣∣∣ σi
σ2
i + λγ

UH
·,ib̃

∣∣∣∣2
One can observe that UH

·,ib̃ is independent of λ an thus can be precomputed once. In
total, an L-curve using the SVD thus can be obtained in O(N2 + ΓN) steps. For
Γ ∈ O(N) this is the same complexity as calculating the solution xλ. Furthermore, the
matrix-vector operation UHb̃ needs only to be computed once.
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Summary

• Inverse problems are hard

• They are prone to noise amplification

• They require special treatment to yield a satisfying solution

• One can reduce the noise amplification but has to live with a bias

• The come up in many real-live problems
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Iterative Reconstruction

The SVD is a very advanced tool but what if

• The system matrix is sparse

• The system matrix is huge and does not fit into the main memory

In the second case, one usually has a formula for the matrix elements, which implies
that the entire system matrix does not need to be setup in memory.

In both cases it is better to use iterative solvers.

1



Iterative Reconstruction

There are various iterative solvers, of which several can be grouped into the following
two classes

• Krylov subspace methods

• Row- or column action methods

There are further classes, which we will, however not discuss at this point.

Iterative solver do not require element-wise access to the system matrix. Instead they
require operations involving the system matrix. This can for instance be

• Matrix-vector multiplications with A or AH, or

• Operations involving the matrix rows or columns.

2



Kaczmarz Method

• Also names algebraic reconstruction technique (ART) in the context of computed
tomography.

• Fixed-point iteration, which converges to the solution x of the linear system
Ax = b if it exists.

• Let l ≥ 1 be the iteration number and x0 = 0 be the start vector, then the
Kaczmarz iteration is defined as

xl+1 = xl +
bj −Aj,·x

l

∥AT
j,·∥22

AH
j,·

• Row index j is usually chosen to sweep over all matrix rows so that one has two
nested for loops and j = lmodM .

3



Kaczmarz Method – Derivation

Let us consider the j-th equation of the linear system Ax = b. It can be expressed as

Aj,·x = bj .

Normalization of the vector Aj,· yields

0 =
bj

∥AT
j,·∥2

− Aj,·

∥AT
j,·∥2

x

= d− nHx,

where, d =
bj

∥AT
j,·∥2

and n =
AH

j,·
∥AT

j,·∥2
This is a hyperplane (e.g. line / plane in 2D and

3D) equation in Hessian normal form. Each vector within the hyperplane is orthogonal
to the normal vector n and d is the distance to the origin. n points in direction of the
hyperplane and for an orthogonal projection we just need to know the distance of a
point to the plane.
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Kaczmarz Method – Derivation

The distance of an arbitrary point x̃ to the plane is

dist(x̃) = d− nHx̃

To project x̃ onto the hyperplane, one thus has to add dist(x̃)n to x̃, i.e.

x̃+ dist(x̃)n = x̃+ (d− nHx̃)n

= x̃+

(
bj

∥AT
j,·∥2

− Aj,·

∥AT
j,·∥2

x̃

)
AH

j,·

∥AT
j,·∥2

= x̃+
bj −Aj,·x̃

∥AT
j,·∥22

AH
j,·

Converting this into an iteration process, we end up with the Kaczmarz iteration.
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Kaczmarz Method – Geometric Interpretation

Consider 2× 2 linear system(
A1,1 A1,2

A2,1 A2,2

)(
x1

x2

)
=

(
b1

b2

)

In this case each equation of the linear system describes a line in the R2. In the point
where the lines intersect, the linear system has its solution.

The Kaczmarz iteration performs in each step an orthogonal projection on the
hyperplane spanned by the j-th matrix row and the corresponding j-th element of the
right hand side.
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Kaczmarz Method – Geometric Interpretation
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iteration
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Kaczmarz Method – Convergence

Convergence speed (i.e. number of required iterations) depends on the similarity of
successive matrix rows. If successive matrix rows are similar, more iterations are
required.

Example: Convolution matrix
1 1 1 0 0 0

0 1 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 1


⟨A1,·,A2,·⟩2 = 2

but
⟨A1,·,A4,·⟩2 = 0

→ not clever to run over matrix rows in
order
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Randomized Kaczmarz Method

There are two possible ways to improve the convergence speed of the Kaczmarz method

• If the structure of the system matrix is known, run through the matrix such that
successive row indices have a small inner product

• Otherwise: Run in random order through the matrix rows

The second option is known as the Randomized Kaczmarz and can be shown to
converge faster then the non-random Kaczmarz.
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Regularized Kaczmarz

Kaczmarz method can be shown to solve

∥x∥2 → min subject to Ax = b

This problem is considered if the linear system is under-determined and has infinite
solutions. In contrast, the problem

∥Ax− b∥2 → min

is considered for over-determined linear systems. Furthermore, for ill-conditioned linear
systems one actually wants to solve

∥Ax− b∥22 + λ∥x∥22 → min

How can this be done with Kaczmarz method?
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Regularized Kaczmarz

Apply Kaczmarz algorithm to an extended system

(
A λ

1
2 I
)

︸ ︷︷ ︸
˜A∈CM×(N+M)

(
x

v

)
︸ ︷︷ ︸

x̃∈C(N+M)

= b

Here, v ∈ CM in an auxiliary vector. Multiplying out yields

Ax+ λ
1
2v = b

⇒v = −λ− 1
2 (Ax− b)

Thus, the auxiliary vector will be the scaled residual after convergence.

What does the extended Kaczmarz calculate?
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Regularized Kaczmarz

∥x̃∥2 → min subject to Ãx̃ = b

⇔∥x̃∥22 → min subject to Ãx̃ = b

⇔∥x∥22 + ∥v∥22 → min subject to v = −λ− 1
2 (Ax− b)

⇔∥x∥22 + ∥ − λ− 1
2 (Ax− b)∥22 → min

⇔∥x∥22 + λ−1∥Ax− b∥22 → min

⇔λ∥x∥22 + ∥Ax− b∥22 → min

Thus, the extended Kaczmarz solves the Tikhonov regularized least squares problem.
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Kaczmarz – Required operations

Kaczmarz method requires two elementary operations involving the system matrix A

• An inner product α← Aj,·x̃ =

N∑
n=1

Aj,nx̃n

• A vector update x̃← x̃+ αAH
j,·

i.e. x̃n ← x̃n + αAj,n for n = 1, . . . , N

Both are vector-vector operations that can be easily accelerated in case that the system
matrix A is sparse. In that case only those indices are considered in the calculation for
which Aj,n ̸= 0.
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Kaczmarz – Required operations

To implement the (non-regularized) Kaczmarz method in a generic fashion, it can be
implemented as follows:

for i in rowIndexCycle
j = rowindex[i]
tau = dot_with_matrix_row(A, x, j)
alpha = (b[j]-tau) / normA[j]
kaczmarz_update!(A, x, j, alpha)

end

Here, dot_with_matrix_row and kaczmarz_update! are two functions that need to
be implemented for each type of matrix, for instance it can be implemented for
Matrix{Float64} and for SparseMatrixCSC{Float64, Int64}.
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Kaczmarz – Required operations

In Julia dense matrices are stored in column major order, which means that the
elements of the columns are stored next to each other in memory.

