
Department Informatik
Technical Reports / ISSN 2191-5008

Valentin Rothberg

Interrupt Handling in Linux

Technical Report CS-2015-07

November 2015

Please cite as:

Valentin Rothberg, “Interrupt Handling in Linux,” Friedrich-Alexander-Universität Erlangen-Nürnberg, Dept. of Computer

Science, Technical Reports, CS-2015-07, November 2015.

Friedrich-Alexander-Universität Erlangen-Nürnberg
Department Informatik

Martensstr. 3 · 91058 Erlangen · Germany

www.cs.fau.de



Interrupt Handling in Linux

Valentin Rothberg

Distributed Systems and Operating Systems
Dept. of Computer Science, University of Erlangen, Germany

rothberg@cs.fau.de

November 8, 2015

An interrupt is an event that alters the sequence of instructions executed
by a processor and requires immediate attention. When the processor
receives an interrupt signal, it may temporarily switch control to an inter-
rupt service routine (ISR) and the suspended process (i.e., the previously
running program) will be resumed as soon as the interrupt is being served.
The generic term interrupt is oftentimes used synonymously for two terms,
interrupts and exceptions [2]. An exception is a synchronous event that
occurs when the processor detects an error condition while executing an
instruction. Such an error condition may be a devision by zero, a page
fault, a protection violation, etc. An interrupt, on the other hand, is an
asynchronous event that occurs at random times during execution of a pro-
gram in response to a signal from hardware. A proper and timely handling
of interrupts is critical to the performance, but also to the security of a
computer system.

In general, interrupts can be emitted by hardware as well as by software.
Software interrupts (e.g., via the INT n instruction of the x86 instruction
set architecture (ISA) [5]) are means to change the execution context of
a program to a more privileged interrupt context in order to enter the
kernel and, in contrast to hardware interrupts, occur synchronously to the
currently running program. Consequently, such instructions are gates to the
privileged operating-system kernel (e.g., ring 0 on x86) and thus are used
to request services from the kernel (i.e., system calls). A hardware-triggered
interrupt indicates that some device requires attention of the processor,
and hence implements a means of communication between devices and the
operating system. Interrupts from hardware can greatly improve a system’s

1

mailto:rothberg@cs.fau.de


2

performance when devices send interrupts (e.g., a keystroke on a keyboard)
instead of expensive polling of devices (e.g., periodically polling a keyboard
for stroked keys). Furthermore, hardware-emitted interrupts by timers are
used for timing and time measurement in general, but also for time sharing
as ticks can be used to schedule another task.

After arrival of an interrupt, the processor executes the interrupt ser-
vice routine that is associated with this interrupt. The ISR is also referred
to as the interrupt request (IRQ) handler. But as interrupts are disabled
during execution of the IRQ handler, not all kinds of code can or should be
executed in this IRQ context. For instance, if such routine goes to sleep
with interrupts disabled, the system is likely to freeze. On the other hand,
active waiting and blocking should be avoided since other interrupts with
potentially urgent needs remain disabled and, hence, cannot be served.
Furthermore, acquiring locks is likely to cause deadlocks. As a consequence,
the Linux kernel offers various mechanisms and application programming
interfaces (APIs) to implement interrupt handling in order to meet certain
functional and non-functional requirements.

This report focuses on how the Linux operating-system kernel handles
interrupts on the software side and aims to give brief background infor-
mation as well as implementation details. Detailed information about
exceptions and exception handling in the x86 architecture can be found in
the CPU manual ”Intel 64 and IA-32 Architectures Software Developer’s
Manual” [5]. Notice that the report does not aim for completeness, neither
does it target to introduce the general concept of interrupts. It rather tries
to provide information for developers, researchers and students, familiar
with operating systems and operating-system concepts, how Linux handles
interrupts on the software side.



1 Basic Interrupt Handling 3

1 Basic Interrupt Handling

After arrival of an interrupt, the processor executes an interrupt request handler that is
associated with this interrupt and hence with the issuing device or software interrupt.1

The execution of such IRQ handlers in Linux is constrained by certain conditions.
The most important condition is that the execution of an IRQ handler cannot be
interrupted. Hence, interrupts on the executing CPU are disabled until the handler
returns.

Earlier versions of the Linux kernel knew two types of interrupt handlers. A fast
handler that runs with interrupts disabled, and a slow handler that runs with in-
terrupts enabled. Slow handlers turned out to be dangerous since they could be
interrupted by other interrupts. Such nested interruptions lead to undesirable issues,
most importantly to overflows of the interrupt stack. Nowadays, interrupt handlers
run with interrupts disabled which puts certain limitations on the code to be executed:

Execution Time
Interrupt handlers need to be as fast as possible. The more time it takes to finish
execution of an IRQ handler, the longer local interrupts will be disabled. Hence,
long running handlers can slow down the system and may also lead to losing
interrupts. The faster the handler returns, the lower the interrupt latencies in
the kernel, which is especially important for real-time systems.

Execution Context
Interrupt handlers are executed in hard-interrupt context – CPU-local interrupts
remain disabled. As a consequence, locking is undesirable and sleeping must be
avoided. Handlers that rely on such mechanisms need to defer parts of their code
into another, safer context (see Section 2 and Section 3).

Both limitations lead to the fact that most interrupt handlers execute only a small
amount of code and defer the rest of the work to a later point in time. This assures a
fast re-enabling of CPU-local interrupts and thereby reduces latency, and avoids losing
interrupts. Furthermore, code that may block or sleep (e.g., when allocating memory)
can be executed in a safer context without slowing down or even stopping the system.

The prototype of a Linux IRQ handler expects two arguments: the interrupt line
and a unique device identifier of the peripheral (i.e., the pointer to the device structure
of the associated hardware device).

typedef irqreturn_t (*irq_handler_t)(int, void *);

1The process of how the processor or the OS finds the right handler is architecture and implementation
specific and will not be covered in this document.



