Medical Imaging

Prof. Dr. Tobias Knopp

6. Januar 2023

Institut für Biomedizinische Bildgebung

Compressed Sensing

Motivation MRI scans are slow and usually require minutes of acquisition time.

 \Rightarrow Acceleration techniques wanted!

Typical Data Flow

no Sinary Lag k spac data 1XXX Reco-struck idata acquisition lotge lorge! Comprisin (5]PEG) small minor artifacts

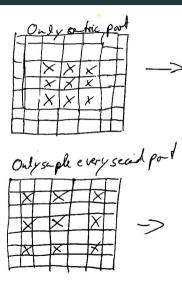
Observation

A lot of data is acquired / processed but in the end only a fraction of data is stored.

Wanted

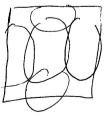
Measure only few data and "somehow" combine the reconstruction and the compression step.

Subsampling in *k*-space



low resolution ingl

Alias-y artifacts



Subsampling in *k*-space

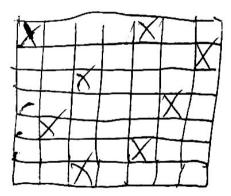
Mguncy Dad $\left(\right)$ er, ** Junder y fliasi

Sampling frequency has to be twice the signal bandwidth MRI: sampling in frequency space

- Not if the sampling is done in an equidistant way. This is always assumed when deriving the Nyquist criterion.
- If the sampling is done at random points one can beat the Nyquist criterion.
- Equidistant sampling is also named *coherent* sampling, while non-equidistant sampling is named *incoherent* sampling.

Ingredient 1 for Compressed Sensing

Incoherent sampling



Why is it possible to reduce the file size with JPEG?

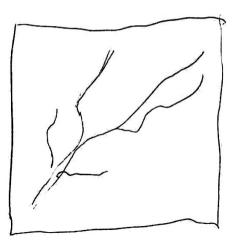
- Most images are *compressible*.
- The second ingredient therefore is that the underlying image is compressible.

- Express much information with only "few coefficients"
- few coefficients: \rightarrow *sparsity*

Sparsity in Image Space

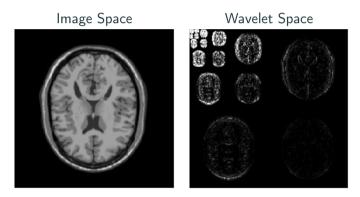
Only few pixels are non-zero.

Example: angiogram



Sparsity in under Transformation

If the data is not sparse in image space one can usually apply a *sparsifying* transformation such as a Wavelet transform or a Block DCT.



Remark

Wavelet transformation and block DCT are also used in regular compression algorithms.

Imaging Equation

$$Ax = b$$

Subsampled Imaging Equation

$$oldsymbol{A}_{ ext{red}}oldsymbol{x} = oldsymbol{b}_{ ext{red}}$$

 \Rightarrow underdetermined linear system

We now seek for a sparse solution.

 \Rightarrow **x** should have few non-zero entries

Ansatz

$$\boldsymbol{x}_{\text{CS}} = \underset{\boldsymbol{x}}{\operatorname{argmin}} \underbrace{\|\boldsymbol{A}_{\text{red}}\boldsymbol{x} - \boldsymbol{b}_{\text{red}}\|_{2}^{2}}_{\text{data term}} + \underbrace{\lambda \|\boldsymbol{x}\|_{0}}_{\text{sparsity term}}$$

 $\|\mathbf{x}\|_0 :=$ number of non-zero elements in \mathbf{x}

(1)

However, using the L_0 norm leads to a very computationally intensive problem (NP-hard) that is unfeasible to compute in practice. Therefore one usually uses alternatively

$$\boldsymbol{x}_{\text{CS}} = \underset{\boldsymbol{x}}{\operatorname{argmin}} \underbrace{\|\boldsymbol{A}_{\text{red}}\boldsymbol{x} - \boldsymbol{b}_{\text{red}}\|_{2}^{2}}_{\text{data term}} + \underbrace{\lambda \|\boldsymbol{x}\|_{1}}_{\text{sparsity term}}$$

with

$$\|\boldsymbol{x}\|_1 := \sum_{n=1}^N |x_i|$$

 \Rightarrow Convex problem that can be efficiently solved.

(2)

In case that x is not sparse it is required to first apply a sparsity transformation before the L_1 norm is evaluated:

$$\mathbf{x}_{\text{CS}} = \underset{\mathbf{x}}{\operatorname{argmin}} \underbrace{\|\mathbf{A}_{\text{red}}\mathbf{x} - \mathbf{b}_{\text{red}}\|_{2}^{2}}_{\text{data term}} + \underbrace{\lambda \|\mathbf{W}\mathbf{x}\|_{1}}_{\text{sparsity term}}.$$
(3)

Here, $\boldsymbol{W} \in \mathbb{C}^{N \times N}$ is the sparsity transformation matrix, e.g. a Wavelet transform or a block DCT. It is also possible to use a total-variation term for sparsification.