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Learning objectives 
• What is goal-oriented requirements 

engineering?
• How to formalize security goals via security 

specification patterns?
• What are anti-goals and threat analysis at 

requirements level
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Reading material
Axel van Lamsweerde, Elaborating Security Requirements  by Construction of Intentional Anti-
Models, International Conference on Software Engineering, 2004



GOAL-ORIENTED REQUIREMENTS



What are goals?
• A goal is a prescriptive statement of intent that 

the system should satisfy through the 
cooperation of its agents

• An agent is an active system component playing a 
specific role in the goal satisfaction
– Human such as operator and users
– Devices such as sensors, actuators, communication 

media, measurement instruments
– Existing SW components such as legacy, off-the-shelf 

or foreign
– New SW components forming the software to be
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What are agents?
• A system component playing a role in goal 

satisfaction
– Role rather than individual

• Active object
– Responsibilities (goals)
– Capabilities (monitor/control)
– Behavior (performs operations)

• To play such role, agents need to restrict their 
behavior by adequate control of system items
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Capabilities and responsibilities
• Capabilities are the monitoring links and control links 

to objects
– Attributes (get or set values)
– Associations (check or create/delete)

• Responsible for a goal if its instances are the only ones 
required to restrict their behavior, through adequate 
setting of their behavior, so to satisfy the goal
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What are goals? And what they are not!
• Meetings shall be scheduled so as to maximize 

the attendance of invited participants
– Participants, initiator (in the environment)
– Scheduler (in the software-to-be)

• Make user happy
– Out of reach

• To initiate the meeting, the initiator needs to 
prompt the scheduler, authenticate, fill in a form 
and then confirm the request
– Not prescriptive statement of intent (declarative vs 

operational)
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Statements

8

Statement

Prescriptive
(prescribe agent behavior)
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Domain hypothesis
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(environment)

Acceleration commands 
shall be sent to train 

every 3 sec

Passengers get 
out of the train 

when the doors are 
open at destination

All train tracks 
are in good 
conditions

A train is moving 
if and only if its 

speed is non-null

Environment assumptions



Goal granularity
• High-level: strategic objectives
– Larger cooperation needed
– Ex: Meetings shall be scheduled so as to maximize 

the attendance of invited participants

• Low-level: technical objectives
– Fewer agents
– Ex: Reminders for upcoming meetings shall be 

issued
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Goal refinement in KAOS
• AND-refinement
• ‘Necessary’ to achieve G

• Complete refinement
• ‘Sufficient’ to achieve G
• Often uses domain properties

and hypotheses
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Alternatives in KAOS
• OR-refinement
– Goal refinement
– Goal assignment

• Generally result in different system designs
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Building goal models
• Early discovery
• Analysis of current system
• Search for intentional and prescriptive keywords in 

documents
• Later discovery
• By abstraction (“Why?”, bottom-up)

• Until boundary of system capabilities is reached (system 
scope!)

• By refinement (“How?”, top-down)
• Until assignable to single agent as requirement or 

expectation
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Building the goal model
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Behavioral goals
Achieve [TargetCondition]

[if CurrentCondition then] sooner-or-later 
TargetCondition

if a train is at some platform then within 5 minutes the 
train is at the next platform

Cease [TargetCondition]
[if CurrentCondition then] sooner-or-later not
TargetCondition
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Behavioral goals
Maintain [GoodCondition]

[if CurrentCondition then] always GoodCondition

Maintain [DoorsClosedWhileMoving] 
always (if a train is moving then its doors are closed)

Avoid [BadCondition]
[if CurrentCondition then] always not BadCondition

Avoid [TrainsOnSameBlock]
always not (more than one train at one block)
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Future Past
Some Linear Temporal Logic
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o P P shall hold in the next state
! P P shall hold in some future state (sooner or later)
" P P shall hold in every future state (always)
P U N P shall hold until N becomes true (always until)

(N will eventually become true)
P W N P shall hold unless N becomes true (always unless)

(N might not become true)