1.1 Registering Interrupt Handlers 4

1.1 Registering Interrupt Handlers

Linux provides several functions to register an IRQ handler (see include/linux/

interrupt.h):

request irq() expects as arguments an interrupt line (i.e., the interrupt number
of the issuing device), a function pointer to the interrupt handler, interrupt flags
(see Section 1.2), an ASCII string and a unique device identifier. When an interrupt
occurs, the interrupt line and the pointer to the device will be passed to the registered
handler which can use this data for further processing.

static inline int __must_check
request_irq(unsigned int irq, irq_handler_t handler,

unsigned long flags, const char *name, void *dev);

request threaded irq() requires a second irq handler t handler that will be ex-
ecuted in a dedicated kernel thread after the IRQ handler returns. Moving code
execution into a kernel thread is mandatory for handlers that may sleep. Section 2
explains in greater detail why and how interrupt handling can be deferred. Note that
if the IRQ handler is set to NULL it will default to the default primary handler which
does nothing more than returning IRQ WAKE THREAD (see Section 1.3).

extern int __must_check
request_threaded_irq(unsigned int irq, irq_handler_t handler,

irq_handler_t thread_fn, unsigned long flags,
const char *name, void *dev);

request any context irq() has the same interface as request irq() but different
semantics. Depending on the underlying hardware platform, the function will further
call request irq() or request threaded irq() to execute the requested handler as
a threaded interrupt handler. This function is helpful for drivers that register interrupt
handlers that may run as a thread, depending on the underlying hardware. By using this
function the kernel can decide during execution time how and where the IRQ handler
will run. See git commit ae731f8d0785 (“genirq: Introduce request any context irq()”)
for more information.

request percpu irq() has the same interface as request irq() but will set the handler
as a per-CPU interrupt handler. Per-CPU interrupts are used for instance to associate
local timers to each core. While these timers are separate devices and have a separate
interrupt line to a core, they all use the same IRQ number. To distinguish between
the different cores, this function uses CPU-local device identifiers. Hence, the passed
device identifier (void *dev) must be globally unique; the handler is then invoked
with the interrupted CPU’s instance of that variable.

https://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git/commit/?id=ae731f8d0785


1.2 Interrupt Flags 5

1.2 Interrupt Flags

The following IRQ flags can be passed to request an IRQ handler and are defined in
(see include/linux/interrupts.h):

IRQF DISABLED

In ancient versions of the Linux kernel, there were two types of main inter-
rupt handlers. Fast handlers, which ran with interrupts disabled (i.e., with
IRQF DISABLED set), and slow handlers that remained interruptible. According
to commit e58aa3d2d0cc (“genirq: Run irq handlers with interrupts disabled”)
running IRQ handlers with interrupts enabled can cause stack overflows which
is an undesirable situation, especially in an OS kernel. Since then, interrupts
remain disabled during execution of an IRQ handler. See Linux Weekly News
(LWN) [4] to get more background information.

Note that this flag has been removed by commit d8bf368d0631 (”genirq: Remove
the deprecated ’IRQF DISABLED’ request irq() flag entirely”) since Linux v4.1
(August 2015).

IRQF SHARED

Allow an interrupt line to be shared among several devices. Handlers that share
an interrupt line need to check first if the passed device identifier belongs to them
(i.e., they check if the arriving interrupt was issued by their device) and must
return IRQ NONE (see Section 1.3) in case not.

IRQF PROBE SHARED

Set by callers to avoid sharing mismatches (i.e., when the line is already occupied
by another handler that does not share the line). In case of a mismatch the
kernel will print an error message and dump the stack. This flag is barely used
since most devices that support sharing can use multiple interrupt lines and just
pick another line if a request fails.

IRQF PERCPU

Interrupt is per CPU.

IRQF NOBALANCING

Flag to exclude this interrupt from IRQ balancing. The purpose of IRQ balancing
is to distribute hardware interrupts across processors on a multiprocessor system
in order to increase performance. The load balancing takes the current workload
as well as cache locality and other functional and non-functional properties into
account. Setting this flag forbids to set any CPU affinity for the requested
interrupt handler. Such functionality is needed to provide a flexible setup for
clocksources.

IRQF IRQPOLL

A polled interrupt indicates that one of the attached devices may need attention

https://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git/commit/?id=e58aa3d2d0cc
https://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git/commit/?id=d8bf368d0631


1.2 Interrupt Flags 6

but the kernel does not know on which interrupt line. Hence the system needs to
poll all attached devices to find out which one has triggered the interrupt. For
performance reasons, the kernel only checks the first registered device on shared
interrupt lines. Polling interrupts are implemented as timers and are used, for
instance, in old network-card drivers to periodically poll for incoming network
packets in order to mitigate interrupts under high load.

IRQF ONESHOT

The interrupt is not reenabled after the IRQ handler finishes. This flag is required
for threaded interrupts which need to keep the interrupt line disabled until the
threaded handler has run.

Specifying this flag is mandatory if the primary handler is set to NULL. The default
primary handler does nothing more than to return IRQ WAKE THREAD to wake up
a kernel thread to execute the thread fn IRQ handler. If the IRQF ONESHOT flag
is not specified, some handlers will end up in stack overflows since the interrupt
of the issuing device is still active. Hence the kernel rejects such requests and
throws an error message. The Coccinelle2 script scripts/coccinelle/misc/

irqf_oneshot.cocci detects such cases automatically.

IRQF NO SUSPEND

Do not disable this IRQ during suspension. There are interrupts that can
legitimately trigger during the entire system suspend-resume cycle, including the
“noirq” phases of suspending and resuming devices, as well as during the time
when no-boot CPUs are taken offline and brought back online. That applies to
timer interrupts in the first place, but also to inter process interrupts (IPI) and
to some other special-purpose interrupts.