(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(1,2)

(2,2)

(3,2)

(4,2)

(5,2)

(1,3)

(2,3)

(3,3)

(4,3)

(5,3)

(1,4)

(2,4)

(3,4)

(4,4)

(5,4)

(1,5)

(2,5)

(3,5)

(4,5)

(5,5)

Performing row operations on such a data structure
is very expensive since CPU caching cannot be
utilized. To implement the Kaczmarz algorithm
efficiently, one should thus first transpose the data
and then use a transpose wrapper
julia> A = transpose(rand(3,3))
3×3 LinearAlgebra.Transpose{Float64,

Array{Float64,2}}:
0.84271 0.342911 0.555876
0.931374 0.886989 0.163034
0.0734473 0.034807 0.296932
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Conjugated Gradient

Conjugated Gradient (CG) is a popular Krylov subspace method that solves Ax = b for
symmetric positive definite A, i.e. zHAz > 0 for any z ̸= 0.

For general A one can apply CG to the normal equation

AHAx = AHb

Regularization can also be added.
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Conjugated Gradient

Algorithm 1 Conjugated Gradient Algorithm
1: r0 ← b−Ax0

2: v0 ← r0

3: for k = 0, . . . , N − 1 do
4: zk ← Avk

5: αk ← rH
krk

vH
kzk

6: xk+1 ← xk + αkvk

7: rk+1 ← rk − αkzk

8: βk ←
rH
k+1rk+1

rH
krk

9: vk+1 ← rk+1 + βkdk

10: end for
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Conjugated Gradient

Remarks:

• The CG algorithm converges in (less than) N iterations, often much faster.

• The convergence directly depends on the conditioning of the system matrix A.
The better it is conditioned, the faster is the convergence.

• In each iteration step 4. is the expensive one O(N2).
⇒ Total time complexity O(N3).

• If A is not stored explicitly (Fourier transform, Radon transform), the CG
algorithm allows for matrix-free calculation of the matrix-vector products.
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What is Magnetic Particle Imaging

• Tomographic imaging method that allows to image super-paramagnetic
nanoparticles (SPIOs)

• Invented by Bernhard Gleich in 2001 at Philips Research
• First publication: B. Gleich and J. Weizenecker, Tomographic imaging using the

nonlinear response of magnetic particles Nature. 435 30 (2005)

1



First MPI Prototype
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History of MPI
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Comparison with existing Modalities

Tabelle 1: Quantitative comparison of different imaging modalities.

CT MRI PET SPECT MPI
spatial resolution 0.5 mm 1 mm 4 mm 10 mm 1–3 mm

acquisition time 1 s 1 s – 1 h 1min 1 min < 0.1 s

sensitivity medium medium very high very high high

quantifiability yes no yes yes yes

harmfulness X-ray heating β/γ radiation γ radiation heating
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Magnetic Nanoparticles

• Particles consist of an iron-oxide core and a hull that prevents agglomeration and
particle-particle interaction
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What is Magnetic Particle Imaging

• MPI images the spatially dependent concentration of SPIOs

• Concentration: Particles per Voxel
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Saturation Effect

• Particles align with external
magnetic field H

• Saturation when all particles
are aligned
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Particle Magnetization

Partice Magnetization

M :=
1

∆V

NP−1∑
j=0

mj (1)

where mj are the magnetic moments within a voxel.

Under equilibrium assumptions M can be expressed as

M(H) = M(H)eH , (2)

where eH is the direction of the magnetic field and

M(H) = c mL (βH) (3)

is the length of the magnetization vector in dependence of the strength of the magnetic
field H := ∥H∥2.

8



Particle Magnetization

M(H) depends on the Langevin function

L(ξ) :=

coth (ξ)− 1
ξ

ξ ̸= 0

0 ξ = 0
(4)

and the scaling factor

β :=
µ0m

kBTP . (5)

µ0 is the permeability of free space, kB is the Boltzmann constant, TP is the particle
temperature, and m = VcoreM

S
core is the magnetic moment of a single particle. The

latter is determined by the saturation magnetization of the material MS
core of which the

particle core is made (usually magnetite) and the particle core volume Vcore =
1
6πD

3
core

derived from the core diameter Dcore.

9



Particle Magnetization
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Signal and Spatial Encoding

Any tomographic imaging method needs two ingredients:

• Signal Encoding

• Spatial Encoding

Signal Encoding Signal encoding describes the process that the underlying
tomographic image generates some kind of signal.

Spatial Encoding Spatial encoding describes, how the spatial position of a voxel can be
encoded into the signal. Usually this means to create a spatial dependency of the signal.
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Signal and Spatial Encoding

Remark Signal and spatial encoding are in the end happening simultanuously. The do,
however, help understanding the imaging methods conceptually.

Example In computed tomography, the signal is encoded by passing an X-ray through
the object. This also partly does spatial encoding in one direction of the imaging plane.

Full spatial encoding is achieved by rotation of the gantry. This leads to the station that
the signal response of a delta peak in image space yields a different fingerprint in the
raw data signal, i.e. no two positions yield the same sinogram.

12



Signal Generation

Signal generation in MPI is done by cyclic excitation of the magnetic nanoparticles
using dynamic magnetic fields. To illustrate the signal generation consider a
homogeneous sinusoidal drive field

HD(t) = −A cos(2πft)eH , (6)

with field amplitude A, frequency f , and field direction eH . If an ensemble of Langevin
particles is excited by this field it generates the signal

M(t) = M(HD(t)), (7)

13



Signal Encoding

• A homogeneous field can be
generated by two coils with
currents flowing in the same
direction.

x

y

z

Helmholtz coil pair
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Signal Encoding

Magnetic field is not perfectly homogenous
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Signal Encoding

t

H

M

H

M

t

uP

t

signal of linear material

uE

t

excitation signal

Linear material → excitation signal and particle signal cannot be distinguished.
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Signal Encoding

t

H

M

H

M

t

uP

t

particle signal

uE

t

excitation signal

Non-linear material → excitation signal and particle signal can be distinguished.
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MPI Imaging Equation – Frequency Space

The voltage signal u(t) is periodic and allows us to expand the voltage signal u(t) into
a Fourier series:

u(t) =
∞∑

k=−∞
ûke2πikt/T

and the spectrum consists of discrete lines at multiples of the frequency f = 1/T ,
which is also called the fundamental or base frequency. These multiples

fk = kf , k ∈ Z (8)

are usually called harmonic frequencies or just harmonics. The Fourier coefficients can
be computed by

ûk =
1
T

∫ T

0
u(t)e−2πikftdt, k ∈ Z. (9)
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MPI Imaging Equation – Frequency Space

As the induced voltage is real, the Fourier coefficients obey the relation

ûk =
1
T

∫ T

0
u(t)e−2πikftdt

=
1
T

∫ T

0

(
u(t)e2πikft

)∗
dt (10)

= (û−k)
∗ .

