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Signal Processing

• Understanding tomographic imaging techniques requires profound knowledge of
signal processing

• In particular Fourier analysis plays an important role

• Basics of signal processing will be recapitulated
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Signal

• A signal can be seen as a message that is send from a sender to a recipient.

• Usually they transport a physical quantity

• Signals can either be discrete or continuous (i.e. a function of N or R)

• Typically a signal depends on time and/or space
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Signal Examples

• s(x): spatial 1D signal, e.g. detector array in CT
• f (x , y): spatial 2D signal, e.g. slice through an object in CT
• c(t): temporal 1D signal, e.g. ECG

continuous signal discrete signal
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Fundamental Signals

• Heaviside step function

step(x) =

1, for x ≥ 0

0, for x < 0
(1)

• Rectangular function

rect(x) =


1, for |x | < 1

2

0.5, for |x | = 1
2

0, for |x | > 1
2

(2)

• Sinc function
si(x) = sinc(x) =

sin(πx)

πx
(3)
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Fundamental Signals

• Dirac delta distribution

δ(x − x0) =

0, for x ̸= x0

∞, for x = x0

= lim
x̃→0

1
x̃

rect(
x − x0

x̃
)
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Fundamental Signals

• The Dirac delta distribution is no function in a classical sense as ∞ can only be
considered in the limes and is not a valid function value.

• The Dirac delta distribution can be defined over the integral∫ ∞

−∞
δ(x − x0)f (x) dx = f (x0) (4)

In particular it holds that ∫ ∞

−∞
δ(x − x0) dx = 1 (5)

I.e. Dirac delta distribution has unit area.
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Systems

• A system L takes as input a function f (x) and outputs a function g(x)

g(x) = L{f (x)}

• A system is linear if
L{

∑
i

ai fi (x)} =
∑
i

aiL{fi (x)}

• A system is said to be time invariant / shift invariant if

L{f (x − x0)} = L{f }(x − x0).

This means a shift of the input signal by x0 leads to a shift by x0 of the output
signal.

• A system is said to be LTI or LSI if it is linear and time / shift invariant.
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Impulse Response and Convolution

Any LSI system can be described by a convolution integral

g(x) = L{f (x)}

=

∫ ∞

−∞
f (x̃)h(x − x̃) dx̃

= (f ∗ h)(x)

h is the so-called impulse response or point-spread function (PSF) that is obtained by
applying a Dirac delta to the LSI system

L{δ(x)} =

∫ ∞

−∞
δ(x̃)h(x − x̃) dx̃

=
subst. y=x−x̃

∫ ∞

−∞
δ(x − y)h(y) dy

=
δ is even

∫ ∞

−∞
δ(y − x)h(y) dy = h(x)
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Derivation of the Convolution Integral

Idea: express f (x) as a sum of shifted rectangular functions

f (x) = lim
x0→0

∞∑
n=−∞

f (nX0)rect
(
x − nX0

X0

)
Applying LSI properties yields

g(x) = L{f (x)} = lim
X0→0

∞∑
n=−∞

f (nX0)L
{

rect
(
x − nX0

X0

)}
=

∫ ∞

−∞
f (x̃)L{δ(x − x̃)} dx̃

=

∫ ∞

−∞
f (x̃)h(x − x̃) dx̃

9



Fourier Transformation

It is known from analysis lectures that (almost) any p-periodic function s(x) can be
expanded into a Fourier series

s(x) =
∞∑

n=−∞
cne

2πi nx
p

consisting of complex sinus functions eix = cos x + i sin x . The Fourier coefficients cn

can be calculated by

cn =
1
p

∫ p/2

−p/2
s(x)e−2πi nx

p dx
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From Fourier Series to Fourier Transformation

In order to also express non-periodic functions by Fourier series (i.e. any general
signal/function) one can consider the limes p → ∞

s(x) = lim
p→∞

∞∑
n=−∞

cne
2πi nx

p

=
f := n

p

∫ ∞

−∞
S(f )e2πifx df =: F−1{S(f )}

Here, f := n
p is the frequency and S(f ) = S(np ) = cn is a continuous function of

frequency. This is in contrast to the discrete spectrum of the periodic Fourier series.
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From Fourier Series to Fourier Transformation

The Fourier transform S(f ) of s(x) can be calculated by

S(f ) =

∫ ∞

−∞
s(x)e−2πifx dx =: F{s(x)}

S(f ) is often called the spectrum of s(x). The Fourier relation is often indicated by

s(x) cS(f )
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Example

The Fourier transformation of the rectangular function can be calculated to be

F{rect(x)} =

∫ ∞

−∞
rect(x)e−2πifx dx

=

∫ 1
2

− 1
2

e−2πifx dx

=
i

2πf

(
e−iπf − eiπf

)
=

sin(πf )

πf
= sinc(f )

In the last step the euler formula sin(f ) = eif −e−if
2i has been used.
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Transfer Function

Instead of describing an LSI system as a convolution with the PSF h(x) one can
equivalently describe it in Fourier space by considering the transfer function
H(f ) = F{h(x)}.