Note that the IRQF NO SUSPEND flag affects the entire IRQ line and not just one
user of it. Thus, if the line is shared, all of the interrupt handlers installed for
it will be executed as usual after suspend device irqs(). For this reason, using
IRQF NO SUSPEND and IRQF SHARED at the same time should be avoided.

IRQF FORCE RESUME

Enable the IRQ on resume even if IRQF NO SUSPEND is set. Xen needs to reenable
interrupts that are marked IRQF NO SUSPEND in the resume path.

IRQF NO THREAD

The interrupt cannot be threaded. Some low level interrupts (e.g., timers) cannot
be threaded even when we force to thread all interrupt handlers.

IRQF TIMER

Flag to mark this interrupt as a timer interrupt. This flag is an alias for
“IRQF NO SUSPEND | IRQF NO THREAD”.

2http://coccinelle.lip6.fr/

http://coccinelle.lip6.fr/


1.3 Return Type of Interrupt Handlers 7

IRQF EARLY RESUME

Resume IRQ early at resume time of system core operations instead of at device
resume time. See the commit message of the introducing commit 9bab0b7fbace
(“genirq: Add IRQF RESUME EARLY and resume such IRQs earlier”): “Under Xen
we need to resume IRQs associated with IPIs early enough that the resched IPI
is unmasked and we can therefore schedule ourselves out of the stop machine
where the suspend/resume takes place.”

In some cases it might be useful to know in advance if a specified interrupt line can
be requested with specific flags. The kernel provides the function can request irq()

to accomplish this task:

int can_request_irq(unsigned int irq, unsigned long flags);

The function first searches the line’s IRQ descriptor, and then checks if the specified
flags conflict with the flags of any already registered IRQ handler of this interrupt
line. If no other handler is registered, the line can be requested immediately. Since the
peripheral component interconnect (PCI) standard requires devices to share interrupts,
can request irq() is used in this context to check if the specified interrupt line can be
shared. However, most drivers just loop over an array of supported interrupt lines and
use the first successfully requested line.

1.3 Return Type of Interrupt Handlers

The return type irqreturn t of interrupt handlers constraints the behavior after return
of the handler:

IRQ NONE

This flag is mostly used for shared IRQ handlers. When the interrupt did not
originate from the driver’s device, IRQ NONE must be returned to allow the kernel
to call the next registered interrupt handler.

IRQ HANDLED

The interrupt has been handled successfully.

IRQ WAKE THREAD

The IRQ handler thereby requests to wake the handler thread. It im-
plies IRQ HANDLED and must only be returned by handlers registered with
request threaded interrupt() (see Section 2.4) in order to wake up the kernel
thread that will execute the second handler.



1.4 Unregister Interrupt Handlers 8

1.4 Unregister Interrupt Handlers

An interrupt handler can be unregistered from an interrupt line by calling free irq().
This function will also disable the interrupt line if it is no longer used by handlers. The
function waits for running IRQ handlers to finish, and should consequently never be
called from any interrupt context to avoid potential deadlocks.

void free_irq(unsigned int irq, void *dev_id);

1.5 Managed Device Resources

The basic idea of managed device resources is to ease driver development by keeping track
of all allocated resources, which need to be freed automatically when the driver detaches
from the device. Hence, developers do not need to deal with the entire set of deallocation
calls and the kernel is less prone to leak memory. In addition to the aforementioned API,
the kernel ships similar functions for managed device resources, which expect a struct

device as the first argument implemented in kernel/irq/devres.c. Note that the
interrupt line still needs to be freed. You may read Documentation/driver-model/

devres.txt for general information about the concept or read a detailed article on
LWN from January 2007 [3].



2 Bottom Halves 9

2 Bottom Halves

When the processor receives an interrupt signal, it temporarily switches control to
an interrupt-request handler and the suspended process (i.e., the previously running
program) will be resumed as soon as the interrupt is being served. Such interrupt
handlers in Linux run with disabled interrupts, which are re-enabled when the handler
returns. Hence, not all kinds of code can or should be executed in this so-called hard
interrupt context. Especially blocking operations, such as acquiring a lock or requesting
memory, are likely to cause deadlocks or may even lead to losing interrupts since
arriving interrupts cannot be served. Sleeping, on the other hand, is doomed to freeze
the currently executing processor.

Linux, among other UNIX-like operating systems, addresses the limitations of code
execution in interrupt handlers by moving (parts of) the code outside the hard-interrupt
context by splitting up interrupt handlers into two halves: top halves (i.e., the common
interrupt handlers), and bottom halves which run in a so-called soft-interrupt context
or even in process context executed by kernel threads. Note that the meaning of top
and bottom halves may differ in literature depending on the target operating system
and the hardware architecture of interest. In the course of this report, a top half
represents the hard interrupt handler, which can defer work to one or multiple bottom
halves. In general, a top half should execute as little code as possible, and, if needed, to
schedule the corresponding bottom half. In stark contrast to top halves, bottom halves
generally remain interruptible and thus are more suitable for long running tasks. Note
that the decision of which code should be executed in the top half and which code in
the bottom half is not always trivial. If a developer choses to run his interrupt handler
only as a top half, the interrupt will be handled as fast as possible since scheduling and
executing bottom halves takes time and, hence, entails latency. However, depending
on the execution time of the top half, the developer may risk to lose other interrupts,
which is generally intolerable.

The following sections cover a broad set of bottom half mechanisms and APIs provided
by the Linux kernel, each tailored to specific needs and use cases.

2.1 Softirqs

Softirqs are bottom halves that run in kernel context, and are suitable for long running,
non-blocking handlers. Softirqs are executed after return of a hard-interrupt handler
(i.e., top half) and before return to user space from a system call. Hence, a softirq is
executed as early as possible but remains interruptible so that the execution can be
preempted by any top half. All softirqs are defined in an enumerator, which is used
internally to map a softirq handler (i.e., a function pointer) to a unique number (i.e.,
the associated enumerator entry). The unique softirq number is used at run time to
raise/schedule a specific softirq. Since a softirq is executed on the processor it has
been raised on, each processor has its own softirq bitmap. After return of a top half



2.1 Softirqs 10

and before return to user space from a system call, the kernel iterates over the bitmap
(least significant bit first) and executes the associated softirq handler of those entries
that are set. All in all, there are four major properties of softirqs:

1. Softirqs are declared at compile-time in an enumerator. Hence, softirqs are not
suitable for drivers that want to register their softirqs when they are loaded at
run time.

