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What is Magnetic Particle Imaging

• Tomographic imaging method that allows to image super-paramagnetic
nanoparticles (SPIOs)

• Invented by Bernhard Gleich in 2001 at Philips Research
• First publication: B. Gleich and J. Weizenecker, Tomographic imaging using the

nonlinear response of magnetic particles Nature. 435 30 (2005)
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First MPI Prototype
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History of MPI
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Comparison with existing Modalities

Tabelle 1: Quantitative comparison of different imaging modalities.

CT MRI PET SPECT MPI
spatial resolution 0.5 mm 1 mm 4 mm 10 mm 1–3 mm

acquisition time 1 s 1 s – 1 h 1min 1 min < 0.1 s

sensitivity medium medium very high very high high

quantifiability yes no yes yes yes

harmfulness X-ray heating β/γ radiation γ radiation heating
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Magnetic Nanoparticles

• Particles consist of an iron-oxide core and a hull that prevents agglomeration and
particle-particle interaction
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What is Magnetic Particle Imaging

• MPI images the spatially dependent concentration of SPIOs

• Concentration: Particles per Voxel
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Saturation Effect

• Particles align with external
magnetic field H

• Saturation when all particles
are aligned
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Particle Magnetization

Partice Magnetization

M :=
1

∆V

NP−1∑
j=0

mj (1)

where mj are the magnetic moments within a voxel.

Under equilibrium assumptions M can be expressed as

M(H) = M(H)eH , (2)

where eH is the direction of the magnetic field and

M(H) = c mL (βH) (3)

is the length of the magnetization vector in dependence of the strength of the magnetic
field H := ∥H∥2.
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Particle Magnetization

M(H) depends on the Langevin function

L(ξ) :=

coth (ξ)− 1
ξ

ξ ̸= 0

0 ξ = 0
(4)

and the scaling factor

β :=
µ0m

kBTP . (5)

µ0 is the permeability of free space, kB is the Boltzmann constant, TP is the particle
temperature, and m = VcoreM

S
core is the magnetic moment of a single particle. The

latter is determined by the saturation magnetization of the material MS
core of which the

particle core is made (usually magnetite) and the particle core volume Vcore =
1
6πD

3
core

derived from the core diameter Dcore.
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Particle Magnetization
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Signal and Spatial Encoding

Any tomographic imaging method needs two ingredients:

• Signal Encoding

• Spatial Encoding

Signal Encoding Signal encoding describes the process that the underlying
tomographic image generates some kind of signal.

Spatial Encoding Spatial encoding describes, how the spatial position of a voxel can be
encoded into the signal. Usually this means to create a spatial dependency of the signal.
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Signal and Spatial Encoding

Remark Signal and spatial encoding are in the end happening simultanuously. The do,
however, help understanding the imaging methods conceptually.

Example In computed tomography, the signal is encoded by passing an X-ray through
the object. This also partly does spatial encoding in one direction of the imaging plane.

Full spatial encoding is achieved by rotation of the gantry. This leads to the station that
the signal response of a delta peak in image space yields a different fingerprint in the
raw data signal, i.e. no two positions yield the same sinogram.
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Signal Generation

Signal generation in MPI is done by cyclic excitation of the magnetic nanoparticles
using dynamic magnetic fields. To illustrate the signal generation consider a
homogeneous sinusoidal drive field

HD(t) = −A cos(2πft)eH , (6)

with field amplitude A, frequency f , and field direction eH . If an ensemble of Langevin
particles is excited by this field it generates the signal

M(t) = M(HD(t)), (7)
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Signal Encoding

• A homogeneous field can be
generated by two coils with
currents flowing in the same
direction.
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Signal Encoding

Magnetic field is not perfectly homogenous
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Signal Encoding
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Linear material → excitation signal and particle signal cannot be distinguished.
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Signal Encoding
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MPI Imaging Equation – Frequency Space

The voltage signal u(t) is periodic and allows us to expand the voltage signal u(t) into
a Fourier series:

u(t) =
∞∑

k=−∞
ûke2πikt/T

and the spectrum consists of discrete lines at multiples of the frequency f = 1/T ,
which is also called the fundamental or base frequency. These multiples

fk = kf , k ∈ Z (8)

are usually called harmonic frequencies or just harmonics. The Fourier coefficients can
be computed by

ûk =
1
T

∫ T

0
u(t)e−2πikftdt, k ∈ Z. (9)
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MPI Imaging Equation – Frequency Space

As the induced voltage is real, the Fourier coefficients obey the relation

ûk =
1
T

∫ T

0
u(t)e−2πikftdt

=
1
T

∫ T

0

(
u(t)e2πikft

)∗
dt (10)

= (û−k)
∗ .

