
Code Quality

Put name of event HERE

Riccardo Scandariato
Institute of Software Security, TUHH, Germany

ric***do . scanda***to @ tuhh.de

Learning objectives

• Understand code review activities for security

• Understand emerging techniques (APR) to fix
security bugs automatically in source code

2

Reading material
Michael Howard, A Process for Performing Security Code Reviews, IEEE
Security & Privacy, July 2006

Reading material
• Michael Howard, “A Process for Performing Security

Code Reviews”. IEEE Security & Privacy, July 2006

3

Security Code Review

Apple ‘goto fail;’ vulnerability
static OSStatus
SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer
signedParams,uint8_t *signature, UInt16 signatureLen)
{
...
if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)

goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)

goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

...
fail:

SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

...
5

https://nvd.nist.gov/vuln/detail/CVE-2014-1266
https://opensource.apple.com/source/Security/Security-55471/libsecurity_ssl/lib/sslKeyExchange.c

https://nvd.nist.gov/vuln/detail/CVE-2014-1266
https://opensource.apple.com/source/Security/Security-55471/libsecurity_ssl/lib/sslKeyExchange.c

Apple ‘goto fail;’ vulnerability

• Problem: two consecutive goto fail;
– Indentation makes us think both statements run

only when the if-predicate is true
– err is returned with the value of zero
– The caller will believe no error occurs while

verifying the signature

6

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;

...
fail:

SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

Could be identified easily
by Code Review!

Security Code Review: convene people (reviewer) to
find faults in source code written by someone else
(author)

Security Code Review

7

• Early finding faults, quickly
generating fixes

• Reduce testing effort

• Manual, time- and effort-
consuming work

But also…

• Compliance

• E.g., Requirement 6.3.2 in Payment Card
Industry Data Security Standard (PCI-DSS)
mandates a code review of custom code

8

Code Review Types
• Manual Code Review
– Allow to use the knowledge from reviewer
– Takes time, expertise and effort

• Code Review w/ Static Analysis Tools
– Automated, could be very useful for large

projects
– Could produce many False Positives

9

→ Use both for better results

Static Analysis

• Inspect code without running it to find bugs
(common case!) or to gain confidence about
bugs absence (i.e., reason about the program’s
correctness)

• Provide security warnings about (common)
mistakes
(Buffer overflow, API misuse,...)

• E.g., SonarQube, Checkmarx, Veracode,
SpotBugs, etc..

10

Why using Static Analysis for Code Review?

• Manual code review usually requires expertise in
secure coding

• Static Analysis could be integrated into CI/CD to
run automatically

• Humans are imperfect and could miss faults (FN)

11

We cover Static Analysis in the Software Security course :)

Humans vs machines ;)
• Track taint
– SAST tool effective
– Too complex for human?

• Find credentials in code or config file
– All SAST tools have this rule
– Human can do that too (but useful?)

• Correct use of Crypto API
– Only specialized tools exist (academic)
– Human

• Handle sensitive data with care
– Tool: def of sensitive?
– Human

12

Tool

Expert

Manual Code Review

Code Review Guidelines

• IEEE Standard for Software Reviews and
Audits, IEEE Std 1028-2008 [1]
– Not specific to security
– Def of terms and roles

• OWASP Code Review Guideline [2]
– Focus on reviewing code for security Top 10

vulnerabilities (220 pages !!!)

14

[1] https://standards.ieee.org/standard/1028-2008.html
[2] https://owasp.org/www-project-code-review-guide

Roles in Code Review

15

• Author (who writes code)
– Can answer any specific questions, or reveal blind spots

• Reader (reviewer, not the author)
– Leads through the review

• Scribe/Recorder
– Documents faults, actions, decisions made in the meeting

• Inspection Leader/Moderator
– Planning and organizational tasks
– Moderate review meeting
– Organize follow-up on issues