2. Softirqs are executed as early as possible (i.e., after return of a top half and
before return to user space from a system call), giving a high priority to the
executed softirq handlers. In case of Linux, this is mainly networking and block
IO. However, softirqs delay any user or kernel thread, which declassifies blocking
to avoid monopolization of the CPU and the kernel.

3. Softirqs can run in parallel. Each processor has its own softirq bitmap. Hence,
one softirq cannot be scheduled twice on the same processor but it may run in
parallel on another. This property makes a lot of sense for networking and IO
since data can be processed CPU-locally (good for cache optimizations) and the
associated softirqs can run in parallel. However, the parallel execution of softirqs
may require some locking to avoid race conditions which in turn raises the risk of
deadlocks. Ideally, softirq handlers should be written in a non-blocking manner.

4. Softirqs have a fixed execution hierarchy. The kernel iterates over the softirq
bitmap, least significant bit (LSB) first, and executes the associated softirq
handlers. Due to the LSB first execution, softirqs are executed in ascending order
as declared in the softirq enumerator.

The softirq enumerator is declared in include/linux/interrupts.h and looks as
illustrated below. Remember that softirqs are executed in ascending order, such that
HI SOFITRQ is to be executed first, RCU SOFTIRQ last.

enum
{

HI_SOFTIRQ=0,
TIMER_SOFTIRQ,
NET_TX_SOFTIRQ,
NET_RX_SOFTIRQ,
BLOCK_SOFTIRQ,
BLOCK_IOPOLL_SOFTIRQ,
TASKLET_SOFTIRQ,
SCHED_SOFTIRQ,
HRTIMER_SOFTIRQ,
RCU_SOFTIRQ,
NR_SOFTIRQS

};

2.1.1 Registering Softirq Handlers

The kernel provides the function open softirq() to associate a softirq handler (2nd
parameter) with a specified softirq (1st parameter). Note that the specified function



2.1 Softirqs 11

(action) has the same signature as top-half handlers. It becomes clear that softirqs
are simply a mean to defer work from hard-interrupt handlers to soft-interrupt context
and consequently provide the same interface.

void open_softirq(int nr, void (*action)(struct softirq_action *))
{

softirq_vec[nr].action = action;
}

2.1.2 Scheduling Softirqs

Linux keeps a CPU-local bit mask to indicate if a softirq needs to be executed or not.
raise softirq() sets the corresponding bit of the specified softirq, which schedules
the execution of the associated interrupt handler; either after return of a top half or
before return to user space from a system call. raise softirq irqoff() must be used
to schedule a softirq when interrupts are disabled in order to avoid potential dead
locks.

void raise_softirq(unsigned int nr)
{

unsigned long flags;
local_irq_save(flags);
raise_softirq_irqoff(nr);
local_irq_restore(flags);

}

2.1.3 Executing Softirqs

The actual execution of softirqs is managed by do softirq() (see kernel/softirq.c)
which further calls do softirq() in case any bit in the local softirq bit mask is set.
Depending on the context and the execution path of the caller, a new stack might be
set up before to avoid exceeding stack boundaries. do softirq() then iterates over the
softirq bit mask (least significant bit first) and invokes scheduled softirq handlers.

2.1.4 ksoftirqd - When Softirqs are just too much

Softirqs are executed as long as the processor-local softirq bitmap is set. Since softirqs
are bottom halves and thus remain interruptible during execution, the system can find
itself in a state where it does nothing else than serving interrupts and softirqs: incoming
interrupts may schedule softirqs what leads to another iteration over the bitmap. Such
processor-time monopolization by softirqs is acceptable under high workloads (e.g.,
high IO or network traffic), but it is generally undesirable for a longer period of time
since (user) processes cannot be executed.

The Linux kernel addresses the problem of processor monopolization by softirqs with
a simple, yet powerful mechanism. After the tenth iteration over the softirq bitmap,
the kernel schedules the so-called ksoftirqd kernel thread, which takes control over the
execution of softirqs. This processor-local kernel thread then executes softirqs as long



2.1 Softirqs 12

as any bit in the softirq bitmap is set. The aforementioned processor-monopolization is
thus avoided by deferring softirq execution into process context (i.e., kernel thread), so
that the ksoftirqd can be preempted by any other (user) process. Another advantage
to move execution of softirqs into process context is to let the scheduler decide when
to dispatch which task; the scheduler has a global view of the current work load and
can also take task priorities into consideration.

In older kernels, the ksoftirqd threads ran at the lowest possible priority. This means
that softirqs ran either on high priority (i.e., kernel context) or on the lowest priority.
Since Linux v2.6.23 (October 2007), ksoftirqds run at normal priority by default.

2.1.5 Softirqs and NAPI

The new API (NAPI) is a networking API of the Linux kernel, introduced with Linux
v2.5 in the year 2001 and targets towards interrupt mitigation. NAPI mixes interrupts
with polling and thereby provides higher performance under high traffic load by signifi-
cantly reducing the load on the CPU [1].