Therefore, one usually neglects the negative frequencies in MPI as they do not carry
any additional information.
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Signal Encoding

t

u
P

1 3 5 7 9 11 13 15 17 19
f/f0

û
P
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Signal Encoding

The generation of higher harmonics for a non-linear magnetization curve can be
mathematically described by expanding the Langevin function into a Taylor series

L(ξ) = 1
3
ξ − 1

45
ξ3 +

2
954

ξ5 − 1
4725

ξ7 + . . . . (11)

If one considers the particle magnetization M, one can see that the argument µ0Hm
kBTP is

applied to the Langevin function. For a sinusoidal field excitation H(t) = −A cos(2πft),
the dynamic part of the particle magnetization can be written as

L(ξ̃ cos(2πft)) = ξ̃

3
cos(2πft)− ξ̃3

45
cos3(2πft) + . . . , (12)

where ξ̃ = −µ0Am
kBTP .
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Signal Encoding

Using the trigonometric formula

cos3(x) =
1
4
(3 cos(x) + cos(3x)) , (13)

one obtains

L(ξ̃ cos(2πft)) = ξ̃

3
cos(2πft)− ξ̃3

60
cos(2πft) +

ξ̃3

180
cos(2π(3f )t) + . . .

=
20ξ̃ − ξ̃3

60
cos(2πft) +

ξ̃3

180
cos(2π(3f )t) + . . . . (14)

Hence, the third harmonic, which corresponds to the frequency 3f is present in the
spectrum of the induced voltage for a sinusoidal excitation. By including higher order
terms cos5, cos7, . . . , one can verify that all odd harmonics are present in the signal
spectrum. The even harmonics are missing, as all even derivatives of the Langevin
function have a zero-crossing at the point ξ = 0, at which the Taylor series is expanded.
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Analog Signal Chain

band-pass
filter

band-stop
filter

signal
generator

low-noise
amplifier

signal
digitization

SPIO
sample

f/f E

band-stop
filter

1  2  3 ... f/f E1  2  3 ... 

û

used signal

f/f E

induced signal

1  2  3 ... 

û

send coil receive coil
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Spatial Encoding

Recall at this point that HD is homogeneous and thus all particles in space behave the
same.

What we do next is to superimpose a second magentic field HS(r), which is static but
spatially dependent:

HS(r) =

Gx 0 0
0 Gy 0
0 0 Gz

 r (15)

The effective excitation signal

H(r , t) = HD(t) + HS(r) (16)

is thus unique at each spatial position.

24



Spatial Encoding

• The gradient field HS has a
field-free point in the center.

• The field increases in all
directions in space.

• It can be generated using two
coils and current flowing in
opposing directions.

x

y

z

Maxwell coil pair
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Signal Encoding

Magnetic field is not perfectly linear
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Spatial Encoding

t

H

M

H

M

t

uP

t

particle signal

uE

t

excitation signal

Large offset supresses signal.
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Signal Encoding

Single-voxel imaging – not very effective

FFP

image voxel

object
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Signal Encoding

Line imaging – much more effictive

FFP

image voxel
object
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FFP Shift

selection field drive field superposition
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Spatial Encoding

H

t

M

t

uP

t

H

t

M

t

uP

t

H

t

M

t

uP

t

• Each point in space generates
a different signal

• Basically the signal peak is
shifted
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Spatial Encoding

Particle Magnetization Gradient Field
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1D Imaging Sequence
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2D Imaging Sequence
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MPI Coil Setup

receive coils focus-field coils

combined selection- and 
focus-field coilsdrive-field coils

x

y

z
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MPI Imaging Equation – Time Space

Theorem
The relation between the particle distribution c and the voltage u induced in a receive
coil with sensitivity p is linear and can be expressed as

u(t) =

∫
R3

s(r , t)c(r)d3r , (17)

where

s(r , t) = −µ0p(r) ·
∂m(r , t)

∂t
. (18)

denotes the system function in time space.
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MPI Imaging Equation – Frequency Space

Theorem
The relation between the particle distribution c and the frequency components of the
induced voltage ûk is linear and can be expressed as

ûk =

∫
R3

ŝk(r)c(r)d3r . (19)

where

ŝk(r) = −µ0

T

∫ T

0
p(r) · ∂m(r , t)

∂t
e−2πikt/Tdt (20)

denotes the system function in frequency space.
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Discrete MPI Imaging Equation

Sampling of time and space leads to

Discrete Setting

ûk =
N∑

n=1

sk,ncn ⇔ u = Sc

where

k ∈ IK ,

IK = {1, . . . ,K},
u = (uk)k∈IK ,

c = (cn)n∈IN ,

S = (sk,n)k∈IK ;n∈IN
38



Sampling of Space

Remark

• The sampling positions rn, n ∈ IN represent a
2D / 3D grid. E.g.

rn = rnx ,ny ,nz

for nd ∈ INd
, d = x , y , z and N = NxNyNz .

• Thus, one row of the system matrix S also
represents an image (in 2D) or volume (in 3D).

39



How to determine the System Matrix

• Physical modeling of S is challenging (Relaxation effects, unknown parameters).

• Therefore, system matrix S is usually explicitly measured using a robot.

• The delta sample is a voxel filled with MNP and can be mathematically
represented as a unit vector e j where j ∈ IN .

• Since Se j = u j = S ·,j the calibration measurement picks the j-th column of S .

40



How to determine the System Matrix

3 axis robot

rod

scanner bore

3D delta sample

2D delta sample
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MPI System Matrix

DF-FOV

SF-FOV

overscan MPI signal

Rahmer et al. BMC Med. Imag. 9 (2009).
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MPI System Matrix (2D)
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MPI System Matrix Row Energy (2D)
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Tensor products of Chebyshev polynomials
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Setting - Algebraic Reconstruction

ûk =
∫
V sk(r)c(r)d3r

u = Sc
size of S ≈30GB
for 303 positions

ured = S redc
3-10GB

argminc∥S redc−ured∥2
2+λ∥c∥2

2
reconstruction
time increases

with matrix size

discretization

filtering

reconstruction
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Summary

• MPI is a tracer based imaging method exploiting the non-linear magnetization
behavior of magnetic nanoparticles

• It applies different magnetic fields to achieve signal and spatial encoding

• Image reconstruction is done by solving a linear system of equations using
regularization methods
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Magnetic Resonance Imaging



Magnetic Resonance Imaging

• Tomographic imaging technique (usually 3D)

• Very good soft tissue contrast (CT just bones)

• No ionizing radiation

• Very flexible: allow generating different imaging constrast by modification of the
imaging protocol

• In most cases one images the distribution of hydrogen in the human body

1



Magnetic Resonance Imaging

Left: Picture of a modern 3T MRI system. Right: Picture of a brain MRI scan.
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History

• 1946: Discovery of the magnetic resonance principle by Bloch and Purcel (nobel
price 1952)

• 1973: First tomographic image by Lauterbur (nobel price 2003)

• since 1984: MRI in clinical routine human body

3



Basic Principle

Hydrogen atoms have a so-called nuclear spin leading to a magnetic dipole moment:

A classical picture would be a rotating atom, which establishes a magnetic moment m.

