
Reproduce vulnerabilities with
Proof-of-Vulnerability (PoV) tests

Requirements

• Your computer with Docker Desktop installed

– See: https://docs.docker.com/get-docker/

• A familiar background of Java and the
vulnerabilities in Java programs/systems

– Understand Java code

– Write Java JUnit test code

2

https://docs.docker.com/get-docker/

What are Proof-of-Vulnerability (PoV) tests?

• PoV tests are the exploitation code that are
used to detect the presences of vulnerabilities
in the system
– i.e., failing if vulnerabilities exist, passing if

vulnerabilities are eliminated

• PoV are useful for:
– Detecting the safety of your systems against the

known vulnerabilities
– For Automated Program Repair (APR) tools!!!

3

Automated Program Repair - APR

Automated Program Repair aims to repair software
bugs automatically, help to reduce or even remove
human intervention from bug fixing process

4

APR

Buggy Program

Testsuite with at least 1
failing test

Patches that pass whole
testsuite

Availability of PoV tests

• Some developers patch the vulnerabilities and
provide the PoVs as the bug test cases to verify
if the patch works

• Some developers DO NOT do that:

– Giving available PoVs (open-source project) can let
attackers the tools to scan and exploit many
systems

– Even the vulnerability fixes are released silently

5

Your tasks in this Lab

• Collect/Create the PoVs tests for 4 Java
vulnerabilities

– Some of them are with the patches containing
added JUnit tests, you should verify if the added
tests are indeed the PoVs or not

– Some of them are not, you need to read the
patches, vulnerability reports and create the PoV
yourself

6

Setup the Lab

Step 1: Start up your Docker Desktop

Step 2: Run the container for the lab

- Open the terminal/cmd and run this command:
docker run -it bqcuongas/sselab

7

CVE-2013-2186

NVD Report: The DiskFileItem class in Apache
Commons FileUpload, as used in Red Hat JBoss BRMS
5.3.1; JBoss Portal 4.3 CP07, 5.2.2, and 6.0.0; and Red
Hat JBoss Web Server 1.0.2 allows remote attackers to
write to arbitrary files via a NULL byte in a file name in
a serialized instance.

8

https://nvd.nist.gov/vuln/detail/CVE-2013-2186

Developer’s patch

9

https://github.com/apache/commons-fileupload/commit/163a6061fbc077d4b6
e4787d26857c2baba495d1

Added tests by developer

10

Verify if the tests are PoVs

$ cd CVE-2013-2186
$ mvn test

testInvalidRepositoryWithNullChar(org.apache.commons
.fileupload.DiskFileItemSerializeTest) Time
elapsed: 0.098 sec <<< FAILURE!
testInvalidRepository(org.apache.commons.fileupload.
DiskFileItemSerializeTest) Time elapsed: 0.001 sec
<<< FAILURE!
Failed tests:
 Expected exception: java.io.IOException
 Expected exception: java.io.IOException

Tests run: 70, Failures: 2, Errors: 0, Skipped: 0

11

In vulnerable revision

Verify if the tests are PoVs

$ git checkout -f
163a6061fbc077d4b6e4787d26857c2baba495d1
$ mvn test

Results :
Tests run: 70, Failures: 0, Errors: 0,
Skipped: 0

12

In patched revision

→ PoVs:
testInvalidRepositoryWithNullChar(org.apache.commons.
fileupload.DiskFileItemSerializeTest)
testInvalidRepository(org.apache.commons.fileupload.D
iskFileItemSerializeTest)

Questions ?

13