Therefore, one usually neglects the negative frequencies in MPI as they do not carry
any additional information.
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Signal Encoding
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Signal Encoding

The generation of higher harmonics for a non-linear magnetization curve can be
mathematically described by expanding the Langevin function into a Taylor series

L(ξ) = 1
3
ξ − 1

45
ξ3 +

2
954

ξ5 − 1
4725

ξ7 + . . . . (11)

If one considers the particle magnetization M, one can see that the argument µ0Hm
kBTP is

applied to the Langevin function. For a sinusoidal field excitation H(t) = −A cos(2πft),
the dynamic part of the particle magnetization can be written as

L(ξ̃ cos(2πft)) = ξ̃

3
cos(2πft)− ξ̃3

45
cos3(2πft) + . . . , (12)

where ξ̃ = −µ0Am
kBTP .
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Signal Encoding

Using the trigonometric formula

cos3(x) =
1
4
(3 cos(x) + cos(3x)) , (13)

one obtains

L(ξ̃ cos(2πft)) = ξ̃

3
cos(2πft)− ξ̃3

60
cos(2πft) +

ξ̃3

180
cos(2π(3f )t) + . . .

=
20ξ̃ − ξ̃3

60
cos(2πft) +

ξ̃3

180
cos(2π(3f )t) + . . . . (14)

Hence, the third harmonic, which corresponds to the frequency 3f is present in the
spectrum of the induced voltage for a sinusoidal excitation. By including higher order
terms cos5, cos7, . . . , one can verify that all odd harmonics are present in the signal
spectrum. The even harmonics are missing, as all even derivatives of the Langevin
function have a zero-crossing at the point ξ = 0, at which the Taylor series is expanded.
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Analog Signal Chain
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Spatial Encoding

Recall at this point that HD is homogeneous and thus all particles in space behave the
same.

What we do next is to superimpose a second magentic field HS(r), which is static but
spatially dependent:

HS(r) =

Gx 0 0
0 Gy 0
0 0 Gz

 r (15)

The effective excitation signal

H(r , t) = HD(t) + HS(r) (16)

is thus unique at each spatial position.
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Spatial Encoding

• The gradient field HS has a
field-free point in the center.

• The field increases in all
directions in space.

• It can be generated using two
coils and current flowing in
opposing directions.
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Signal Encoding

Magnetic field is not perfectly linear
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Spatial Encoding
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Signal Encoding

Single-voxel imaging – not very effective

FFP

image voxel

object

28



Signal Encoding

Line imaging – much more effictive

FFP

image voxel
object
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FFP Shift

selection field drive field superposition

30



Spatial Encoding
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Spatial Encoding

Particle Magnetization Gradient Field
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1D Imaging Sequence
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2D Imaging Sequence

34



MPI Coil Setup

receive coils focus-field coils

combined selection- and 
focus-field coilsdrive-field coils
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MPI Imaging Equation – Time Space

Theorem
The relation between the particle distribution c and the voltage u induced in a receive
coil with sensitivity p is linear and can be expressed as

u(t) =

∫
R3

s(r , t)c(r)d3r , (17)

where

s(r , t) = −µ0p(r) ·
∂m(r , t)

∂t
. (18)

denotes the system function in time space.

36



MPI Imaging Equation – Frequency Space

Theorem
The relation between the particle distribution c and the frequency components of the
induced voltage ûk is linear and can be expressed as

ûk =

∫
R3

ŝk(r)c(r)d3r . (19)

where

ŝk(r) = −µ0

T

∫ T

0
p(r) · ∂m(r , t)

∂t
e−2πikt/Tdt (20)

denotes the system function in frequency space.
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Discrete MPI Imaging Equation

Sampling of time and space leads to

Discrete Setting

ûk =
N∑

n=1

sk,ncn ⇔ u = Sc

where

k ∈ IK ,

IK = {1, . . . ,K},
u = (uk)k∈IK ,

c = (cn)n∈IN ,

S = (sk,n)k∈IK ;n∈IN
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Sampling of Space

Remark

• The sampling positions rn, n ∈ IN represent a
2D / 3D grid. E.g.

rn = rnx ,ny ,nz

for nd ∈ INd
, d = x , y , z and N = NxNyNz .

• Thus, one row of the system matrix S also
represents an image (in 2D) or volume (in 3D).
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How to determine the System Matrix

• Physical modeling of S is challenging (Relaxation effects, unknown parameters).

• Therefore, system matrix S is usually explicitly measured using a robot.

• The delta sample is a voxel filled with MNP and can be mathematically
represented as a unit vector e j where j ∈ IN .

• Since Se j = u j = S ·,j the calibration measurement picks the j-th column of S .
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How to determine the System Matrix

3 axis robot

rod

scanner bore

3D delta sample

2D delta sample
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MPI System Matrix

DF-FOV

SF-FOV

overscan MPI signal

Rahmer et al. BMC Med. Imag. 9 (2009).
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MPI System Matrix (2D)
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MPI System Matrix Row Energy (2D)
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Tensor products of Chebyshev polynomials
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Setting - Algebraic Reconstruction

ûk =
∫
V sk(r)c(r)d3r

u = Sc
size of S ≈30GB
for 303 positions

ured = S redc
3-10GB

argminc∥S redc−ured∥2
2+λ∥c∥2

2
reconstruction
time increases

with matrix size

discretization

filtering

reconstruction

46



Summary

• MPI is a tracer based imaging method exploiting the non-linear magnetization
behavior of magnetic nanoparticles

• It applies different magnetic fields to achieve signal and spatial encoding

• Image reconstruction is done by solving a linear system of equations using
regularization methods
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