Remark: Precise description of MR physics requires quantom mechanics, which is
beyond the scope of this lecture

4



Basic Principle

Without an external magnetic field the magnetic moments have no preferred direction
and follow a Boltzmann statisic (thermodynamic equilibrium):
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Magnetization

The magnetization is the (vectorial) sum of all individual magnetic moments relating to
a small volume element ∆V :

M =
1

∆V

N−1∑
j=0

mk (1)

Due to the missing preferred direction of the nuclear spins the hydrogen atoms do not
yield a measureable magnetization:

⇒ M = 0

6



B0 Field

When applying a static (homogeneous)
magnetic field

B0 = B0

0
0
1


the nuclear spins align with the magnetic
field.
The magnetic moments either align in a
parallel or in an anti-parallel way.
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B0 Field

If both spin states would occur equally often, no macroscopic magnetization could be
observed. However, fortunately, the state spin up occurs about 10−6 × B0 more often
than the state spin down.

⇒ the stronger B0 the more spins are in the state spin up

Consequently, one observes a macroscopic magnetization that is aligned in z direction:

M = M0

0
0
1
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Signal Encoding



Signal Encoding

A static magnetization is difficult to measure. In particular one cannot distinguish
between the magnetization M and the applied field B0. On thus needs a way to make
M and B0 somehow different.

Ideas:

• Let M point in a different direction than B0

• Make M time-dependent, since this allows use an inductive measurement

9



Signal Encoding

To bring the magnetization into the xy plane, one
applies a radio frequency field B1(t) that is
orthogonal to B0 and rotates in the xy plane.
B1 has an angular frequency ωE that matches the
resonance frequency ωL of the nuclear spins.

B1 = B1

cos(ωEt)

sin(ωEt)

0
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Lamor Frequency and Gyromagnetic Ratio

The angular velocity ωL of the magnetization depends on the applied field strength B0

and the gyromagnetic ratio γ.

ωL = γB0

ω is named the Lamor frequency.
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Gyromagnetic Ratio

γ depends on the considered matter:

Proton γ [MHz / T]
1H 42.45
13C 10.71
19F 40.08
13N 11.27
31P 17.25

In MRI usually only the hydrogen atom is considered since the human consists of 65%
water (H2O).
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Progression of Magnetization

Due to the 90◦ excitation, the magnetization is elongated in a spiral movement into the
xy plane. This happens despite B1 ≪ B0 since the frequency of the B1 field matches
the resonance frequency of the spins.

Thus, a magnetization

M(t) = M0

cos(ωEt)

sin(ωEt)

0


is established. ÷:

""

.
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Relaxation

The varying magnetization can be measured using electromagnetic coils (induction
principle).

However, the induced signal is shadowed by the inductively coupling signal of the
rotating B1 field.

⇒ Switch off B1 field

After switch off, the magnetization tries to align with the B0 field, which can be
described by two different relaxation processes.

We consider on the following two slides a rotating coordinate system where the x ′ and
y ′ coordinate rotate with the magnetization around the z axis and thus the
magnetization would point would be static within the xy plane if no relaxation would
occur.
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Longitudinal Relaxation

Increase of the z component of the magnetization

Mz = M0(1 − e−
t
T1 )

Z n

Y
"

÷
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Transversal Relaxation

Dephasing of the magnetic moments of the spins

Mxy = M0e
− t

T2

⇒ After switching of the B1 field one can measure for a certain amount of time a
magnetization signal in a receive coil.
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Magnetization after Excitation

Taking into account both relaxation processes, the magnetization after switching of the
B1 field is given by

M(t) = M0


cos(ωEt)e

−t( 1
T1

+ 1
T2

)

sin(ωEt)e
−t( 1

T1
+ 1

T2
)

1 − e−
t
T1
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Remarks

• At this point do not distinguish between the relaxation times T ∗
2 and T2 to keep

the explanation simple. But note that what we described on the previous slide is
actually called T ∗

2 ( 1
T∗

2
= 1

T2
+ 1

Tinhom
see

https://en.wikipedia.org/wiki/Relaxation_(NMR) for details).
• T2 times are much faster than T1. More precisely T ∗

2 ≤ T2 ≤ T1.
• T1 and T2 are tissue dependent and give an additional contrast mechanism.

tissue T1 [ms] T2 [ms]
muscle 480 30

fat 190 60
gray brain matter 400 90
white brain matter 350 80

18
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Measurement of Magnetization

Induction law

u(t) = −µ0
d
dt

∫
R3

p(r)TM(r , t)d3r

where

• u(t) is the voltage induced in the receive coil

• p(r) is the receive coil sensitivity

• p(r) := B(r)
I , magnetic field at unit current (1A)

19



Measurement of Magnetization

Since M(t) rotates in the xy plane one uses two orthogonal receive coils with
sensitivities

px =

p

0
0

 and py =

0
p

0


For instance two Helmholtz coil pairs can be used:

µ Mceiuccoilg

µ # µ
*Meineids
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Measurement of Magnetization

In turn the induced signals are given by

ux(t) = −µ0p

∫
R3

d
dt

Mx(r , t)d3r

uy (t) = −µ0p

∫
R3

d
dt

My (r , t)d3r

21



Measurement of Magnetization

If we consider for a moment only the signal from a single voxel in the center we obtain:

ux(t) = −µ0p
d
dt

cos(ωEt)e
−t( 1

T1
+ 1

T2
)

uy (t) = −µ0p
d
dt

sin(ωEt)e
−t( 1

T1
+ 1

T2
)

Thus, due to dephasing the signal decays exponentially. This is also called Free
Induction Decay (FID). "

Htt.
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Assumptions

We will in the following neglect relaxation effects. In practice this means that one has
to measure fast enough that the dephasing did not progress too far. In practice one will
apply several excitations.

In turn our model for the magnetization will be

M(r , t) = M0(r)

cos(ωEt)

sin(ωEt)

0
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Signal Equation

Consequently the signal equations are given by

ux(t) = −µ0p

∫
R3

d
dt

M0(r) cos(ωEt)d
3r

uy (t) = −µ0p

∫
R3

d
dt

M0(r) sin(ωEt)d
3r

yielding

ux(t) = µ0pωE

∫
R3

M0(r) sin(ωEt)d
3r

uy (t) = −µ0pωE

∫
R3

M0(r) cos(ωEt)d
3r
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Signal Equation

One can combine both equations by mapping the voltages on the complex plane:

uxy (t) = −uy (t) + iux(t)

= µ0pωE

∫
R3

M0(r) (cos(tωE) + i sin(tωE)) d
3r

= µ0pωE

∫
R3

M0(r)eitωEd3r

25
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Spatial Encoding

Until now all spins in space behave the same

⇒ No image can be obtained.

Slice Selection
Idea: not all spins in space are excited but only those within a certain slice. To this end,
a gradient is applied during excitation:

Bz(z) = B0 + zGz

The field thus increases linearly in z direction.
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Spatial Encoding

Lamor frequency
ωL(z) = γBz(z) = γ(B0 + zGz)

is now slice dependent.

⇒ chose ωE of the B1 excitation such that ωL(z0) = ωE if the slice z0 should be excited.