Chrisitan Benvenuti describes the general idea behind NAPI in his book Understanding
Linux Network Internals [1] as follows: In the old model, a device driver generates
an interrupt for each network frame it receives. As a consequence, under high traffic
loads, the time and effort spent handling interrupts can lead to a considerable waste of
resources, higher latencies and a decreasing throughput. The main idea behind NAPI
is simple: instead of using a pure interrupt-driven model, it uses a mix of interrupts
and polling. If new frames are received when the kernel has not finished handling the
previous ones yet, there is no need for the driver to generate other interrupts: it is just
easier to have the kernel keep processing whatever is in the device input queue (with
interrupts disabled for the device), and reenable interrupts once the queue is empty.
This way, the driver reaps the advantages of both interrupts and polling:

• Asynchronous events, such as the reception of one or more frames, are indicated
by interrupts so that the kernel does not have to check continuously if the device’s
ingress queue is empty.

• If the kernel knows that there is something left in the device’s ingress queue,
there is no need to wait for the next interrupt and waste (again) time handling
following interrupt, but the kernel can switch to polling instead.

By looking at the softirq enumerator, the entries NET TX SOFTIRQ and
NET RX SOFTIRQ in particular, it becomes clear that Linux developers implemented
NAPI by means of softirqs:

enum
{ [...],

NET_TX_SOFTIRQ,
NET_RX_SOFTIRQ, [...]

};



2.2 Tasklets 13

A NAPI driver uses a softirq handler to dequeue frames from the ingress queue(s)
of the supported network card. When the limit of maximum dequeued frames per
dequeue-iteration is reached, the softirq handler sets the corresponding bit in the
softirq bitmap (i.e., NET RX SOFTIRQ) to make sure that the queue will be dequeued
timely – before return to user space. Hence, by making use of softirqs, a network driver
cannot monopolize the kernel even under high load: as soon as the kernel dequeued
the ingress-queue for the tenth time, the ksoftirqd kernel thread (Section 2.1.4) will be
scheduled which takes control over softirq handling and hence over dequeuing. Thereby,
the ksoftirqd kernel thread completely eliminates the need to implement polling by
means of timers, since the scheduler ensures that the network card is periodically
polled.

2.2 Tasklets

Tasklets are bottom halves that run in kernel context. They are suitable for long
running and non-blocking tasks, and allow – in contrast to softirqs – a dynamic
allocation of new handlers. Internally, tasklets are implemented by means of softirqs.
In a simplified way: the tasklet softirq-handler is responsible for executing all items
(i.e., tasklet handlers) of a linked list. A major difference to softirqs is that a tasklet
cannot run simultaneously on multiple CPUs. Tasklets avoid concurrency by design
and thereby take the responsibility to synchronize data access from the developer,
which further eases driver development. Nonetheless, tasklets are bottom halves, so
the principle of a split interrupt service remains the same: the top half performs a
small amount of work in hard interrupt context and defers the rest of the work to an
interruptible context – by scheduling a tasklet.

2.2.1 The Requirement of Dynamic Bottom-Half Allocation

Softirqs were originally designed as a vector of 32 entries. Each time a new softirq was
added to the enumerator, developers were forced to change the hierarchy among softirqs.
This approach increased the complexity of softirqs as well as their development, since
developers were forced to come up with a new hierarchy for each new softirq. To avoid
this manual approach, a new class of bottom halves has been introduced with Linux
v2.3.43 (February 2000), tasklets. Tasklets can be dynamically allocated, making them
suitable for driver developers who rely on dynamically allocatable resources since many
drivers can be loaded into the kernel at runtime.

2.3 Execution as Softirqs

Tasklets are organized in linked lists. Each CPU has two local tasklet lists, one for nor-
mal and one for high priority tasklets. The execution of tasklets happens in the softirq ac-
tion handlers tasklet action() and tasklet hi action() (see kernel/softirq.c).
Both handlers iterate over the corresponding list of tasklets and call the associated
tasklet handler of each list item. In case a tasklet is already running on another core,
it will be re-added to the list and the pending bit in the softirq bitmask will be set



2.3 Execution as Softirqs 14

to indicate an additional iteration of softirq execution. Data accesses to the tasklet
lists are synchronized by disabling local interrupts. The synchronization of one tasklet
over multiple CPUs is accomplished by atomary test and set bit() operations; if
the operation succeeds, the tasklet is not already running on another CPU and, hence,
the associated handler can be invoked. Otherwise, the tasklet will be rescheduled by
adding it back to the list and setting the associated softirq bit to indicate another
round of softirq execution.

Let us have a look again at the softirq enumerator, which contains two types of
tasklets: HI SOFTIRQ for high priority tasklets, and TASKLET SOFTIRQ for normal prior-
ity tasklets. Remember that softirqs are executed in ascending order. It is interesting
to see that high priority tasklets are executed before the timer, networking and block
IO, which traditionally have the highest priority in Linux.

enum
{

HI_SOFTIRQ=0,
TIMER_SOFTIRQ,
NET_TX_SOFTIRQ,
NET_RX_SOFTIRQ,
BLOCK_SOFTIRQ,
BLOCK_IOPOLL_SOFTIRQ,
TASKLET_SOFTIRQ,
SCHED_SOFTIRQ,
HRTIMER_SOFTIRQ,
RCU_SOFTIRQ,
NR_SOFTIRQS

};

The internal data structure of tasklets, tasklet struct, includes a next pointer, a
state flag, an atomic counter to indicate if the tasklet is enabled or disabled , a function
pointer to the bottom-half handler, and the argument for this function.

struct tasklet_struct
{

struct tasklet_struct *next;// linked list
unsigned long state; // scheduled or running? (for waiting)
atomic_t count; // enabled or disabled?
void (*func)(unsigned long);// function pointer, i.e. bottom half
unsigned long data; // argument for function

};

The kernel provides two macros to declare tasklets. DECLARE TASKLET() sets the
atomic counter to 0, which indicates that the tasklet is ready to be scheduled, whereas
DECLARE TASKLET DISABLED() sets the counter to 1, so that the tasklet cannot be
scheduled without explicitly setting the counter to 0.



