Institute of I UHH
Software Security Hamburg University of Technology

Security at Architectural Design Level

Riccardo Scandariato
Institute of Software Security, TUHH, Germany

ric***do . scanda™***to @ tuhh.de

Put name of event HERE

neteor I UHH
Hamburg University of Technology

Software Security

2

Learning objectives

* What models are interesting for security? And
what properties are represented?

* What can | do with models?

— Analysis, testing, generation, ...

* How to build a secure software architecture?

Reading material on Security Tactics
Joanna Santos, et al., An Empirical Study of Tactical Vulnerabilities, JSS, 2019

* Provides an abstraction of the system

* Software engineering perspective
— Parts/components and interfaces

— Funcionality/logic ...

Hamburg University of Technology

"The software architecture of a computing system is the structure of
the system, which comprise software components, the externally visible

properties of those components, and the relationships among them”

“The fundamental concepts and properties of a system in its
environment embodied in its elements, relationships, and in the

principles of its design and evolution.”

ISO/IEC/IEEE 42010

http://www.iso-architecture.org/ieee-1471/defining-architecture.html

The set of design decisions that determine the

quality properties of a system
4

e I UHH
Hamburg University of Technology

Software Security

2

Security — Commonly used models
UML Component Diagram

|]
WebClient

P \
o Use \\use
s \
7 4 \
g £ ‘\
Q_ WebService \
Svcinterface ‘\
\‘ \‘
use
“ Authehticate
Y]
Q SSO
Register

Institute of TUHH

Software Security Hamburg University of Technology

2

Security — Commonly used models
UML Sequence Diagram

‘ WebClient l SSO | Service l

| Authentication Request)E :

I |

E(Authentication Response (Token) : :
"""""""""""""""""""""""""""""""" il |

| : | |
ServiceRequest

Bli- i : L S —— -~

| . | |

Service Response
< 2emice Res PO — :

e I UHH
Hamburg University of Technology

Software Security

2

Security — Commonly used models
UML Deployment Diagram

Internet

‘ WebCIientBI

Mg

Y

<<http>>

ProtectedHost

| WebService I3'

<<REST>>
y4
Cloud

<<http>>

%

Institute of TUHH

Software Security Hamburg University of Technology

2

Security — Commonly used models
Data Flow Diagram

We'll see this later
(cf. Threat analysis)

User
Entity

R .

' i
| . ! I

| Portal [Service |

| - . |

: : Data store

| | Data flow

: Social network DB : _——— -
|it | Trust boundary

Institute of I UHH
Software Security Hamburg University of Technology

Security model

* Provides an abstraction of the system

e Software engineering perspective
— Parts/components and interfaces
— Funcionality/logic ...

* Security engineering perspective
— Data/assets, their sensitivities
— Information flows
— Security mechanisms
— Security assumptions/expectetions ...

2

Institute of

Software Security

TUHH

Hamburg University of Technology

Security engineering perspective

Examples
Internet
| WebCIientB'
174
Authenticated ¥
Session
ProtectedHost

<<Web Application FW>>

| WebService DI

V

<<encrypted>>

<<integrity>>

User

user age : Pli Entity

——— v —— — —— ——— ———— ——— —

Portal Service

|
|
|
I
: |
: Data store
| Data flow
|
|

Social network DB

Trust boundary

Pll : personally identifiable information

The problem of semantics ©

10

* Top-down, as an up-front blueprint

— “Security concept” developed in safety-critical
domains (automotive, aviation, medical)

* Bottom-up, reconstructed by experts
— Common case when security analysis starts

— E.g., most web-based systems

* Bottom-up, automatically extracted from code
— Research field (ArchSec, Gravity, etc)

11

Institute of

2

Software Security

Only for your info

Architectural documentation
Academic dream

O

TransactionScheduler

«component»

|ssueTranshction

AddTransactionCP

1

«component»