WL A

WE I )

Zo
Z

←Slice beingexcitateed
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Spatial Encoding

The signal equation due to slice selection becomes

uxy (t) = µ0pωE

∫
R2

M0(x , y)eitωE dx dy

28



Spatial Encoding

By slice selection all spins within a certain slice are excited.

But within the slice still all spins behave the same

⇒ Next step: spatial encoding within plane
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Frequency Encoding

• Change angular frequency of
magnetization during data acquisition.

• This is done by applying a gradient
field that changes the z component of
the magnetic field linearly in the x

direction:

Bz(x) = B0 + xGx

• The Lamor frequency is thus given by

ωL(x) = γBz(x) = γ(B0+xGx) = ω0+γxGx

µ
a- )
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% ! to '

×

I I I 7
HBO -Xo) JBO Hat 4) wg

30



Frequency Encoding

Due to frequency encoding, the frequency of the magnetization gets spatially
dependent:

uxy (t) = µ0pωE

∫
R2

M0(x , y)eit(ω0+γxGx ) dx dy

We now can pull out the carrier frequency eitω0 yielding

uxy (t) = µ0pωEeitω0

∫
R2

M0(x , y)eitγxGx dx dy

31



Frequency Encoding

Thus, by dividing the induced signal by µ0pωEeitω0 one obtains

ũxy (t) =
uxy (t)

µ0pωEeitω0
=

∫
R2

M0(x , y)eitγxGx dx dy

This is a Fourier integral along the x direction.

Missing: Spatial encoding in y direction.
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Phase Encoding

• Idea: Apply gradient before data
acquisition.

⇒ accelerates the precession (positively
and negatively) of the magnetization
for a short time.

⇒ phase of magnetization is linearly
varying in y direction.

⇒ spatial encoding achieved.

µ

EE
→f-TT

-! ! ! ?
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Phase Encoding

Since the phase encoding was applied before data acquisition, the magnetization is
rotating with ei(tωE+ϕy ) where φy is the phase that depends on the duration and
strength of the phase encoding gradient. We chose the time such that φy = γyGy such
that the imaging equation during data acquisition becomes

ũxy (t) =

∫
R2

M0(x , y)ei(tγxGx+γyGy ) dx dy

If we define kx = γGx t
2π and ky =

γGy

2π we obtain a regular 2D Fourier integral

ũxy (kx , ky ) =

∫
R2

M0(x , y)e2πi(xkx+yky ) dx dy

In order to fill the entire Fourier space (also named k-space) several excitations with
different phase encodings have to be applied.
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Image Reconstruction

We have derived a special imaging equation for 2D sequences. More general, the MRI
signal equation can be written as

s(k) =
∫
R3

M0(r)e2πikTr d3r

where r =

x

y

z

 and k =

kx

ky

kz


After applying the Fourier inversion theorem on obtains

M0(r) =
∫
R3

s(k)e−2πikTr d3k
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Image Reconstruction

Remarks

• Image reconstruction thus can be done explicitly. In the discrete setting it
corresponds to a matrix-vector operation that usually can be performed by the
FFT in an O(N logN) fashion.

• Image reconstruction in MRI is thus not an ill-posed inverse problem.

• In practice on often applies subsampling in which case the inverse problem again
gets ill-posed.

• When chosing the gradient trajectory k(t) nonequidistantly, the FFT needs to be
replaced by the NFFT, which is dicussed in the next lecture.

• Inhomogenous coils and relaxation times lead to more complicated signal modells
when being taken into account.
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Pulse Sequences

The applied dynamic magnetic fields during an MR acquisition can be expressed using a
pulse sequence diagram.

In this lecture only a quick overview about basic pulse sequences is given.
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Spin Echo Sequence

Basic spin echo sequence. The 180◦ pulses are necessary to rephase the spins.
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180◦ Pulse

The 180◦ degree pulse flips the drifting (macroscopic) magnetic moments (ensembles of
similar phasing magnetic moments). Due to the flip, the moments align and a
measurable magnetization is established again.
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Fast Spin Echo Sequence

Use multiple 180 degree pulses to speed up data acquisition.
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Gradient Echo Sequence

Echos can also be generated by gradients (even faster).
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Echo Planar Imaging Sequence

One can also measure several phase encoding gradients within a single excitation.
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Sampling Trajectories



Nonequidistant Sampling Trajectories

Changing the gradients Gx and Gy both continuously during data acquisition allows for
arbitratry k-space sampling. Beside Cartesian trajectories also non-equidistant
trajectories can be applied. Spiral trajectories (left) allow for collecting more data within
a single excitation. Radial trajectories (right) are robust against motion.
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System Overview



System Overview

Schematic overview of a typical MRI scanner including the three field generators.
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Summary

• MRI is a versatile imaging modality.

• It has long scan times due to sequential data collection.

• Basic image reconstruction is simple and just an FFT (→ not noise amplifying).

• Nonequidistant trajectories require the NFFT.

• Subsampling and field imperfection lead to more sophisticated image
reconstruction methods.
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Non-Equidistant Fast Fourier Transform

The non-equidistant fast Fourier transform (NFFT) is an approximative algorithm that
performs the non-equidistant discrete Fourier transform (NDFT) efficiently.

Definition
The NDFT is defined as

fj = f (xj) =

N
2 −1∑

k=−N
2

f̂ke−2πikxj , j = 0, . . . ,M − 1

It takes a sequence of N equidistantly distributed samples f̂k and calculates the Fourier
sum at M non-equidistant sampling nodes xj ∈ [−0.5, 0.5).

1



Non-Equidistant Fast Fourier Transform

Remarks

• Naive NDFT would require O(MN) arithmetic operations

• The FFT requires xj to be equidistant, i.e.

xj = −1
2
+

j

N
, j = 0, . . . ,N − 1
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Key Idea of the NFFT

The key idea of the NFFT is to approximate the anharmonic complex exponential
e−2πikxj by a sum of harmonic complex exponentials

e−2πikxj︸ ︷︷ ︸
anharmonic

≈

L
2−1∑
l=− L

2

βl ,j e−2πi kl
L︸ ︷︷ ︸

harmonic

Remarks

• Harmonic here is means that the frequency γl = l
L is a multiple of the basis

frequency γ1 = 1
L .

• Similar to other approximations (or interpolations) we use a base function and shift
its frequency (c.f. spline interpolation).

• Most important point of the approximation is that the two indices k and j are not
in the exponent anymore but they are factorized. 3



Derivation of the NFFT

We consider a general window function
φ ∈ L1(R) ∩ L2(R) ∩ BV(R) and its periodization

φ̃(x̃) :=
∞∑

p=−∞
φ(x̃ + p).

