
Goal-oriented security requirements
with KAOS

Secure Software Engineering – SoSe 22

Riccardo Scandariato
Institute of Software Security, TUHH, Germany

ric***do . scanda***to @ tuhh.de

Learning objectives
• What is goal-oriented requirements

engineering?
• How to formalize security goals via security

specification patterns?
• What are anti-goals and threat analysis at

requirements level

2

Reading material
Axel van Lamsweerde, Elaborating Security Requirements by Construction of Intentional Anti-
Models, International Conference on Software Engineering, 2004

GOAL-ORIENTED REQUIREMENTS

What are goals?
• A goal is a prescriptive statement of intent that

the system should satisfy through the
cooperation of its agents

• An agent is an active system component playing a
specific role in the goal satisfaction
– Human such as operator and users
– Devices such as sensors, actuators, communication

media, measurement instruments
– Existing SW components such as legacy, off-the-shelf

or foreign
– New SW components forming the software to be

4

What are agents?
• A system component playing a role in goal

satisfaction
– Role rather than individual

• Active object
– Responsibilities (goals)
– Capabilities (monitor/control)
– Behavior (performs operations)

• To play such role, agents need to restrict their
behavior by adequate control of system items

5

Capabilities and responsibilities
• Capabilities are the monitoring links and control links

to objects
– Attributes (get or set values)
– Associations (check or create/delete)

• Responsible for a goal if its instances are the only ones
required to restrict their behavior, through adequate
setting of their behavior, so to satisfy the goal

6

Train
Controller

Monitored variable:
Speed

Controlled variables:
DoorsState

TrainDoorsClosedWhile
NonZeroSpeed

ObjectGoal Agent

Re
spo

nsi
bili
ty

What are goals? And what they are not!
• Meetings shall be scheduled so as to maximize

the attendance of invited participants
– Participants, initiator (in the environment)
– Scheduler (in the software-to-be)

• Make user happy
– Out of reach

• To initiate the meeting, the initiator needs to
prompt the scheduler, authenticate, fill in a form
and then confirm the request
– Not prescriptive statement of intent (declarative vs

operational)

7

Statements

8

Statement

Prescriptive
(prescribe agent behavior)

Descriptive
(environment)

Multi-agent goal Single-agent goal Domain property
(immutable)

Domain hypothesis
(subject to change)

Requirement
(software-to-be)

Expectation
(environment)

Acceleration commands
shall be sent to train

every 3 sec

Passengers get
out of the train

when the doors are
open at destination

All train tracks
are in good
conditions

A train is moving
if and only if its

speed is non-null

Environment assumptions

Goal granularity
• High-level: strategic objectives
– Larger cooperation needed
– Ex: Meetings shall be scheduled so as to maximize

the attendance of invited participants

• Low-level: technical objectives
– Fewer agents
– Ex: Reminders for upcoming meetings shall be

issued

9

Study at home

Goal refinement in KAOS
• AND-refinement
• ‘Necessary’ to achieve G

• Complete refinement
• ‘Sufficient’ to achieve G
• Often uses domain properties

and hypotheses

10

G

G1 G2

G

G1 Dom1

Alternatives in KAOS
• OR-refinement
– Goal refinement
– Goal assignment

• Generally result in different system designs

11

Avoid [TrainCollisions]

Avoid [Trains
OnSameBlock]

Maintain [Worst
CaseStopping

Distance]

FastRunToNextBlock
if GoSignal

Train
Controller

Train
Driver

Building goal models
• Early discovery
• Analysis of current system
• Search for intentional and prescriptive keywords in

documents
• Later discovery
• By abstraction (“Why?”, bottom-up)

• Until boundary of system capabilities is reached (system
scope!)

• By refinement (“How?”, top-down)
• Until assignable to single agent as requirement or

expectation

12

Building the goal model

13

Behavioral goals
Achieve [TargetCondition]

[if CurrentCondition then] sooner-or-later
TargetCondition

if a train is at some platform then within 5 minutes the
train is at the next platform

Cease [TargetCondition]
[if CurrentCondition then] sooner-or-later not
TargetCondition

14

◊ “in some future state”

Behavioral goals
Maintain [GoodCondition]

[if CurrentCondition then] always GoodCondition

Maintain [DoorsClosedWhileMoving]
always (if a train is moving then its doors are closed)

Avoid [BadCondition]
[if CurrentCondition then] always not BadCondition

Avoid [TrainsOnSameBlock]
always not (more than one train at one block)