• P
#P
$ P
P S N

P B N

Other
"£! P P shall hold in every future state up to deadline d
!£! P P shall hold within deadline d
P Þ Q " ( P ® Q)

(entailment)
@P • ( ¬ P) Ù P    (‘P just became true in the current state’)

Only for your info



Soft goals
• Improve [TargetCondition]

• Increase/Reduce [TargetQuantity]

• Maximize/Minimize [ObjectiveFunction]
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Goal types and categories
• Behavioral

– Clear cut sense (in isolation)
• Soft goals

– Preferences among 
alternatives

• Functional
– Intent underpinning a system 

service
• Non functional

– Quality or constraint on 
service provisioning or 
development
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SECURITY GOALS



Application-level security analysis in KAOS
• A threat is the possibility of an asset in the system 

going unprotected against unintended behavior
– Obstacle analysis: unintentional threats
– Threat analysis: intentional threats

• Unintentional obstruction: possibility of 
inadvertent violation of a security goal

• Intentional obstruction: possibility of proactive 
violation of a security goal by exploitation of 
unprotected data and system knowledge 
acquired through malicious behaviors, 
calculations, deductive inferences, etc.
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Identify security goals
Two complementary methods

a) Security specification patterns

b) Threat analysis and anti-goals (i.e., converse of asset-related 
achieve goals)
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Security specification patterns (1/2)

Agent knowledge must be modeled. LTL extended with 
epistemic operator

Knowsag (P) ≡ Beliefag (P) ∧ P (knows property)

KnowsVag (x) ≡ ∃ v: Knowsag (x=v) (knows value)

Confidentiality
Goal Avoid [SensitiveInfoKnownByUnauthorizedAgent]

FormalSpec ∀ ag: Agent, ob: Object
¬ Authorized (ag, ob.info) Þ ¬ KnowsVag (ob.info)

“P is in ag’s local memory”

state variable
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Security specification patterns (2/2)

Authorized is generic predicate and needs to be instantiated through  a 
domain-specific definition. E.g.

∀ ag: Agent, acc: Account
Authorized (ag, acc) ≡ Owner (ag, acc) ∨ Proxy (ag, acc) ∨ Manager (ag, acc)

Confidentiality
Goal Avoid [SensitiveInfoKnownByUnauthorizedAgent]

FormalSpec ∀ ag: Agent, ob: Object
¬ Authorized (ag, ob.info) Þ ¬ KnowsVag (ob.info)
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Spec patterns for other security properties
Privacy
Goal Maintain[PrivateInfoKnownOnlyIfConsentedByOwner]

FormalSpec ∀ ag, ag’: Agent, ob: Object
KnowsVag (ob.info) ∧ OwnedBy (ob.info, ag’) ∧ ag ≠ ag’
Þ Consent (ag, ob.info, ag’)

Integrity
Goal Maintain[ObjectInfoChangeOnlyIfCorrectAndAuthorized]

FormalSpec ∀ ag: Agent, ob: Object, v: Value
ob.info = v ∧ o (ob.info ≠ v) ∧ UnderControl (ob.info, ag)
Þ Authorized (ag, ob.info) ∧ o Integrity (ob.info) 

Availability
Goal Achieve[ObjectInfoUsableWhenNeededAndAuthorized]

FormalSpec ∀ ag: Agent, ob: Object
Needs (ag, ob.info) ∧ Authorized (ag, ob.info)
Þ ◊≤d Using (ag, ob.info)

24

Study at home

“soner or later before the deadline d”

“in the next state”



Instantiate pattern

Goal Avoid [ePurseBalanceDisclosedtoUnauthorized]
FormalSpec ∀ p: Person, ep: ePurse

¬ Owner (p, ep) Þ ¬ KnowsVp (ep.Balance)

Goal Avoid [AccountNumber&PinDisclosedToUnauthorized]
FormalSpec ∀ p: Person, acc: Account

¬ ( Owner (p, acc) ∨ Proxy (p, acc) ∨ Manager (p, acc) )
Þ ¬ ( KnowsVp (acc.Acc#) ∧ KnowsVp (acc.PIN) )