2.3 Execution as Softirqs 15

There is also a function to initialize a specified tasklet that will be marked to be
ready for scheduling:

void tasklet_init(struct tasklet_struct *t, void (*func)(unsigned long),
unsigned long data)

{
t->next = NULL;
t->state = 0;
atomic_set(&t->count, 0);
t->func = func;
t->data = data;

}

To enable a tasklet, we can use tasklet enable(). Tasklets can be disabled with
two functions, whereas tasklet disable() waits until running or already scheduled
instances of the tasklets have returned; tasklet disable nosync() is a brute-force
disabling of the specified tasklet.

static inline void tasklet_enable(struct tasklet_struct *t);
static inline void tasklet_disable(struct tasklet_struct *t);
static inline void tasklet_disable_nosync(struct tasklet_struct *t);

2.3.1 Scheduling Tasklets

The following enumerator is used to represent the two states of a tasklet, namely if it is
already scheduled for execution or if it is running at the moment. This differentiation
is especially important for SMP systems, since one tasklet cannot run simultaneously
on multiple cores.

enum
{

TASKLET_STATE_SCHED,/* Tasklet is scheduled for execution */
TASKLET_STATE_RUN /* Tasklet is running (SMP only) */

};

Since there are two classes of tasklets and hence two different CPU-local linked
lists, the kernel provides two functions to schedule (i.e., enqueue) a tasklet at normal
and at high priority. If a specified tasklet has been scheduled before (i.e., if the
TASKLET STATE SCHED is set), it will not be reschuled.

static inline void tasklet_schedule(struct tasklet_struct *t)
{

if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->state))
__tasklet_schedule(t);

}
static inline void tasklet_hi_schedule(struct tasklet_struct *t)
{

if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->state))
__tasklet_hi_schedule(t);

}

Once scheduled, a tasklet can be removed from the ready list by calling
tasklet kill(struct tasklet struct *t). The function waits for running instances
to return and unsets the TASKLET STATE SCHED bit in the flags of the specified tasklet.



2.4 Threaded Interrupts 16

2.4 Threaded Interrupts

Threaded interrupts are bottom halves that run each in their own, separate kernel
thread. The concept was introduced by Thomas Gleixner3 and originates from the
real-time kernel tree. As a consequence, threaded interrupts meet many requirements
of a real-time system, most importantly reducing interrupt latency in the kernel and
allowing a fine-grained priority model.

The general rule behind threaded interrupts is simple: defer as much work to the
kernel thread as possible – preferably all work. Only minimal work should be done in
hard-interrupt context, for instance, verifying the interrupt on shared interrupt lines.
Besides reducing the interrupt latency in the kernel, using threaded interrupts reduces
complexity since it avoids many sources of deadlocks in synchronizing top and bottom
halves – all code should be executed in the bottom half. Buggy IRQ handlers are also
less likely to break the system since they are executed in process context by means of
kernel threads.4 Since each requested threaded interrupt receives its own kernel thread,
using them brings along two essential benefits:

1. A threaded interrupt handler cannot ultimately block the execution of another as
it can happen by using the workqueue API, where one kernel thread may serve
as an execution provider for multiple work items (see Section 3).

2. Real-time systems are all about priorities. Since each handler has its own thread,
we can assign individual priorities to the associated threads/interrupts. By default,
the threads run at normal real-time priority (i.e., MAX USER RT PRIO/2).

2.4.1 Requesting Threaded Interrupts

Requesting a threaded interrupt handler is straight forward and requires the specification
of a second interrupt handler that will be executed in process context.

int request_threaded_irq(unsigned int irq, irq_handler_t handler,
irq_handler_t thread_fn, unsigned long irqflags,
const char *devname, void *dev_id);

Note that the first (hard) IRQ handler can be set to NULL, so that the default
primary handler will be executed. This default handler does nothing more than to
return IRQ WAKE THREAD to wake up the associated kernel thread which will execute the
thread fn handler. Hence, it is possible to move the execution of interrupt handlers
entirely to process context, which is widely used in the domain of real-time systems.
In such case the IRQF ONESHOT flag must be passed, otherwise the request will fail. If
you do not specify the IRQF ONESHOT flag in such a situation, the interrupt would be
reenabled after return of the top half, resulting in stack overflows for level interrupts
since the issuing device has still the interrupt line asserted. Hence, the kernel rejects
such requests and throws an error message.

3https://lkml.org/lkml/2009/3/23/346
4https://lwn.net/Articles/302043/

https://lkml.org/lkml/2009/3/23/346
https://lwn.net/Articles/302043/


3 Workqueues 17

3 Workqueues

The workqueue API is the most commonly used interface to defer work into an asyn-
chronous process execution context. The basic concept is to queue so-called work items
in a workqueue. All work items are dequeued and executed in process context: the
so-called worker, a kernel thread, picks up the items from the workqueue and executes
the functions associated with those items. If there is no work, the worker will idle, but
wake up as soon as new items arrive in the workqueue. Since work items are executed
in process context, using workqueues is a suitable choice for work that needs to sleep.
Workqueues are also suitable for long running and lengthy tasks, since the system
scheduler can guarantee forward progress for other threads – also user processes – so
that workers can be preempted at any time. Thereby the entire system can benefit
as less time is spent in the kernel, and other processes can progress what can greatly
improve the overall user experience.

Workqueues can be used inside and outside the context of interrupt handling, and
hence receive a separate section in this report. Note that the following text is mainly
based on the workqueue documentation shipped with the sources of the Linux kernel
(see Documentation/workqueue.txt).

3.1 The Workqueue Approach

A work item is a simple data structure that holds a pointer to the function that is to
be executed asynchronously. Whenever a user (e.g., a driver or subsystem) wants a
function to be executed asynchronously by means of workqueues, it has to set up a
work item pointing to that function and queue that work item on a workqueue. Special
purpose threads, so-called worker threads, execute the functions after dequeuing the
items, one after the other. If no work is queued, the worker threads become idle.

