
Secure Software Engineering Lab

Lab 2: Secure Software Design

Institute of Software Security (E-22)

1. Objectives

Apply the knowledge acquired in the lectures on the following areas of software security:

• Tactics for secure software design.

• Security patterns.

• Secure software architectures.

2. Tasks

1. Analyze each of the security requirements.

2. Identify and discuss suitable security tactics for each requirement.

3. Identify, instantiate, and discuss suitable security patterns for each requirement.

- Browse the security patterns catalog.

- Discuss in pairs.

- Instantiate the pattern.

4. Discuss the benefits and limitation of each selected pattern.

3. Materials

Case study, lecture slides, lab slides, security requirements, security patterns catalog.

Summer Semester 2022



Appendix - Security Requirements

Security Requirement #A

Context: Decentraland is a 3D metaverse platform where people can create avatars to
represent themselves and take part in real life activities like socializing, attending concerts
or buying assets. People can pay for various items and services using virtual or crypto
currency. There is a virtual bank called Meta Wallet, set up to enable easy transactions of
crypto currency. The bank clerks of Meta Wallet use a variety of systems to perform their
work, including the internal virtual bank application. They also use services provided by a
Bank Token company (that offers services like blocking a token to prevent it from retrieving
cryptocurrency), and by Fraud Detection Company (to detect if an avatar is validated and
track the transaction patterns). For the internal service, the clerk uses an account issued
by Meta Wallet itself, while for the external services she uses the accounts issued by each
third party. This situation implies that a bank clerk has at least three different credentials
to authenticate to the above services. As a security measure, the security policy of the bank
prescribes rigid password complexity rules and regular password changes. Furthermore, it is
forbidden to use the same password among multiple, separate systems. Most importantly, a
password for an internal service may not be reused to access any external system. Sharing
passwords would make the security of the virtual banking system depend on the security
practices of external companies, and potentially give external parties access to the internal
passwords of bank employees. Of course, this situation is to be avoided. The obvious solution,
namely requiring unique, complex, and regularly changing passwords for each of these services
would be cumbersome for the bank employee. Some services are not used on a daily basis,
and remembering the password thus becomes difficult. Therefore, chances are high that the
employee would resort to writing down the various passwords.

Security Requirements: The system should force the bank employee to comply with
the bank’s security policy (using strong passwords that are not shared between services),
but at the same time reduce the number of passwords that a bank clerk has to remember,
possibly to only one. This is often referred to as single sign-on (SSO). Furthermore, possible
evolution towards stronger authentication mechanisms (e.g., using a virtual smart card next
to a password) should be taken into account.

Additional Constraints:

• The interfaces of the external parties (the Bank Token Company and the Fraud Detec-
tion Company) are fixed, and cannot be modified.



Security Requirement #B

Context: Meta Wallet has introduced a mobile application which can be accessed via meta-
verse phones or meta watches, with which customers can access their wallet information
without having to visit the bank in Decentraland. It includes the balance in their wallets
and the most recent transactions for each wallet. They can also perform crypto currency
transfers with the mobile application. For security reasons, however, these transfers are lim-
ited to beneficiaries that are stored in a contact list. This contact list is created through the
Meta Wallet Online interface (and cannot be modified from within the mobile application).
Meta Wallet customers can enjoy the functionality of their mobile application everywhere
even if they are not present in Decentraland. Therefore, the mobile application caches cus-
tomer data in their database. When the customers are not present in Decentraland, the
most recent information may not be available and the application will use the cached data.
In this way, the customers can still consult their latest known account balances and recent
transactions. This information, however, is clearly labeled as ’possibly outdated’. Also, the
customer can initiate a cryptocurrency transaction outside Decentraland; in that case, the
transaction is executed as soon as they enter Decentraland again.
The cached information includes the last known wallet balances, recent transactions, the ap-
proved contact list and the pending transactions. Moreover, when the application is started,
the customer has to enter an application-specific PIN code to avoid unauthorized use. The
validation of the PIN code should be performed locally on the device, so that the application
can be used outside of Decentraland. The mobile application also locally stores the creden-
tials that are used to authenticate towards the Meta Wallet system. These credentials are
only used after the correct PIN code has been entered.

Security Requirements: The information that is stored on the device is security-sensitive,
and should be protected against disclosure to unauthorized parties. Also, the mobile appli-
cation should be the only entity entitled to alter the stored information.

Additional Constraints:

• The mobile application runs on the Android 11.1 (or newer) platform. This platform
offers an API for accessing both an application-only storage area and a shared stor-
age (e.g., an SD card). The application-only storage area is not accessible to other
applications (if the device is not rooted).



Security Requirement #C

Context: Clearly, the Meta Wallet system needs a publicly available web server to enable an
online interface for the customers. This server receives requests from unauthenticated origins
that come from everywhere, for instance customers that want to log in into the system. There
is a similar service for the mobile customers, offering the API that is used by the mobile
application. This is a sensitive server, as it provides a link between the outside, possibly
hostile world (Decentraland) and the internal, critical systems of the bank. Therefore, the
bank’s system consists of a less critical part (e.g., the web server) and a critical part (e.g., the
transaction management). Indeed, the transaction store is a crucial element for the correct
working of the entire Meta Wallet, and should be shielded from possible attacks from outside
at all cost. On the other hand, the web server (although important for the customers) is less
critical for the core operation of Meta Wallet. Malicious traffic should therefore not be able
to pierce the trust boundary between these two parts. Nevertheless, the web server needs
to be able to connect to the internal subsystems in order to provide its functionality to the
customers.

