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Compressed Sensing



Compressed Sensing

Motivation
MRI scans are slow and usually require minutes of acquisition time.

⇒ Acceleration techniques wanted!
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Typical Data Flow
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Typical Data Flow

Observation
A lot of data is acquired / processed but in the end only a fraction of data is stored.

Wanted
Measure only few data and “somehow” combine the reconstruction and the compression
step.
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Subsampling in k-space
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Subsampling in k-space
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Nyquist Criterion

Sampling frequency has to be twice the signal bandwidth

MRI: sampling in frequency space
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Can Nyquist Criterion be Beaten?

• Not if the sampling is done in an equidistant way. This is always assumed when
deriving the Nyquist criterion.

• If the sampling is done at random points one can beat the Nyquist criterion.

• Equidistant sampling is also named coherent sampling, while non-equidistant
sampling is named incoherent sampling.
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Ingredient 1 for Compressed Sensing

Incoherent sampling
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Ingredient 2 for Compressed Sensing

Why is it possible to reduce the file size with JPEG?

• Most images are compressible.

• The second ingredient therefore is that the underlying image is compressible.
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Compressibility

• Express much information with only “few coefficients”

• few coefficients: → sparsity
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Sparsity in Image Space

Only few pixels are non-zero.

Example: angiogram
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Sparsity in under Transformation

If the data is not sparse in image space one can usually apply a sparsifying
transformation such as a Wavelet transform or a Block DCT.

Image Space Wavelet Space

Remark
Wavelet transformation and block DCT are also used in regular compression algorithms. 12



Compressed Sensing Reconstruction

Imaging Equation

Ax = b

Subsampled Imaging Equation

Aredx = bred

⇒ underdetermined linear system
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Compressed sensing reconstruction

We now seek for a sparse solution.

⇒ x should have few non-zero entries

Ansatz

xCS = argmin
x

∥Aredx − bred∥2
2︸ ︷︷ ︸

data term

+ λ∥x∥0︸ ︷︷ ︸
sparsity term

(1)

∥x∥0 := number of non-zero elements in x
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Compressed Sensing Reconstruction

However, using the L0 norm leads to a very computationally intensive problem
(NP-hard) that is unfeasible to compute in practice. Therefore one usually uses
alternatively

xCS = argmin
x

∥Aredx − bred∥2
2︸ ︷︷ ︸

data term

+ λ∥x∥1︸ ︷︷ ︸
sparsity term

(2)

with

∥x∥1 :=
N∑

n=1

|xi |

⇒ Convex problem that can be efficiently solved.
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Sparsity Transformation

In case that x is not sparse it is required to first apply a sparsity transformation before
the L1 norm is evaluated:

xCS = argmin
x

∥Aredx − bred∥2
2︸ ︷︷ ︸

data term

+ λ∥Wx∥1︸ ︷︷ ︸
sparsity term

. (3)

Here, W ∈ CN×N is the sparsity transformation matrix, e.g. a Wavelet transform or a
block DCT. It is also possible to use a total-variation term for sparsification.
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