Hirarchical

decomposition

TransactionSchedulingModule

;@__1 — L o — «component» Mon‘}\qs{ransactionoulzue «component»
MobleAccmirecats) cat TransactionQueue /) | TransactionQueueMonitor
«component»
SABMpbileFacade
ConsultMobileaccount()—] /©_ i C3etriem;Tmns,m:tion fl\
|suemwi|e1ransieqo_
(g a 1 NotifyOperatoO
tasusTransie() CustomerTransiotFacade
L { 1 A
O_ AccountFacade \' CustomerCredential Q \‘ ‘;g;:m::‘
) ac O
ManageContactList (—] Mmauwom}a”s‘ s;é;f;':ﬁ';'?.'ltﬁ ,L Cus;mmme —)— comoonents |
ReuievecusmmeszssagO— RetrieveCustomerl) ion
s o 'i'
CustomerMessageFacade
«compo
o 2 .
4 A () s Moo Consumer Advertiser Journalist Manager
| |
omecman()-—11 | Publishing platform | |
ManageCi O__ |-
«component»
“ - News Planning %:] Journalist @ Manager %j
«CO
o e i Facads \(_>-| Employee Agency System Desk Desk
2 ')!—-—I «component» |—,

InspectFraudDetectionResults (J)—

Internal service I

&)
FDCAuthentication

Component diagram

Input Media
gewspaper @ Mgmt @ Advertising $:|
ervice

System System
I
Data server I
Content User
Mgmt @ Mgmt @
System System

Deployment diagram

12

Institute of

2

Software Security

Only for your info

Architectural documentation

Real life

Credit: https://c4model.com

13

netitute of I UHH
O e Securit Hamburg University of Technology

Models, what for?

Next week

* Model analysis

* Code generation
* Model-based code generation

* More (e.g., monitoring, metrics...)

14

netitute of I UHH
So re Securit Hamburg University of Technology

Model-based code generation

e Derive (draft) implementation code and
configuration

e E.g., code: Authorization pattern - Security
aspect woven in code

e E.g., config: access control policy
— derive roles from context/component diagrams
— derive permissions from use cases, workflows, etc.

15

* Functional security testing

— E.g., test rules in a firewall, given the components
that are present in the model

— E.g., test access control rules, provided the roles in
the model

e Security vulnerability testing (penetration)

— Generate attack sequences using the system
topology

— Model-based fuzzing (e.g., alter order of messages
in a protocol), from a sequence diagram

16

* Model-based runtime monitoring

— Monitoring the security assumptions made in the
model

— E.g., communication is encrypted, communication is
only allowed between A and B, ...

e Model-to-model transformations

— Hardening the model by adding security
countermeasures

— Making the functionality more GDPR compliant

* Compute security metrics
— Mostly for for certification, but also prediction, etc

17

Hamburg University of Technology

BUILDING SECURITY-AWARE
ARCHITECTURAL DESIGN

18

Institute of
Software Security

TUHH

Hamburg University of Technology

Secure architectural design

* Identify the assets of interest (by interacting with the stakeholders)
* Understand the relationship asset €<= functionality
* Identify threats and their importance (impact, likelihood)

* Implement constraints (i.e., countermeasures) to deal with threats
* Hence achieving the security goals

constraint Countermeasures counters

causes

Functionality Threat

Stakeholders

value

related to

P
~

/

Mmay occur to

Threat analysis and
[risk analysis (TARA)

—
—

— Secure design

19

* Previous slide has a “magic” step ©

“Implement constraints (i.e., countermeasures) to
deal with threats”

 What security knowledge do we use?
— Security principles
— Security tactics
— Security patterns / security solutions

Hamburg University of Technology

SECURITY DESIGN PRINCIPLES

A. Simplicity

— Fewer components and cases to fail

— Fewer possible inconsistencies

— Easy to understand
B. Restriction

— Minimize access and inhibit communication
C. Minimal assumptions

— Avoid trust

22

Least Privilege

Fail-Safe Defaults

Economy of Mechanism
Complete Mediation

Open Design

Separation of Privilege
Least Common Mechanism
8. Psychological Acceptability

N ok wbhE

(VERY old)
J. Saltzer, D. Schroeder, The Protection of Information in Computer Systems, Proceedings of the IEEE

63(9), 1975

23

Study at home

* A subject/process should be given only those
privileges necessary to complete its task

— Function, not identity, controls
— Rights added as needed, discarded after use

* Architecture: component only has privileges to
interact with other appropriate components

* Common violation:

— Browsing the Internet while logged as administrator
or root

24

Study at home

Default action is to deny access

When an action fails, system must be restored to
a state as secure as the state it was in when it

started the action

Example

— Card looked up in vendor database to check for stolen
cards

— If no connectivity, no authentication, but transaction
is logged -> NO!