Theorem
A convolution g(x) = (s ∗ h)(x) in spatial space corresponds to a multiplication in
Fourier space:

G (f ) = S(f )H(f )

where G (f ) = F{g(x)}, S(f ) = F{s(x)}, and H(f ) = F{h(x)}.
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Proof

G (f ) = F{g(x)} = F{(s ∗ h)(x)}

=

∫ ∞

−∞

∫ ∞

−∞
s(x̃)h(x − x̃) dx̃e−2πifx dx

=

∫ ∞

−∞

∫ ∞

−∞
s(x̃)h(x − x̃)e−2πif (x−x̃)e−2πif x̃ dx̃ dx

=

∫ ∞

−∞

∫ ∞

−∞
s(x̃)h(z)e−2πif x̃e−2πifz dx̃ dz

=

∫ ∞

−∞
s(x̃)e−2πif x̃ dx̃

∫ ∞

−∞
h(z)e−2πifz dz

= S(f )H(f )
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Application of the Convolution theorem

• Efficient application of filter (low pass, high pass)

• Deconvolution / image sharpening
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Discrete Fourier transformation

In order to numerically calculate Fourier coefficients one has to sample the Fourier
integral a discrete and equidistant sampling points.

This makes the Fourier coefficients periodic so that the data in both domains (spatial
and frequency) is discrete (line spectrum) and periodic.

Given a sequence s0, . . . , sN−1 the discrete Fourier transformation (DFT) is defines as

Sm =
N−1∑
n=0

sne−2πi nm
N , m = 0, . . . ,N − 1
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Discrete Fourier transformation

The DFT is a unitary transformation and its inverse can be calculated by

sn =
1
N

N−1∑
m=0

Sme2πi nm
N , n = 0, . . . ,N − 1

When defining the vectors S := (Sm)
N−1
m=0 and s := (sn)

N−1
n=0 , and the discrete Fourier

matrix F :=
(
e−2πi nm

N

)
m=0,...,N−1;n=0,...,N−1

the DFT can be written in matrix-vector

form

S = Fs
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Fast Fourier Transformation

A naive implementation of the DFT would require O(N2) arithmetic operations.

The fast Fourier transformation is a fast algorithm capable of carrying out FFT in only
O(N logN). It uses a recursive divide and conquer principle.

Important is that the FFT can only be applied to equidistant sampling positions.
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Fast Fourier Transformation

Assumption: We will derive the DFT for N = 2r .

Basic idea: split the sum into two sums, which are itself regular DFTs.

Sm =
N−1∑
n=0

sne−2πi nm
N

=

N
2 −1∑
n=0

sne−2πi nm
N +

N
2 −1∑
n=0

sn+N
2
e−2πi

(n+N
2 )m

N

Now we will discuss two cases. m = 2l (even) and m = 2l + 1 (odd) for
l = 0, . . . , N2 − 1.
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Fast Fourier Transformation

Case m = 2l :

S2l =

N
2 −1∑
n=0

sne−2πi n2l
N +

N
2 −1∑
n=0

sn+N
2
e−2πi

(n+N
2 )2l
N

=

N
2 −1∑
n=0

sne
−2πi nl

N
2 +

N
2 −1∑
n=0

sn+N
2
e
−2πi nl

N
2 e−2πil︸ ︷︷ ︸

1

=

N
2 −1∑
n=0

(sn + sn+N
2
)e

−2πi nl
N
2︸ ︷︷ ︸

DFT length N
2
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Fast Fourier Transformation

Case m = 2l + 1:

S2l+1 =

N
2 −1∑
n=0

sne−2πi n(2l+1)
N +

N
2 −1∑
n=0

sn+N
2
e−2πi

(n+N
2 )(2l+1)
N

=

N
2 −1∑
n=0

sne
−2πi nl

N
2 e−2πi n

N +

N
2 −1∑
n=0

sn+N
2
e
−2πi nl

N
2 e−2πil︸ ︷︷ ︸

1

e−2πi n
N e−2πi 12︸ ︷︷ ︸

−1

=

N
2 −1∑
n=0

sne
−2πi nl

N
2 e−2πi n

N −

N
2 −1∑
n=0

sn+N
2
e
−2πi nl

N
2 e−2πi n

N

=

N
2 −1∑
n=0

e−2πi n
N (sn − sn+N

2
)e

−2πi nl
N
2︸ ︷︷ ︸

DFT length N
2 22



Fast Fourier Transformation

Instead of one length N DFT we can apply two length N
2 DFTs.

The transformation can be applied again and in the second step we need to apply four
length N

4 DFTs.

After r = log(N) steps we need to apply N DFTs of length 1.

In each step the algorithm needs N
2 additions, N

2 subtractions, and N
2 multiplications.

The algorithmic complexity it thus O(N) arithmetic operations.

Since the DFT requires log(N) steps, the overal time complexity is O(N log(N))

compared to O(N2) of an ordinary DFT.
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Fast Fourier Transformation

The FFT is usually implemented inplace and can be visualized as follows

24



Fast Fourier Transformation

• We have derived the FFT for N = 2r

• The same can be done for other basis 3,5,7,11,13, ...

• By prime factorization one can apply the FFT to general N

• Alternatively, one can pad the vector with zeros to the next power of 2

• The most popular FFT library is the FFTW (Fastest Fourier Transform in the
West). It is used in the Julia package FFTW.jl
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