The function has a uniformly convergent Fourier series

φ̃(x̃) =
∞∑

k=−∞
ck(φ̃)e−2πikx̃

with coefficients

ck(φ̃) =

∫ 1
2

− 1
2

φ̃(x̃)e2πikx̃ dx̃

9^1
:

- E k

Note: The sign is flipped compared to the regular definition of the Fourier series. 4



Derivation of the NFFT

We now substitute x̃ by x̃ = x − x ′ with x ∈ R yielding with dx̃
dx ′ = −1

ck(φ̃) =

∫ x− 1
2

x+ 1
2

φ̃(x − x ′)e2πik(x−x ′)(−1) dx ′

periodicity
=

∫ − 1
2

1
2

φ̃(x − x ′)e2πik(x−x ′)(−1) dx ′

=

∫ 1
2

− 1
2

φ̃(x − x ′)e2πik(x−x ′) dx ′
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Derivation of the NFFT

Then we approximate the integral at equidistant nodes l
L using a rectangular

quadrature rule

ck(φ̃) ≈
1
L

L
2−1∑
l=− L

2

φ̃

(
x − l

L

)
e2πik(x− l

L
)

We will later chose L = αN where α > 1 is the so-called oversampling factor. If
ck(φ̃) ̸= 0 we obtain

e−2πikx ≈ 1
αNck(φ̃)

αN
2 −1∑

l=−αN
2

φ̃

(
x − l

αN

)
e−2πik l

αN (1)

Thus we can indeed approximate the anharmonic exponential by a sum of harmonic
exponentials (βl ,j = 1

αNck (φ̃)
φ̃
(
x − l

αN

)
).
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Derivation of the NFFT

Since φ is a kernel function we know that only few of the summands in (1) have a
significant contribution to the sum.

Key idea: Consider only significant summands such that the sum needs just be
evaluated partially.

To this end we truncate the function φ at ± m
αN and replace it by

ψ(x) :=

φ(x) if x ∈
[
− m

αN ,
m
αN

]
0 else

.

With the periodization ψ̃(x̃) :=
∑∞

p=−∞ ψ(x̃ + p) this yields our final approximation

e−2πikx ≈ 1
αNck(φ̃)

αN
2 −1∑

l=−αN
2

ψ̃

(
x − l

αN

)
e−2πik l

αN (2)
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Derivation of the NFFT

Illustration of the truncation:
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Derivation of the NFFT

We now get back to the NDFT and replace the term e−2πikx with our approximation
yielding

fj =

N
2 −1∑

k=−N
2

f̂ke−2πikxj

(2)
≈

N
2 −1∑

k=−N
2

f̂k
1

αNck(φ̃)

αN
2 −1∑

l=−αN
2

ψ̃

(
xj −

l

αN

)
e−2πik l

αN

=

αN
2 −1∑

l=−αN
2

ψ̃

(
xj −

l

αN

) N
2 −1∑

k=−N
2

f̂k
αNck(φ̃)︸ ︷︷ ︸
apodization

e−2πik l
αN

︸ ︷︷ ︸
DFT/FFT︸ ︷︷ ︸

discrete convolution
9



Algorithm NFFT

Algorithm 1 Pseudocode NFFT

input: f̂k ∈ C, k = −N
2 , . . . ,

N
2 − 1, xj ∈ [−1

2 ,
1
2), j = 0, . . . ,M − 1, α > 1 and m ∈ N

output: fj ∈ C, j = 0, . . . ,M − 1

1: for k = −N
2 , . . . ,

N
2 − 1 do

2: ĝk = f̂k
αNck (φ̃)

3: end for
4: compute the data (gl)

αN
2 −1

l=−αN
2

using an FFT of (ĝk)
N
2 −1
k=−N

2
.

5: for j = 0, . . . ,M − 1 do

6: fj =

αN
2 −1∑

l=−αN
2

gl ψ̃

(
xj −

l

αN

)
7: end for

10



Complexity Analysis

The three steps have an individual time complexity of

1. O(N)

2. O(αN log(αN))

3. O(mM)

Thus, the total complexity of the NFFT is

O(αN log(αN) +mM) ≪ O(NM)

11



Approximation Error

One can derive approximation error estimations for the
NFFT. For specific φ (i.e. Kaiser-Bessel functions) one can
show that the approximation error can be adjusted to be
lower than tha floating point precission (64 bit → α = 2
and m = 6 for the Kaiser-Bessel window).
Since α and m are independent of N and M we end up
with an algorithmic complexity of

O(N logN +M) ≪ O(NM)
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Matrix-Vector Notation

The NFFT can also been expressed in matrix vector notation. Let

f̂ := (f̂k)
N
2 −1
k=−N

2
∈ CN , f := (fj)

M−1
j=0 ∈ CM

and
A :=

(
e−2πikxj

)
j=0,...,M−1;k=−N

2 ,...,
N
2 −1

∈ CM×N .

then
f = Af̂ ≈ B︸︷︷︸

convolution matrix

F︸︷︷︸
DFT matrix

D︸︷︷︸
diagonal matrix

f̂ .

Here we note that B is a sparse matrix (i.e. has only few non-zero entries).
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Implementation

The window function φ and ck(φ̃) are usually expensive to calculate and should
therefore be cached. There are two possibilities for φ

1. Create a lookup table for φ

2. Store B in a sparse matrix format (CRS / CCS)

14



Adjoint NFFT

In addition to the regular NFFT one often also needs the adjoint NFFT. It maps from
non-equidistant samples to equidistant samples, wheras the NFFT is the other way
around.

f̂k =
M−1∑
j=0

fje2πikxj k = −N

2
, . . . ,

N

2
− 1

≈ 1
αNck(φ̃)

αN
2 −1∑

l=−αN
2

M−1∑
j=0

fj ψ̃

(
xj −

l

αN

)
︸ ︷︷ ︸

discrete convolution

e2πik l
αN

︸ ︷︷ ︸
DFT/FFT︸ ︷︷ ︸

apodization
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Adjoint NFFT

In matrix vector notation:
f̂ = AHf ≈ DHFHBHf
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Window Function (Kaiser-Bessel)

There are various suitable window functions for which error estimations have been
derived. The best is the Kaiser-Bessel window, which is defined as

φ(v) :=

 1
2m I0

(
bm
√

1 − (αNvm )2
)

falls |v | ≤ m
αN (b := π(2 − 1

α)),

0 falls |v | > m
αN

where Ik : C → C, k ∈ N0 is the modified Bessel function of the first kind:

Ik(x) :=
∞∑
r=0

( x2 )
2r+k

(r + k)!r !
.

17



Window Function (Kaiser-Bessel)

The Fourier transform of the Kaiser-Bessel window can be shown to be

φ̂(z) =
1
αN

sinc

√(2πmz

αN

)2

− b2m2


=

1
αN

∞∑
n=0

1
(2n + 1)!

(
b2m2 −

(
2πmz

αN

)2
)n

.
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Window Function (Kaiser-Bessel)

https://en.wikipedia.org/wiki/Kaiser_window
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Multidimensional NFFT

The NDFT and the NFFT can be also formulated / derived for multidimensional signals:

NFFT

fj :=
∑
k∈I dN

f̂ke−2πikxj , j = 0, . . .M − 1

Adjoint NFFT

f̂k =
M−1∑
j=0

fje2πikx j , k ∈ I dN

where the index set I dN with N = (N0, . . . ,Nd−1)
T ∈ Nd is defined as

I dN :=

{
−N1

2
, . . . ,

N1

2
− 1
}
× · · · ×

{
−Nd

2
, . . . ,

Nd

2
− 1
}

and d is the dimensionality of the tranform. 20



Inverse NFFT

In general the adoint NFFT is not (exactly) the inverse NFFT, i.e.