Security Requirements: A security vulnerability in a publicly available system (e.g., on
the bank’s web server software) should not allow an outside attacker to obtain direct read
access to the information in the transaction store.

Additional Constraints:

• Pay attention to the fact that load balancing is used for the web server, to accommodate
for a possibly large number of simultaneous requests.

• Focus on unauthenticated outsiders as attackers, i.e., not customers of the system.



Security Requirement #D

Context: In an average usage session, a customer of the Meta Wallet mobile application
typically performs a series of operations in close sequence, for example checking his balance
before performing a number of payments (transfers). In the future there will be ways to
authenticate users through eye recognition or facial scanning. However for the time being,
authentication is done via credentials. Clearly, it is infeasible to require the customer to
re-enter his credentials every time a request is made. Nevertheless, the system needs to be
able to identify the originator of each request.
To perform multiple operations in sequence, some customer-specific data needs to be kept.
For example, customers can enter multiple transfers in a row, before confirming them all at
the same time. This requires that the data about the already entered transfers is temporarily
stored and associated with the corresponding customer. When a subsequent request arrives,
this data is retrieved and updated if necessary.

Security Requirements: Customers that access Meta Wallet via the online interface should
not have to re-authenticate for every request that they make, but only once. As the customer
does not explicitly authenticate for every request, care must be taken that the customer-
specific data is never mixed up with the data of other customers while interacting with Meta
Wallet online interface.

Additional Constraints:

• There should also be a possibility for the customer to notify the system that he is done
using it.

• Pay attention to the fact that load balancing is used for the web server, to accommodate
for a possibly large number of simultaneous requests.



Security Requirement #E

Context: The banking industry is highly regulated to prevent misbehavior and fraud, also
from insiders. For example, in the United States, banks must comply with the Sarbanes-Oxley
Act (SOX). One aspect of SOX and similar regulations relates to preventing manipulation,
destruction or alteration of financial records or other interference with investigations. The
regulations also provide some protection for whistle-blowers, i.e., a person reporting to an
authority about dishonest or illegal activities.
In particular, it should not be possible for a bank employee to take advantage of her function
in the bank. For example, a bank employee should not grant a loan to herself, or use
information obtained via her position in the bank to provide investment advice to family
and friends. In particular, in the Meta Wallet system it should be possible to identify the
clerk that has performed each action related to a customer’s account, for example when a
transfer is performed on behalf of the customer. This evidence is used by the bank in case
of a dispute with a customer, in order to verify the conduct of the involved parties. This
information is also used by the bank to routinely monitor the behavior of the employees to
serve as a deterrent for any misconduct.

Security Requirements: All actions that involve a customer’s crypto wallet, including
reading the balance or performing a transaction, that are performed by a bank clerk should
be tracked by the system. It should be possible to detect misbehavior of a bank clerk, and
the cleck should not be able to plausibly deny his involvement in any misconduct.

Additional Constraints:

• Meta Wallet is not allowed to rely on external services to accomplish this requirement.

• Bank clerks cannot object to their actions being monitored by Meta Wallet



Security Requirement #F

Context: Due to the nature of the bank’s business domain, customers may be tempted to
commit fraud in order to earn easy crypto currencies. This can be obtained by providing care-
fully crafted inputs to the bank system (via one of the channels available to the customers),
so that the bank system is tricked into transferring the crypto currency to the fraudulent
customer’s wallet. Due to the sensitive nature of financial information, some people could
also be motivated to try to obtain such information about the bank’s customers. This is also
true for existing customers of the bank, which for instance may be tempted to learn about
the financial standing of a VIP. If these attempts would be successful and revealed to the
general public, the reputation of the bank would suffer severely.

Security Requirements: The system should let customers perform operations on their
own accounts only. Examples of such operations are checking the account balance, checking
the transaction history, or transferring an amount.

Additional Constraints:

• Focus on authenticated customers trying to misbehave.

• Do not focus on the fraudulent use of bank tokens.

Security Requirement #G

Context: Metaverse phones, smartphones or meta watches are often connected via a public
wireless network. Because some of these networks can be easily controlled by a malicious
user, the data that is sent over this network should be protected.
The data that is exchanged between the bank and the mobile application (e.g., wallet bal-
ances, transactions, etc.) is sensitive in nature. Therefore, it should only be exchanged
between and known to legitimate parties. Also, it is important that the data is not altered
while it is being exchanged, so that the same data that is sent from the mobile application
arrives at the bank (e.g., transfers issued by the customer using the mobile application), and
vice versa (e.g., the list of beneficiaries to whom the customer is allowed to issue transfers
via the mobile application).

Security Requirements: All data that is transmitted between the bank and the customer’s
mobile device (and vice versa) must be protected against unauthorized disclosure and modi-
fication.

Additional Constraints:

• An authentication mechanism of the mobile client (customer) towards the bank system
is already in place.


	Objectives
	Tasks
	Materials