15

! “in every future state”

Future Past
Some Linear Temporal Logic

16

o P P shall hold in the next state
! P P shall hold in some future state (sooner or later)
" P P shall hold in every future state (always)
P U N P shall hold until N becomes true (always until)

(N will eventually become true)
P W N P shall hold unless N becomes true (always unless)

(N might not become true)

• P
#P
$ P
P S N

P B N

Other
"£! P P shall hold in every future state up to deadline d
!£! P P shall hold within deadline d
P Þ Q " (P ® Q)

(entailment)
@P • (¬ P) Ù P (‘P just became true in the current state’)

Only for your info

Soft goals
• Improve [TargetCondition]

• Increase/Reduce [TargetQuantity]

• Maximize/Minimize [ObjectiveFunction]

17

Goal types and categories
• Behavioral

– Clear cut sense (in isolation)
• Soft goals

– Preferences among
alternatives

• Functional
– Intent underpinning a system

service
• Non functional

– Quality or constraint on
service provisioning or
development

18

Behavioral

Soft

Functional Non-functional

Pragmatic difference

Sem
antic difference

TY
PE

CA
TE

GO
RY

SECURITY GOALS

Application-level security analysis in KAOS
• A threat is the possibility of an asset in the system

going unprotected against unintended behavior
– Obstacle analysis: unintentional threats
– Threat analysis: intentional threats

• Unintentional obstruction: possibility of
inadvertent violation of a security goal

• Intentional obstruction: possibility of proactive
violation of a security goal by exploitation of
unprotected data and system knowledge
acquired through malicious behaviors,
calculations, deductive inferences, etc.

20

KAOS terminology

Identify security goals
Two complementary methods

a) Security specification patterns

b) Threat analysis and anti-goals (i.e., converse of asset-related
achieve goals)

21

Security specification patterns (1/2)

Agent knowledge must be modeled. LTL extended with
epistemic operator

Knowsag (P) ≡ Beliefag (P) ∧ P (knows property)

KnowsVag (x) ≡ ∃ v: Knowsag (x=v) (knows value)

Confidentiality
Goal Avoid [SensitiveInfoKnownByUnauthorizedAgent]

FormalSpec ∀ ag: Agent, ob: Object
¬ Authorized (ag, ob.info) Þ ¬ KnowsVag (ob.info)

“P is in ag’s local memory”

state variable

22

Security specification patterns (2/2)

Authorized is generic predicate and needs to be instantiated through a
domain-specific definition. E.g.

∀ ag: Agent, acc: Account
Authorized (ag, acc) ≡ Owner (ag, acc) ∨ Proxy (ag, acc) ∨ Manager (ag, acc)

Confidentiality
Goal Avoid [SensitiveInfoKnownByUnauthorizedAgent]

FormalSpec ∀ ag: Agent, ob: Object
¬ Authorized (ag, ob.info) Þ ¬ KnowsVag (ob.info)

23

Spec patterns for other security properties
Privacy
Goal Maintain[PrivateInfoKnownOnlyIfConsentedByOwner]

FormalSpec ∀ ag, ag’: Agent, ob: Object
KnowsVag (ob.info) ∧ OwnedBy (ob.info, ag’) ∧ ag ≠ ag’
Þ Consent (ag, ob.info, ag’)

Integrity
Goal Maintain[ObjectInfoChangeOnlyIfCorrectAndAuthorized]

FormalSpec ∀ ag: Agent, ob: Object, v: Value
ob.info = v ∧ o (ob.info ≠ v) ∧ UnderControl (ob.info, ag)
Þ Authorized (ag, ob.info) ∧ o Integrity (ob.info)

Availability
Goal Achieve[ObjectInfoUsableWhenNeededAndAuthorized]

FormalSpec ∀ ag: Agent, ob: Object
Needs (ag, ob.info) ∧ Authorized (ag, ob.info)
Þ ◊≤d Using (ag, ob.info)

24

Study at home

“soner or later before the deadline d”

“in the next state”

Instantiate pattern

Goal Avoid [ePurseBalanceDisclosedtoUnauthorized]
FormalSpec ∀ p: Person, ep: ePurse

¬ Owner (p, ep) Þ ¬ KnowsVp (ep.Balance)

Goal Avoid [AccountNumber&PinDisclosedToUnauthorized]
FormalSpec ∀ p: Person, acc: Account