Worker threads are controlled by so-called worker pools which take care of the
level of concurrency – the simultaneously running worker threads – and the process
management. The design of concurrency managed workqueues differentiates between
workqueues (e.g., used by drivers to defer work from top halves to a process context)
and the backend mechanism which manages worker pools and processes the queued
work items. In general, there are at least two worker pools per CPU: one for normal
priority and one for high priority work items. Besides those two pools, there might
be some extra worker pools to serve work items queued on unbound workqueues –
the number of these backing pools is dynamic. When a work item is queued on
a workqueue, the target worker pool is determined according to the queue parame-
ters and its attributes, and the item will be appended on the worklist of this worker pool.

The workqueue management tries to keep concurrency at a minimal but sufficient level.
Minimal to save resources and sufficient such that the system is used at its full capacity.
Each worker pool is bound to a CPU and implements concurrency management by



3.2 Original Workqueues 18

hooking the scheduler. The worker pool is notified whenever an active worker wakes
up or sleeps and keeps track of the number of currently runnable workers. In general,
work items are not expected to hog a CPU and consume many cycles. That means
maintaining just enough concurrency to prevent work processing from stalling should
be optimal. A worker pool does nothing as long as there is one or more of its workers
runnable on the CPU. As soon as the last running worker goes to sleep, the pool
schedules a new worker thread immediately to process the next queued item. This
allows using a minimal number of workers without losing potential execution bandwidth.
For unbound workqueues the number of backing pools is dynamic. The attributes
of an unbound workqueue can be set individually by using apply workqueue attrs()

and the workqueue will automatically create a worker pool matching these attributes.

Workqueues guarantee forward progress to all qeueued items. This guarantee re-
lies on the fact that there is always a sufficient amount of execution contexts (i.e.,
worker threads) with the help of so-called rescue workers, which are executed under
memory pressure to avoid potential dead locks. Consequently, all work items which
might be used on code paths that handle memory reclaim are required to be queued
on workqueues that have a rescuer thread. Note that users of workqueues do not need
to worry about synchronization; the workqueue implementation is synchronized by
means of mutexes and spinlocks, depending on the execution context (i.e., worker pool,
workqueue, or worker).

3.2 Original Workqueues

The original workqueue implementation included two kinds of workqueues: a multi-
threaded (MT) workqueue had one worker thread per CPU, a single-threaded (ST)
workqueue had one worker thread system-wide. However, a growing number of CPUs
and workqueues lead to situations where some systems saturated the default 32k PID
space just booting up. Besides this resource hunger of workqueues, the provided level
of concurrency was unsatisfactory as well. The limitation was common to both ST
and MT workqueues albeit less severe on MT. Each workqueue maintained its own
worker pool, which lacks a global view of concurrency in the system and thereby lead
to various problems such as to deadlocks. The tension between the provided level of
concurrency and resource usage also forced its users to make unnecessary trade-offs,
such as libata choosing to use ST workqueues for polling PIOs and accepting an
unnecessary limitation that no two polling PIOs can progress at the same time. As
MT workqueues do not provide much better concurrency, users which require a higher
or more dynamic level of concurrency, for instance fscache5, a general purpose cache
for network filesystems, had to implement its own thread pool, making a global view
of concurrency barely possible.

5https://www.kernel.org/doc/Documentation/filesystems/caching/fscache.txt

https://www.kernel.org/doc/Documentation/filesystems/caching/fscache.txt


3.3 Concurrency-Managed Workqueues 19

3.3 Concurrency-Managed Workqueues

The concurrency-managed workqueue is a reimplementation of workqueues trying to
eliminate the aforementioned drawbacks of the original implementation, mainly the
unsatisfacory level of concurrency. The main focus of concurrency managed workqueues
is as follows:

• Remain compatible with the original workqueue API.

• Use per-CPU worker pools shared by all workqueues to provide a flexible level
of concurrency (i.e., the number of simultaneously running workers) on demand
without wasting resources.

• Automatically regulate worker pool and level of concurrency so that the API
users do not need to take care about such details.

3.4 Source and API

3.4.1 Workqueue Flags

There are various flags used in the context of workqueues that should be discussed
before describing the API of workqueues:

WQ UNBOUND

Work items queued to an unbound workqueues are served by the special worker
pools that host workers that are not bound to any specific CPU. This makes
an unbound workqueue behave as a simple execution-context provider without
concurrency management. The unbound worker-pools try to start execution of
work items as soon as possible. Unbound workqueues sacrifice locality what is
useful for the following cases:

1. Wide fluctuation in the concurrency level requirement is expected and using
bound workqueues may end up creating a large number of mostly unused
workers across different CPUs.

2. Long running, CPU-intensive workloads can be better managed by the
system scheduler (e.g., migration to other CPUs).

WQ FREEZABLE

A freezable workqueue participates in the freeze phase of the system suspend
operations. Work items on the workqueues are drained and no new work item
starts execution until thawed.

This flag is used in the context of power management and file systems, and is
especially important for creating the system image in the suspend phase, since
non-freezable items could lead to file system corruption.

You can find more information about this topic in Documentation/power/

freezing-of-tasks.txt.



3.4 Source and API 20

WQ MEM RECLAIM

All workqueues which might be used in the memory reclaim paths must have
this flag set. The workqueue is guaranteed to have at least one woker, a so-called
rescuer thread, regardless of memory pressure. Such rescuers are needed in
situations where resources, especially memory, run short. GFP KERNEL allocations
then may block and deadlock the entire workqueue. Rescuer threads pick up
queued items and execute the associated functions, which may help to solve the
queue’s deadlock.

Let us consider the following scenario:

Workqueue W has 3 items A, B and C. A does some work and then waits until C
has finished some work. Afterwards, B does some GFP KERNEL allocations and
blocks as there is not enough memory available. As a result, C cannot run since
B still occupies the W’s worker; another worker cannot be created because there
is not enough memory.

A pre-allocated rescuer thread can solve this problem, by executing C which
then wakes up A. B will continue as soon as there is enough available memory to
allocate.