Confidentiality
Goal Avoid [SensitiveInfoKnownByUnauthorizedAgent]

FormalSpec ∀ ag: Agent, ob: Object
¬ Authorized (ag, ob.info) Þ ¬ KnowsVag (ob.info)

Examples
Agent …
Object …
Authorized …
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Instantiate pattern
a) Instantiating

meta-classes (such as Object, Agent) and 
generic attributes (such as Info) 

to application-specific sensitive classes, 
attributes and associations in the object model

b) Specializing 
predicates (such as Authorized, 

UnderControl)
through substitution by application-specific 
definitions
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THREAT ANALYSIS



Starting point: anti-goals

• Check converse of asset-related Achieve goals

• Example

PreCondition Þ ◊ TargetCondition (Achieve goal)

has converse

TargetCondition Þ PreCondition (Maintain goal)

ItemPaidÞ
◊≤2d ItemSent

ItemSentÞ
ItemPaid

ItemOrderedByBuyerÞ
◊≤7d ItemReceivedByBuyer

ItemOrderedÞ
◊≤2d ItemPaid

ItemSentÞ
◊≤3d ItemReceived

ShippingCo

◇ ItemSent
Ù ¬ ItemPaid
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Threat analysis
1. Get initial anti-goals to be refined/abstracted
2. Identify attackers wishing them and their 

capabilities
3. Build threat graph
4. Derive new security goals as countermeasures
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1. Initial anti-goals

AG Û ¬ SG
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Anti goal Security goal



1. Initial anti-goals

Avoid[AccountNumber&PinDisclosedToUnauthorized]
" p: Person, acc: Account
" [Owner(p, acc) Ú Proxy(p, acc) Ú Manager(p, acc)]

Þ ¬ [KnowsVp(acc.Acc#) Ù KnowsVp(acc.PIN)]

Achieve[AccountNumber&PinDisclosedToUnauthorized]
# $ p: Person, acc: Account
" Authorized(p, acc) Ù KnowsVp(acc.Acc#) Ù KnowsVp(acc.PIN)

Who would benefit from this?

Negate goal

Security goal
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2. Identify attackers and capabilities
• Who might benefit from satisfaction of anti-

goal
– Agent classes (insider/outside, hacker, thief, 

terrorist)

• What atomic conditions from the goal model 
the attacker can monitor/control
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Anti-agent
• Attacker (malicious agent) has objectives
– Anti-goals (threats as goals)

• Attacker has capabilities
– Conditions he can monitor and control

• Attacker has system knowledge (anti-Dom)
– Domain properties and goal model (“most 

knowledgeable attacker” assumption)
– Software-to-be as part of anti-environment
– Anti-domain properties include requirements and 

vulnerabilities
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3. Build threat graph
• For each (initial anti-goal, attacker) build 

anti-goal refinement/abstraction graph 

• Techniques
– HOW questions to refine, WHY questions to find 

missing anti-goals
– (Refinement patterns)
– (Regression)

34

We do not cover these



Threat graph
• Refinement of anti-goals Þ threat graph 
• Terminal condition
– Leaf anti-goals realizable by attacker agents (anti-

requirements) with their capabilities, given their 
knowledge

– Properties of the anti-domain (vulnerabilities of the 
attackee)

• Vulnerability
– Anti-goal pre-condition to be satisfied by the attacked 

software-to-be and its environment
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Threat graph
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…
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Threat graph (another example)

Attacker goal

37

◇ ItemSent Ù ¬ ItemPaid

◇ ItemSent! ¬ ItemPaid

◇ BeliefS (ItemPaid)

◇ NotificationReceived

◇ (fake)NotificationSent

realizable
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4. Countermeasures
• Avoid vulnerability (or anti-goal): add a new 

goal requiring the software vulnerability 
condition (or anti-goal) to be avoided
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• New goals must be further refined
• A new cycle of threat analysis may be needed for these new goals !!!



Questions ?
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