25

Institute of
Software Security

3. Economy of Mechanism

e Keep it as simple as possible (KISS)
— Use the simplest solution that works.
— Fewer cases and components to fail.

— Minimal retained state (harder for program to get
‘confused’)

* Reuse known secure solutions
— i.e., don’t write your own cryptography.

26

Institute of
Software Security

4. Open Design

e Security should not depend on secrecy of
design or implementation

— No “Security through obscurity”

— Refers to security policy and mechanism
(not secrets like passwords and crypto keys)

e E.g., do not rely on obfuscation

27

i o}

5. Complete Mediation

* Check every access

* Usually checked once, on first access:

— UNIX: File ACL checked on open(), but not on
subsequent accesses to file

* |f permissions change after initial access,
unauthorized access may be permitted

* Also important for auditing!

28

Institute of
Software Security

6. Separation of Privilege

Require multiple conditions to grant access
— Separation of duty

— Compartmentalization
— Defense in depth (or multiple layers of security)

29

Study at home

* Functions are divided so that one entity does
not have control over all parts of a
transaction.

* Example:

— Different persons must initiate a purchase and
authorize a purchase.

— Two different people may be required to arm and
fire a nuclear missile.

30

Study at home

Problem: A security violation in one process
should not affect others.

Solution: isolate components in deployment
— Physically
— Through virtual machines

Also: Self-limit consumption of resources

Also: Divide system into parts which are limited
to the specific privileges they require in order to
perform a specific task (privilege separation)

31

Defense in Depth

* Diverse defensive strategies

— Different types of defenses
(protection, detection, reaction)

— Different implementations of defenses (variety)
— If one layer pierced, next layer may stop

— Avoid “crunchy on the outside, chewy on the
inside” security

e Contradicts “Economy of Mechanism”

— Think hard about more than 2 layers

32

Institute of
Software Security

7. Least Common Mechanism

e Mechanisms used to access different
resources should not be shared

— Error or compromises of the mechanism while
accessing one resource allow compromise of all
other resources

— Use separate machines, separate networks

— All data in a blackboard mediated by a blackboard
component?

e Contradicts “Economy of Mechanism”?

33

8. Psychological Acceptability

e Security mechanisms should not add to the
difficulty of accessing a resource

e Human factors are critical here

— Hide complexity introduced by security
mechanisms

— Make system secure in default configuration

Upcoming
lecture on
this topic

e Security vs Usability

34

Institute of

2

Software Security

TUHH

Hamburg University of Technology

SECURITY TACTICS

35

Institute of
Software Security

More on
this in
your lab !

Tactics for secure design

Security

/
Resist attacks Detect attacks React to attacks | (Recover from attacks
|
System
detects,
. g . _— - resists,
Identify actors Detect intrusion Revoke access Maintain audit trail Restore
reacts or
Attack Validate Inputs Detect service denial Lock computer l recovers
ﬁ Manage User Sessions Verify massage integrity Inform actors ﬁ

Authenticate actors Detect message delay See availability
Authorize actors
Limit access
Limit exposure
Encrypt data
Separate entities

Change default settings

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!

-—een e o e e e o e o e o e e e . .
S o O O S S S e S M e S

Preventive controls Detective/reactive controls Corrective controls

-—e—— e = = == — e o o o o o o o o N ———

\
36

2

Institute of

Software Security

TUHH

Hamburg University of Technology

Tactics for secure design

Identify Actors

Identifies the external agents that provide inputs into the systems

Validate Inputs

Sanitizes, neutralizes and validates any externally provided inputs to minimize malformed data from entering the
system and preventing code injection in the input data

Manage User Sessions

Retains the information or status about each user and his/her access rights for the duration of multiple requests

Authenticate Actors

Verifies the authenticity of actors (i.e. to check if the actor is indeed who it claims to be).