IEEE Standard for Software Reviews and Audits, IEEE Std 1028-2008

Participants in Code Review

16

• Standard: People with readability, but objectivity
– e.g. system architect
– e.g. developer working on the same project, but different

team

– Not for security !!!
– People experienced with security, e.g., consultants,

experienced developers
• Including more than four generally slows the process
– People tend to argue
– Getting side-tracked on unrelated issues

Code Review Process
• Code Review Processes vary widely in their

formality
• e.g., Inspection – most formal process
– Separated roles
– Usage of Checklists
– Formal collection of metrics defects

• e.g., Walkthrough – less formal process
– Author = Moderator, Reader
– Driven by author’s goals

– Anything in between

17

Checklists for Code Review

• Identify relevant aspects

• Walk through the functionality of the code
– Look for too much complexity, functionality
– Look for common defensive coding mistakes
– Look for Common Vulnerabilities

18

Example: Checklist for crypto issue

19

// Simple Java code to encrypt/decrypt data
private static byte[] encrypt(byte[] raw, byte[] clear) throws Exception {

SecretKeySpec skeySpec = new SecretKeySpec(raw, "AES");
Cipher cipher = Cipher.getInstance("AES");
cipher.init(Cipher.ENCRYPT_MODE, skeySpec);
byte[] encrypted = cipher.doFinal(clear);
return encrypted;

}

private static byte[] decrypt(byte[] raw, byte[] encrypted) throws
Exception {

SecretKeySpec skeySpec = new SecretKeySpec(raw, "AES");
Cipher cipher = Cipher.getInstance("AES");
cipher.init(Cipher.DECRYPT_MODE, skeySpec);
byte[] decrypted = cipher.doFinal(encrypted);
return decrypted;

} Using AES in CBC mode
(default) is insecure

Example: Checklist for crypto issue

20Michael Howard, “A Process for Performing Security Code Reviews”. IEEE Security & Privacy.

Example: OWASP checklist for SQLi
• Review all code that calls EXECUTE, EXEC, any

SQL calls that can call outside resources or
command line
– Always validate user input by testing type, length,

format, and range
– Test the content of string variables and accept only

expected values
– Never build SQL statements directly from user input
– Use SQL API provided by platform. i.e. Parameterized

Statements
– …

21
OWASP Code Review Guideline
https://owasp.org/www-project-code-review-guide

Fatigue

• In this type of activity, people get tired
quickly
– Two hours long sessions
– Max two such sessions per day

• What to do in case of larger apps?
– Set priorities!

22

Where to start
• Code listening on a globally accessible

network interface
• Code that runs with elevated privileges
• Code that handles sensitive data

• Old code
• Code with a history of vulnerabilities
• Complex code
• Code that changes frequently

23

Code review effective?

• How important are these activities (code review) to
assure the code quality?

• Recent research found a huge change in
development process of an open-source project [1]
– After a vulnerability scandal

24
[1] James Walden. The Impact of a Major Security Event on an Open Source Project: The Case
of OpenSSL. MSR 2020.

OpenSSL & Heartbleed Vulnerability
• OpenSSL
– One of most common used libraries
– Secure communications over internet

• Heartbleed
– Discovered in 2014
– Exploited a buffer over-read vulnerability

in the cryptography library of OpenSSL
– Two-thirds of https-enabled websites worldwide

were affected

25

OpenSSL responses after the Heartbleed

26

Sep 2014 Publication of security policy on vulnerability handling

2015 Code commits require review before merged

Feb 2015 All code base are reformatted to follow one coding style

Mar 2016 Add tools (directory /fuzz) for supporting easy fuzzing

Aug 2016,
Sep 2018

Release new versions: remove old algorithms/protocols
(3DES, RC4, SSLv2), support for TLS 1.3, SHA3

James Walden. The Impact of a Major Security Event on an Open Source Project: The Case of
OpenSSL. MSR 2020.