AHA ̸= I

However, one can derive an approximation to the (pseudo)inverse quite efficiently.

To this end we first consider the NDFT

f (xj) =

N
2 −1∑

k=−N
2

f̂ke−2πikxj , j = 0, . . . ,M − 1

We now extend the sum to ±∞, which leads to the Fourier series

f (xj) =
∞∑

k=−∞
f̂ke−2πikxj , j = 0, . . . ,M − 1

where the coefficients f̂k have been zero-padded.
21



Inverse NFFT

The Fourier coefficients f̂k can be calculated by

f̂k =

∫ 1
2

− 1
2

f (x)e2πikxj dx k = −k

2
, . . . ,

k

2
− 1

Since f is only known at the sampling nodes xj , we can only consider these when
approximating the integral by a sum. When applying a rectangular quadrature rule, one
obtains

f̂k ≈
M−1∑
j=0

wj f (xj)e2πikxj k = −k

2
, . . . ,

k

2
− 1

where wj , j = 0, . . . ,M − 1 are the quadrature weights. This is the adjoint NFFT with
a pre-weighting. In matrix-vector notation this implies AHW ≈ A+, i.e. AHWA ≈ I .

22



Summary

• The NDFT is a generalization of the DFT

• The NFFT is an efficient implementation of the NDFT, which exploits a numerical
approximation of the complex exponential

• The approximation error is known and can be adjusted to reach machine precision.

• In practice the convolution usually takes most of the computation time. With
optimized parameters (α = 1.25, m = 2) it is possible to make the convolution as
fast as the FFT.

• There are various implementations of the NFFT. One reference implementation is
the C library NFFT 3 (https://github.com/NFFT/nfft). Also a Julia package
exists: https://github.com/tknopp/NFFT.jl
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Compressed Sensing

Motivation
MRI scans are slow and usually require minutes of acquisition time.

⇒ Acceleration techniques wanted!

1



Typical Data Flow

2



Typical Data Flow

Observation
A lot of data is acquired / processed but in the end only a fraction of data is stored.

Wanted
Measure only few data and “somehow” combine the reconstruction and the compression
step.

3



Subsampling in k-space

4



Subsampling in k-space
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Nyquist Criterion

Sampling frequency has to be twice the signal bandwidth

MRI: sampling in frequency space

6



Can Nyquist Criterion be Beaten?

• Not if the sampling is done in an equidistant way. This is always assumed when
deriving the Nyquist criterion.

• If the sampling is done at random points one can beat the Nyquist criterion.

• Equidistant sampling is also named coherent sampling, while non-equidistant
sampling is named incoherent sampling.

7



Ingredient 1 for Compressed Sensing

Incoherent sampling
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Ingredient 2 for Compressed Sensing

Why is it possible to reduce the file size with JPEG?

• Most images are compressible.

• The second ingredient therefore is that the underlying image is compressible.

9



Compressibility

• Express much information with only “few coefficients”

• few coefficients: → sparsity

10



Sparsity in Image Space

Only few pixels are non-zero.

Example: angiogram

11



Sparsity in under Transformation

If the data is not sparse in image space one can usually apply a sparsifying
transformation such as a Wavelet transform or a Block DCT.

Image Space Wavelet Space

Remark
Wavelet transformation and block DCT are also used in regular compression algorithms. 12



Compressed Sensing Reconstruction

Imaging Equation

Ax = b

Subsampled Imaging Equation

Aredx = bred

⇒ underdetermined linear system

13



Compressed sensing reconstruction

We now seek for a sparse solution.

⇒ x should have few non-zero entries

Ansatz

xCS = argmin
x

∥Aredx − bred∥2
2︸ ︷︷ ︸

data term

+ λ∥x∥0︸ ︷︷ ︸
sparsity term

(1)

∥x∥0 := number of non-zero elements in x

14



Compressed Sensing Reconstruction

However, using the L0 norm leads to a very computationally intensive problem
(NP-hard) that is unfeasible to compute in practice. Therefore one usually uses
alternatively

xCS = argmin
x

∥Aredx − bred∥2
2︸ ︷︷ ︸

data term

+ λ∥x∥1︸ ︷︷ ︸
sparsity term

(2)

with

∥x∥1 :=
N∑

n=1

|xi |

⇒ Convex problem that can be efficiently solved.

15



Sparsity Transformation

In case that x is not sparse it is required to first apply a sparsity transformation before
the L1 norm is evaluated:

xCS = argmin
x

∥Aredx − bred∥2
2︸ ︷︷ ︸

data term

+ λ∥Wx∥1︸ ︷︷ ︸
sparsity term

. (3)

Here, W ∈ CN×N is the sparsity transformation matrix, e.g. a Wavelet transform or a
block DCT. It is also possible to use a total-variation term for sparsification.
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Medical Imaging - Deep Learning Based Image Reconstruction
1. Introduction

1.1 Classical Regularization
1.2 Time Complexity
1.3 Parameter Choice
1.4 Summary of Challenges

2. Machine Learning
2.1 Arti�cial Neural Networks

3. Machine Learning for Image Reconstruction
3.1 Learn the Inverse Directly
3.2 Postprocessing Networks
3.3 Use Neural Networks with Iterative Solver

4. Summary

�. Introduction

�.� Classical Regularization
From the lecture on inverse problem we know that prior knowledge is important when solving inverse
problems. Prior knowledge can help us to

reduce the noise ampli�cation caused by the inversion of the linear system
enforce uniqueness in case of undersampling (  compressed sensing)

But how did this look like:

Table of Contents

Tikhonov Regularization

 Regularization

Total-Variation Regularization

where  is the total variation, i.e. a norm that measures edges.

Fused-Lasso Regularization

 Regularization with Sparsifying Transform

What is the characteristic of our prior knowledge?

In the �rst case we basically just want to avoid that our solution is exploding.
In the second case we seek for a solution with only few non-zero entries.
In the third case we seek for a solution with only few edges.
In the forth case we bring additional prior knowledge in, i.e. that the wavelet coe��cients for
natural images are sparse.

What are we doing in all cases?

We try to characterize the solution space by penalizing certain characteristics of the solution .

Note

These types of regularization are very generic because we only describe the solution using certain
characteristics of the function (so-called features). For instance we know that noise has high
frequencies and thus many sharp edges. Therefore applying a TV penality reduces the amount of
noise. But what if  itself contains sharp edges? Then our prior knowledge can be wrong.

These classical approaches are said to be feature driven while the machine learning approaches we
discuss later are data driven.



�.� Time Complexity
Let us next take a look at the time complexity of classical regularization methods.

Tikhonov Regularization
The time complexity for applying Tikhonov regularization is between  and . The later
is an upper bound when using e.g. the SVD. The former is a lower bound, e.g. when applying one
CGNR iteration or one outer Kaczmarz iteration. In practice, iterative solvers are somewhere in-
between.