Resist Attacks Authorize Actors Enforces that agents have the required permissions before performing certain operations, such as modifyving data
Limit Access Limits the amount of resources that are accessed by actors, such as memory, network connections, CPU, etec.
Limit Exposure Minimizes the attack surface through designing the system with the least needed amount of entry points
Encrypt Data Maintains data confidentiality through use of encryption libraries
Separate Entities Places processes, resources or data entities in separate boundaries to minimize the impacts attacks
Change Default Settings | Forces users to configure the system before use by changing the default (and potentially less secure) configuration.
Revoke Access In case of attacks, the system denies access to resources to everyone until the malicious behavior ends

React to Attacks Lock Computer Lockout mechanism that takes effect in case of multiple failed attempts to access a given resource

Inform Actors In case of malicious activities, the users/administrators or other entities that are in charge of the system are notified.
Detect Intrusion Monitors network traffic for detecting abnormal traffic patterns caused by intrusion attempts
Detect Service Denial Monitors incoming traffic for detecting Denial Of Services (DoS) attacks.

Detect Attacks Verify Message Integrity | Ensures integrity of data, such as messages, resource files, deployment files, and configuration files
D Detects malicious behavior through observing the time spent on delivering messages. In case messages are taking

etect Message Delay . z ;
unexpected times to be received, the system may detect a potential data leakage.
Recover from Attacks | Audit Logs user activities in order to identify attackers and modifications to the system

37

Preventive: avoid incidents before they occur
— E.g., access control to avoid disclosure

Detective/Reactive: respond to incidents
while they occur

— E.g., detect anomalous activity and lock down
the network

Corrective: handle incidents after they have
occurred (cf. resilience)

— E.g., restore correct state from backup

Hamburg University of Technology

E.g., First line
of defense

E.g., Second
line of
defense

E.g., Third line
of defense

38

Hamburg University of Technology

SECURITY DESIGN PATTERNS

39

Institute of I UHH
Software Security

Hamburg University of Technology

ecurity patterns — Fashion items ?

James Gosling,father of the Lo

core

SECURITY
il PATTERNS

Duane Hybertson Best Practices and Strategies for J2EE,
Frank Buschmann Web Services, and Identity Management
Peter Sommerlad

Eduardo Fernandez-Buglioni

= A patterns catalog that includes twenty-
three new patterns for building end-to-
end security

= Security design methodology, patterns,

e SECURITY PATTERNS
St IN PRACTICE

Provisioning, and Personal Identfication e .
= Comprehensive secuity guid 1o using Designing Secure Architectures

J2SE™, J2EE™, J2ME", and Java Card™ .
Using Software Patterns

SECURITY
PATTERNS

Integrating Security ,
and Systems Engineering @Sun

CHRISTOPHER STEEL - RAMESH NAGAPPAN - RAY LAI

Copyrighte

40

Institute of

2

Software Security

More on
this in
your lab !

Single Access Point
Example

Problem

A security model is difficult to when it has multiple “front doors”, “back
doors”, and “side doors” for entering the application

Solution

Reduce the by setting up only the system and if
necessary, create a mechanism to decide which sub-application to launch.

Known Uses. UNIX telnet and Windows NT login applications use Single Access
Point for logging into the system.

Source: Wiley Book

41

Software Security Hamburg University of Technology

g ‘ Institute of TUHH

Single Access Point

Application

<Luse>>

Decision point

42

Institute of
Software Security

TUHH

Hamburg University of Technology

Single Access Point

Single
access point

request()

[
[
I
[
[
I
I
|
[
|
|
&
[

Decision point Application

| |

I I

I I

check() | |
1

ok()
N
request()
response()

L T

43

Institute of I UHH
Software Security

Hamburg University of Technology

Some “theoretical” underpinning
What is a (security) design pattern?

Single E New components
access
point 2]

Decision point

Added to the design to fulfill new security functionality

{l Connect generic solution (pattern) to specific design. Wire
Client { the newly added components to existing ones
Application Expectations
- Impose constraints on the rest of the design
“Make
credentials
hard to forge”

L
L

T. Heyman, et al, The security twin peaks, ESSoS 2011 44

2

Institute of

Software Security

TUHH

Hamburg University of Technology

Instantiating a pattern
Single Access Point

Role Role
(Client = Admin Desk) New components (Application = Pet Shop)
Single .. .
Ad 2Ingie
D;:;(n access point Decision point Pet Shop
| i |
request() , "\	
R check()	
I \ ' —	
I I 1	
I \ ok()	
I	&= _)
no	! : / ' no
e L 1 I I	back-doors
eavesdropping	\ I I
\ I response()	I
—-————-—- PR I I I D U
\ I/
\ /
[| |
Wiring Wiring

45