¬ (Owner (p, acc) ∨ Proxy (p, acc) ∨ Manager (p, acc))
Þ ¬ (KnowsVp (acc.Acc#) ∧ KnowsVp (acc.PIN))

Confidentiality
Goal Avoid [SensitiveInfoKnownByUnauthorizedAgent]

FormalSpec ∀ ag: Agent, ob: Object
¬ Authorized (ag, ob.info) Þ ¬ KnowsVag (ob.info)

Examples
Agent …
Object …
Authorized …

25

Study at home

Instantiate pattern
a) Instantiating

meta-classes (such as Object, Agent) and
generic attributes (such as Info)

to application-specific sensitive classes,
attributes and associations in the object model

b) Specializing
predicates (such as Authorized,

UnderControl)
through substitution by application-specific
definitions

26

Study at home

THREAT ANALYSIS

Starting point: anti-goals

• Check converse of asset-related Achieve goals

• Example

PreCondition Þ ◊ TargetCondition (Achieve goal)

has converse

TargetCondition Þ PreCondition (Maintain goal)

ItemPaidÞ
◊≤2d ItemSent

ItemSentÞ
ItemPaid

ItemOrderedByBuyerÞ
◊≤7d ItemReceivedByBuyer

ItemOrderedÞ
◊≤2d ItemPaid

ItemSentÞ
◊≤3d ItemReceived

ShippingCo

◇ ItemSent
Ù ¬ ItemPaid

28

converse

negation
Anti-goal

Threat analysis
1. Get initial anti-goals to be refined/abstracted
2. Identify attackers wishing them and their

capabilities
3. Build threat graph
4. Derive new security goals as countermeasures

29

1. Initial anti-goals

AG Û ¬ SG

30

Anti goal Security goal

1. Initial anti-goals

Avoid[AccountNumber&PinDisclosedToUnauthorized]
" p: Person, acc: Account
" [Owner(p, acc) Ú Proxy(p, acc) Ú Manager(p, acc)]

Þ ¬ [KnowsVp(acc.Acc#) Ù KnowsVp(acc.PIN)]

Achieve[AccountNumber&PinDisclosedToUnauthorized]
$ p: Person, acc: Account
" Authorized(p, acc) Ù KnowsVp(acc.Acc#) Ù KnowsVp(acc.PIN)

Who would benefit from this?

Negate goal

Security goal

31

2. Identify attackers and capabilities
• Who might benefit from satisfaction of anti-

goal
– Agent classes (insider/outside, hacker, thief,

terrorist)

• What atomic conditions from the goal model
the attacker can monitor/control

32

Anti-agent
• Attacker (malicious agent) has objectives
– Anti-goals (threats as goals)

• Attacker has capabilities
– Conditions he can monitor and control

• Attacker has system knowledge (anti-Dom)
– Domain properties and goal model (“most

knowledgeable attacker” assumption)
– Software-to-be as part of anti-environment
– Anti-domain properties include requirements and

vulnerabilities

33

3. Build threat graph
• For each (initial anti-goal, attacker) build

anti-goal refinement/abstraction graph

• Techniques
– HOW questions to refine, WHY questions to find

missing anti-goals
– (Refinement patterns)
– (Regression)

34

We do not cover these

Threat graph
• Refinement of anti-goals Þ threat graph
• Terminal condition
– Leaf anti-goals realizable by attacker agents (anti-

requirements) with their capabilities, given their
knowledge

– Properties of the anti-domain (vulnerabilities of the
attackee)

• Vulnerability
– Anti-goal pre-condition to be satisfied by the attacked

software-to-be and its environment

35

Threat graph

AccountNumber&PinKnown

PinKnown&
MatchingAccountFound

AccountKnown&
MatchingPinFound

Pin
Selected

Matching
Account#Found

Account#
Selected

Matching
PinFound

Account#Checked
ForPinMatch

CheckIteratedOnOther
Account#IfNoMatch

…
realizable

realizable realizable monitorable
vulnerability 36

Check
Repeatable

Domain
property

Threat graph (another example)

Attacker goal

37

◇ ItemSent Ù ¬ ItemPaid

◇ ItemSent! ¬ ItemPaid

◇ BeliefS (ItemPaid)

◇ NotificationReceived

◇ (fake)NotificationSent

realizable

Study at home

4. Countermeasures
• Avoid vulnerability (or anti-goal): add a new

goal requiring the software vulnerability
condition (or anti-goal) to be avoided

38

• New goals must be further refined
• A new cycle of threat analysis may be needed for these new goals !!!

Questions ?

39