WQ HIGHPRI

Work items of a high priority workqueues are queued to the high priority worker
pool of the target CPU. High priority worker pools are served by worker threads
with elevated nice level.

Note that normal priority and high priority worker pools do not interact with each
other. They maintain separate pools and implement concurrency management
among its workers.

WQ CPU INTENSIVE

Work items of a CPU-intensive workqueue do not contribute to the concurrency
level. In other words, runnable CPU intensive work items will not prevent other
work items in the same worker pool from starting execution. This is useful for
bound work items which are expected to hog CPU cycles so that their execution
is regulated by the system scheduler.

Although CPU intensive work items do not contribute to the concurrency level,
start of their executions is still regulated by the concurrency management so
that runnable non-CPU-intensive work items can delay the execution of CPU
intensive work items.

This flag is meaningless for unbound workqueues.

max active

max acvtive determines the maximum number of execution contexts (workers)
per CPU of the respective workqueue. If max active is set to n, only n work
items of the queue can run on the same CPU at the same time.



3.4 Source and API 21

3.4.2 Scheduling Work Items

Work items can be queued to a specific workqueue with queue work(). The function
returns false if the work is already queued somewhere else, and returns true otherwise.

static inline bool queue_work(struct workqueue_struct *wq,
struct work_struct *work);

If you want to queue work on the standard system-wide workqueue system wq (see
Section 3.5, then you can use schedule work(). schedule work on() additionally
allows to specify a CPU on which the work item will be scheduled and executed on.

In some situatios we may want to make sure that all queued items on a spe-
cific workqueue have run to completion. The kernel provides the function
flush workqueue() for this task. This function sleeps until all previously queued
non-idle work items finish execution, but it is not livelocked by new incoming ones.

void flush_workqueue(struct workqueue_struct *wq);

flush scheduled work() is a wrapper to flush work queued in system wq. Besides
the warning that using this function can lead to a deadlock, the source-code comment
gives the following advice: “In most situations flushing the entire workqueue is overkill;
you merely need to know that a particular work item isn’t queued and isn’t running.
In such cases you should use cancel delayed work sync() or cancel work sync() instead.”.

There is also a number of functions to queue/schedule work after a specified number
of jiffies. Those functions include the substring delayed and have an additional
parameter to specify the delay in jiffies. For more information about the workqueue
API you may read the workqueue header (i.e., include/linux/workqueue.h) and
function definition in kernel/workqueue.c.

3.4.3 Allocating Workqueues

In case you decide to implement your own workqueue to create an execution environment
that fits exactly your needs, you can chose between two macros. alloc workqueue()
allocates a workqueue with the specified flags and the concurrency level which is defined
by max active. The name of the workqueue can be specified with a printf format
string (fmt) and the corresponding variable number of arguments. The function returns
a pointer to the workqueue on success and NULL on failure.

#define alloc_workqueue(fmt, flags, max_active, args...) [...]
#define alloc_ordered_workqueue(fmt, flags, args...) [...]

There is also the macro alloc ordered workqueue() to allocate ordered workqueues,
which executes the queued items one by one in the given order (i.e., FIFO order).
Such queues are unbound and have max active set to 1. This function replaces
create freezeable workqueue() and create singlethread workqueue() (see git commit
81dcaf6516d8).

https://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git/commit/?id=81dcaf6516d8


3.5 System-Wide Workqeueues 22

3.5 System-Wide Workqeueues

There are 7 system-wide persistent workqueues in Linux v3.17 (see include/linux/

workqueue.h):

1. system wq

System-wide multi-threaded workquque used by various variants of schedule work().
Do not queue long-running work items, since users expect a relatively short flush
tim.

2. system highpri wq

Similar to system wq but for work items which require WQ HIGHPRI.

3. system long wq

Similar to system wq but may host long running works. Queue flushing is
expected to take relatively long.

4. system unbound wq

Unbound workqueue. Workers are not bound to any specific CPU, not concurrency
managed, and all queued works are executed immediately as long as max active

limit is not reached and resources are available.

5. system freezable wq

Equivalent to system wq but with WQ FREEZABLE enabled.

6. power efficient wq

Inclined towards saving power and converted into WQ UNBOUND variants if
WQ POWER EFFICIENT is set.

7. system freezable power efficient wq

Combination of system freezable wq and power efficient wq.

References

[1] Christian Benvenuti. Understanding Linux Network Internals. 2005.

[2] Daniel Bovet and Marco Cesati. Understanding The Linux Kernel. Oreilly &
Associates Inc, 2005. isbn: 0596005652.

[3] Jonathan Corbet. Device resource management. 2007. url: https://lwn.net/
Articles/215996/ (visited on 11/03/2015).

[4] Jonathan Corbet. Disabling IRQF DISABLED. 2010. url: https://lwn.net/
Articles/380931/ (visited on 11/03/2015).

[5] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual.
325462-055US. 2015.

https://lwn.net/Articles/215996/
https://lwn.net/Articles/215996/
https://lwn.net/Articles/380931/
https://lwn.net/Articles/380931/

	Basic Interrupt Handling
	Registering Interrupt Handlers
	Interrupt Flags
	Return Type of Interrupt Handlers
	Unregister Interrupt Handlers
	Managed Device Resources

	Bottom Halves
	Softirqs
	Registering Softirq Handlers
	Scheduling Softirqs
	Executing Softirqs
	ksoftirqd - When Softirqs are just too much
	Softirqs and NAPI

	Tasklets
	The Requirement of Dynamic Bottom-Half Allocation

	Execution as Softirqs
	Scheduling Tasklets

	Threaded Interrupts
	Requesting Threaded Interrupts


	Workqueues
	The Workqueue Approach
	Original Workqueues
	Concurrency-Managed Workqueues
	Source and API
	Workqueue Flags
	Scheduling Work Items
	Allocating Workqueues

	System-Wide Workqeueues