OpenSSL metrics after the Heartbleed

27
James Walden. The Impact of a Major Security Event on an Open Source Project: The Case of
OpenSSL. MSR 2020.

Project size decreases
significantly then increases
slowly (with new features
TLS 1.3, SHA3)

Code complexity decreases
significantly and remains low

→ Results of refactoring and
reformatting code

Code Size and Complexity

OpenSSL metrics after the Heartbleed

28
James Walden. The Impact of a Major Security Event on an Open Source Project: The Case of
OpenSSL. MSR 2020.

of vulnerabilities
found increase
dramatically

of vulnerabilities

Automated Vulnerability Repair in
Source Code

Automate the Debugging Process

30

• Identifying Bug: Static Analysis (verification, code
review), Testing, Fuzzing ...

• Locating Bug: Logging, Assertion, Profiling, ML, Fault
Localization ...

• Repairing Bug: Automated Program Repair (APR)

Buggy
Program Identify Bug Locate

Bug Repair Bug Patched
Program

Automated Program Repair - APR

Automated Program Repair aims to repair software
bugs automatically, help to reduce or even remove
human intervention from bug fixing process

31

APR

Buggy Program

Testsuite with at least 1
failing test

Patches that pass whole
testsuite

Inside an APR Tool

32

Buggy Program

Testsuite with at
least 1 failing test

Plausible Patches

Fault
Localization

Patch
Generator

Patch
Validator

Suspicious

Statements

Patch

Candidates

Pass
All Tests

Fail Some Tests

Feedbacks

Plausible patches might NOT be semantically correct
when compared to the developer’s patches!
→ Overfitting Problem of APR

Where is the code to
be fixed?

How to generate
patches?

Is the generated
patch correct?

Fault Localization

• Based on testing results
• Spectrum-based Fault Localization (SBFL)
• Mutation-based Fault Localization (MBFL)

33https://homes.cs.washington.edu/~mernst/pubs/fault-localization-icse2017-slides-long.pdf

Mutant-based Fault Localization (MBFL)

• Change a single line of code
• Execute P/F tests
• Collect results
• Compute suspiciousness and sort accordingly

• VERY expensive
(run all the tests on a large number of mutants)

34

Only for your info

Spectrum-based Fault Localization

35

• Leveraging the coverage information of passing tests
and failing tests

• The more failing tests execute the statement S, the
more suspicious it is

• Many similarity coefficients to compute
suspiciousness

a11 = executed and failed

a10 = executed and passed

a01 = not executed and failed

a00 = not executed and passed

SBFL Example

36

Observation Matrix

Yanbing Yu et. al. An empirical study of the effects of test-suite reduction on fault localization.
ICSE 2008.

APR Technique Families

• Heuristics-based Repair (Aka Generate-and-Test
Repair)

• Constraint-based Repair (Aka Synthesis-based Repair)
– Based on symbolic execution

• Learning-based Repair
– E.g., deap learning on AST-to-AST transformation

templates that summarize how patches modify buggy
code into correct code

– Learning can also be used to assess the generated patch
(”similarity with regard to the code corpus”)

37

Patch Generator

Claire Le Goues, Michael Pradel, Abhik Roychoudhury, Automated Program Repair,
Communications of ACM, 2019

APR for Security Vulnerabilities

• Security vulnerabilities don’t often come with
proof-of-vulnerability test cases
• SBFL could not be applied to locate the faults

• FL module could be replaced/ combined with
SAST tools or in-house prediction techniques
– SAST tools provide useful information about the

location and the presence of vulnerable code
• Only few work done for vulnerability repair in

the literature so far

38

APR for Security Vulnerabilities

• C/C++
– Zhen Huang et al. Using Safety Properties to Generate

Vulnerability Patches. S&P’19.
– Jacob Harer et al. Learning to Repair Software

Vulnerabilities with Generative Adversarial
Networks. NIPS'18.

• Java: Siqi Ma et al. VuRLE: Automatic Vulnerability
Detection and Repair by Learning from Examples.
ESORICS'17.

• Android: Ruian Duan et al. Automating Patching of
Vulnerable Open-Source Software Versions in
Application Binaries. NDSS’19.

39