Advanced Regularization
Advanced regularization techniques are non-linear. They usually require an iterative algorithm,
which commonly converges much slower than linear ones. Their complexity is  where  is
the number of iterations. While the algorithmic complexity is the same as for Tikhonov
regularization, in practice  is usually a factor of  larger. This in practice is a real problem
and the reason why these methods are popular in research but o�ten not integrated into imaging
devices.

�.� Parameter Choice
Finally, one key issue with classical regularization is the dependency on the regularization
parameter(s). While there are methods for optimizing the regularization parameter (e.g. the L-
curve), in practice regularization is most o�ten done by hand. But this, again, makes it unsuitable for
clinical application, where the image generation needs to be done automatically.

�.� Summary of Challenges
We identi�ed three major challenges for classical image reconstruction:

�. The form of prior knowledge is just a heuristic and does not describe our solution space well.
�. While Tikhonov regularization is fast, more advanced techniques like TV, Fused-Lasso or -

Wavelet regularization are very expensive.
�. Parameter choice is a major problem.

All of these points can be tackled by machine learning as we will see later. Let's �rst introduce
machine learning.

�. Machine Learning
We here only roughly introduce machine learning. Let us consider a function , i.e.

and let us assume that we don't know  but we only know  data pairs  with
. We call this the training dataset. Then, the task that is solved by machine learning is to

approximate  by a function , i.e.

where  are parameters that need to be optimized. To �nd suitable parameters one
commonly solves an optimization problem that looks like

where  is a distance measure. For instance one can use the mean squared error (MSE)

The aim now is that  not only for the training data but also for unseen data.

Note

Machine learning is thus basically function approximation. It is related to interpolation but it is
not required that  for .

Thus, ML is very similar to classical function approximation where a certain basis (polynomials,
splines, ...) are used as a model .



�.� Arti�cial Neural Networks
There are many machine learning methods. Those which got very popular in the last decade are
arti�cial neural networks (ANN). These consists of several layers to which certain operations are
applied. A simple ANN with two layers can be formulated as

with

,  being matrices transforming the input vector (linear transformations). These can be
dense matrices (dense layers) or convolutions (conv layers).

,  being bias vectors.
 being a non-linear activation function.

Note

An arti�cial neural network is said to be deep if it contains various nested layers. A network is said
to be wide if it has many connections/parameters within a layer (i.e. a dense layer).

Example

The following showcases a so-called decoder/encoder ANN, which consists of several convolution
layers and down/upsampling operations.

We next outline di�ferent ways to use ANNs for image reconstruction. In all cases we consider

to be our inverse problem and we consider that we have training samples , .

�. Machine Learning for Image
Reconstruction
In the following we sketch some methods to use machine learning for image reconstruction. The
overview is not meant to be complete since the �eld of ML-based image reconstruction is still
evolving.

�.� Learn the Inverse Directly
The �rst idea is to directly learn the the inverse. This means we formulate

and optimize the parameters .

Pros

We can take all imperfections into account since we don't assume any (simpli�ed) physical
model.

Cons

We don't use information of the imaging operator, i.e. we learn things that we already know. In
the case of MRI the ANN  needs to learn the Fourier transform.
The ANN needs to be expressive enough to learn the (inverse) imaging operator. This requires
dense layers, which makes training much more complicated (both from the accuracy and the
training time/memory point of view).
In order to train such an ANN it needs a very large training dataset.

Example AUTOMAP
See: Zhu, B., Liu, J., Cauley, S. et al. Image reconstruction by domain-transform manifold learning.
Nature 555, 487–492 (2018)



�.� Postprocessing Networks
Learning the inverse directly is not really the best option. We next consider models that use a
traditional image reconstruction in its core and a�terwards apply the ANN in a post-processing step.

So let's assume  is a classical image reconstruction method. For instance the FFT in the
case of MRI and the FBP in the case of CT. Then a postprocessing network would be formulated as

Looks very similar but the important di�ference is that  is an ANN acting in image
space, which is a well known task in the �eld of image processing. Hence, well known network
architectures can be used here.

Pros

Less complex model needed. CNNs are su��cient.
Less training data needed.
Physics is taken into account.

Cons

Not as generic/powerful than learning the inverse.

�.� Use Neural Networks with Iterative Solver
Advanced regularization techniques usually use iterative solvers like FISTA, ADMM, CG(NR), or the
Kaczmarz method. Let us for the moment take a much more basic approach: the Landweber
iteration. Similar to the other methods it aims at solving the least squares problem

Since we want to minimize  we can iterate over  and follow the gradient in order to minimize ,
i.e. we use gradient descent:

Here,  is a relaxation factor which needs to be appropriately chosen (not discussed at this point).

Note

Side note: The conjugate gradient method follows the same approach but does not use the
steepest decent but follows conjugate directions, i.e. the history of descents is taken into account,
which accelerates convergence.

For our speci�c  we can calculate the gradient explicitly

We can more generally say that this form of iteration is written as

where DC is the function that ensures data consistency, i.e. the minimization of the residual. With this
more general formulation, DC could for instance also be one outer Kaczmarz iteration, i.e. one sweep
over all rows.

With this knowledge we can integrate machine learning into iterative algorithms. Two di�ferent
variants that are discussed next.



�.�.� Plug-and-Play Approach
The easiest and most robust way is to train a neural network for a speci�c task like denoising, super-
resolution or in general image enhancement. Then we apply the enhancement neural network a�ter
each DC step:

We call this plug and play since the neural network is not trained for the actual image reconstruction
but outside the reconstruction pipeline.

The following picture is taken from this publication and graphically showcases the plug-and-play
approach:

�.�.� Unrolled Iteration
The plug-and-play approach can be re�ned by training the network within the reconstruction
problem. In order to do so, one needs to use a �xed number of iterations and unroll the network.

For instance for  iterations we can do this by:

Now we can train , , and  in an end-to-end fashion. Here, there are two variants:

One can use di�ferent NN parameters in each iteration.
One can share the weights.

The former is more powerful but more di��cult to train because it has more parameters.

Note

What might not be obvious is that the unrolled iteration can also signi�cantly speed up the
reconstruction process. The reason is that the neural networks are not only able to do image
enhancement in the classical sense (i.e. denoising) but they can also generate short paths. This is
because the number of iterations is �xed and known during training such that the algorithm is
forced to converge in the prede�ned number of iterations. In practice, o�ten just about 
iterations are needed.

Note

All ML-based reconstruction methods we outlined were parameter-free. They need to be trained
on di�ferent noise classes and then usually can automatically adapted to a certain noise class. This
adresses a further challenge of the feature-based reconstruction methods.

�. Summary
In this short lecture we have discussed the challenges of classical (feature-based) image
reconstruction and regularization techniques. We then outlined some ways how machine learning
can be used to provide a tailored domain speci�c form of prior knowledge. You will need some �rst
experience in machine learning and the respective frameworks (Python: PyTorch, TensorFlow; Julia:
Flux.jl, Lux.jl) before you can start implementing the methods discussed in this lecture.
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