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Inverse Problems

In most tomographic imaging methods the task of reconstructing a slice/volume image
of the object is an inverse problem.

Let I be a multi-dimensional function describing the unknown image, O be a function
that describes the raw measurement data collected with a tomographic device and S be
an operator that maps I to O. Then, the imaging equation for any tomographic
imaging method can be written in the form

O = S(I ). (1)

Before we dive into tomography, we discuss the key terminology of inverse problems.
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Direct Problem

• Given: The input / cause (i) for a system (S)

• Task: Determine the output of the system

o = S(i) (2)

Examples:
• Given a current in a electromagnetic coil with a defined geometry. Calculate the

magnetic field in space that is generated by the current.
• Given some object within the bore of a tomographic device. Calculate the signals,

the device will measure.
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Inverse Problem

• Given: The output of a system o (i.e. usually some noisy measurements)

• Task: Determine the input to the system i such that

S(i) ≈ o (3)

Examples:
• Given the magnetic field at a finite number of spatial positions. Determine the coil

geometry / current that could have been the cause for the observations.
• Given some measurements from a tomographic device. Calculate the object within

the scanner bore.
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Overview

input system output

direct problem

inverse problem
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Radiography



Radiography

During a radiography the object under examination is illuminated with X-ray.
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Radiography

When the ray passes the object it will be damped/attenuation due to interactions with
the matter of the object. In particular the ray is absorbed and scattered. The
attenuation coefficient µ is given by

µ = µS + µA

where µS is the scattering coefficient and µA is the absorption coefficient. The unit of
µ is 1

m . µ is spatially dependent and thus we consider it to be a function µ : R3 → R+
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Attenuation in Homogeneous Medium

Let I : R → R+ be the intensity of the X-ray. Let it pass along the η axis. Then one
observes

I (η +∆η) = I (η)− µ∆ηI (η)

⇔I (η +∆η)− I (η) = −µ∆ηI (η)

⇔ I (η +∆η)− I (η)

∆η
= −µI (η)

When considering the limit ∆η → 0 one obtains

lim
∆η→0

I (η +∆η)− I (η)

∆η
=

dI
dη

= −µI (η),

which is an ordinary differential equation.
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Attenuation in Homogeneous Medium

By separation of variables one obtains

dI
I

= −µ dη

Integration yields ∫
1
I

dI =
∫

−µ dη

and in turn

ln |I | = −µη + c .

Exponentiation leads to

I (η) = c̃e−µη
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Attenuation in Homogeneous Medium

Using the initial condition I (0) = I0 which is the X-ray intensity at the source one
obtains the Lambert-Beer law

I (η) = I0e−µη

Note that the Lambert-Beer law is only fulfilled for homogeneous media where µ is
constant.

In
¢
Object

⇒

\
Er 9



Attenuation in Inhomogeneous Medium

In an inhomogeneous medium µ depends on η so that

dI
I

= −µ(η) dη.

Integration leads to ∫
1
I

dI = −
∫

µ(η) dη

so that

ln |I | = −
∫

µ(η) dη + c .
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Attenuation in Inhomogeneous Medium

Exponentiation leads to

I (η) = c̃exp
(
−
∫

µ(η) dη
)
.

Using the initial condition I (0) = I0 one obtains

I (η) = I0exp
(
−
∫

µ(η) dη
)
.
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Attenuation in Inhomogeneous Medium

We now only consider the intensity at the detector

ID = I (ηD) = I0exp
(
−
∫ ηD

0
µ(η) dη

)
Dividing by I0 and taking the logarithm leads to

ln(ID/I0) = −
∫ ηD

0
µ(η) dη =: −p

Here p is the so-called projection.
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Remarks

• The intensity ID measured at the detector has always to be related to the intensity
I0 and the X-ray source.

• Typically X-ray data is visualized in the logarithmic form p = − ln(ID/I0).

• In X-ray and CT systems that source intensity can be usually adjusted to generate
different contrasts.
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Geometries

Until now we have considered a single X-ray passing through the medium and being
detected with a single detector pixel.

In practice the source emits the X-ray in a the form of a fan (2D) or a cone (3D).
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The detected projection value is in the case
of a fan beam X-ray source a 1D function
p : R → R.
In classical radiography cone beam is used
and the detector is a 2D function
p : R2 → R.
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Parallel Beam Geometry

A major simplification that we make from now on is that the X-ray source is moved to
−∞ yielding the so-called parallel beam geometry.
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Radiography as an Inverse Problem

We next consider radiography as an inverse problem. The system equation for the 2D
setting in parallel beam geometry reads

p(ξ) =

∫ ηD

0
µ(η, ξ) dη.

where p : R → R+ are the measured projections and µ : R2 → R+ is the attenuation
coefficient.

Direct Problem

The direct problem is easily solvable. After discretization one just has to sum up the
values of µ along the beam line.

Inverse Problem

The inverse problem reads: Given p, determine µ. Is that problem solvable?
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Radiography as an Inverse Problem

Existence of a Solution

A solution does exist. For instance a trivial solution is

µtrivial(η, ξ) :=
p(ξ)

ηD

since ∫ ηD

0
µtrivial(η, ξ) dη =

∫ ηD

0

p(ξ)

ηD
dη =

[
η
p(ξ)

ηD

]ηD
0

= ηD
p(ξ)

ηD
= p(ξ).
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Radiography as an Inverse Problem

Uniqueness of a Solution

The existence of a solution is a necessary condition but is that solution unique? Lets
consider

µβ(η, ξ) :=


p(ξ)
β η ≤ β

0 η > β

with β ∈ (0, ηD ], which yields∫ ηD

0
µβ(η, ξ) dη =

∫ β

0

p(ξ)

β
dη =

[
η
p(ξ)

β

]β
0
= β

p(ξ)

β
= p(ξ).

Thus, the inverse problem has infinite solutions. In practice this means that this
particular inverse problem is not solvable, i.e. it is not possible to determine µ(ξ, η)

from p(ξ).
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Limitations of X-ray imaging
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Summary

• Radiography allows to project the attenuation coefficients along a certain direction.

• During this process depth information is lost.

• The inverse problem of determining the attenuation coefficients µ from the
projections is not solvable. Therefore, in practice, the medical doctor looks at the
projection images and tries to decompose it by incorporating prior knowledge of
the underlying anatomy.
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