
Code Quality
Reproduce vulnerabilities with Proof-of-Vulnerability tests (Lab)

Overview
In this lab, we will try to automatically reproduce the real-world vulnerabilities
(disclosed on the National Vulnerability Database website) in Java open-source
projects. To this end, we need to spot the so-called Proof-of-Vulnerability (PoV)
test cases which are failing if the vulnerabilities exist in the code base and
passing if the vulnerabilities are removed. In some cases, if these PoV tests are
not available, you need to write them yourself by leveraging the description on
NVD and bug reports for the corresponding vulnerabilities.

Setup
We have prepared a Docker image that contains four vulnerabilities that you
need to spot the PoV tests, as described in the below table.

Vulnerability Patch Bug Report

CVE-2013-2186
https://github.com/apache/commons-file
upload/commit/163a6061fbc077d4b6e4
787d26857c2baba495d1

CVE-2016-7051
https://github.com/FasterXML/jackson-d
ataformat-xml/commit/eeff2c312e9d4ca
a8c9f27b8f740c7529d00524a

CVE-2018-1324
https://github.com/apache/commons-co
mpress/commit/2a2f1dc48e22a34ddb7
2321a4db211da91aa933b

https://issues.apache.org/jira/b
rowse/COMPRESS-432

CVE-2016-3720
https://github.com/FasterXML/jackson-d
ataformat-xml/commit/f0f19a4c924d9db
9a1e2830434061c8640092cc0

https://github.com/FasterXML/j
ackson-dataformat-xml/issues/
190

First, make sure that you have installed Docker and start it on your machine. To
start and access to our Docker container, run the below command:

$ docker run -it bqcuongas/sselab

https://nvd.nist.gov/vuln/detail/CVE-2013-2186
https://github.com/apache/commons-fileupload/commit/163a6061fbc077d4b6e4787d26857c2baba495d1
https://github.com/apache/commons-fileupload/commit/163a6061fbc077d4b6e4787d26857c2baba495d1
https://github.com/apache/commons-fileupload/commit/163a6061fbc077d4b6e4787d26857c2baba495d1
https://nvd.nist.gov/vuln/detail/CVE-2016-7051
https://github.com/FasterXML/jackson-dataformat-xml/commit/eeff2c312e9d4caa8c9f27b8f740c7529d00524a
https://github.com/FasterXML/jackson-dataformat-xml/commit/eeff2c312e9d4caa8c9f27b8f740c7529d00524a
https://github.com/FasterXML/jackson-dataformat-xml/commit/eeff2c312e9d4caa8c9f27b8f740c7529d00524a
https://nvd.nist.gov/vuln/detail/CVE-2018-1324
https://github.com/apache/commons-compress/commit/2a2f1dc48e22a34ddb72321a4db211da91aa933b
https://github.com/apache/commons-compress/commit/2a2f1dc48e22a34ddb72321a4db211da91aa933b
https://github.com/apache/commons-compress/commit/2a2f1dc48e22a34ddb72321a4db211da91aa933b
https://issues.apache.org/jira/browse/COMPRESS-432
https://issues.apache.org/jira/browse/COMPRESS-432
https://nvd.nist.gov/vuln/detail/CVE-2016-3720
https://github.com/FasterXML/jackson-dataformat-xml/commit/f0f19a4c924d9db9a1e2830434061c8640092cc0
https://github.com/FasterXML/jackson-dataformat-xml/commit/f0f19a4c924d9db9a1e2830434061c8640092cc0
https://github.com/FasterXML/jackson-dataformat-xml/commit/f0f19a4c924d9db9a1e2830434061c8640092cc0
https://github.com/FasterXML/jackson-dataformat-xml/issues/190
https://github.com/FasterXML/jackson-dataformat-xml/issues/190
https://github.com/FasterXML/jackson-dataformat-xml/issues/190

You are now inside the container, you will recognize the terminal cursor turns into
root@xyz:/SSE_LAB# (xyz is the id of your container). In the current directory,
there are four folders (corresponding to four vulnerabilities). In each folder, the
source code of the project is checked out to the revision that the vulnerabilities
exist.

Your Tasks
We will guide you to spot the PoV tests for the first vulnerability. Then, you need
to do yourself to spot or write the PoV tests for the other vulnerabilities. Basic
knowledge about building/running tests for Java projects (Maven) and JUnit will
be required to perform this lab.

Task 1. Find/Write the PoV tests for CVE-2013-2186
We will guide you for doing this task as a tutorial. Our source code has been
already isolated and checked out the vulnerable revision.

First, let take a look at the patch for this vulnerability at
https://github.com/apache/commons-fileupload/commit/163a6061fbc077d4b6e47
87d26857c2baba495d1:

https://github.com/apache/commons-fileupload/commit/163a6061fbc077d4b6e4787d26857c2baba495d1
https://github.com/apache/commons-fileupload/commit/163a6061fbc077d4b6e4787d26857c2baba495d1

Developers of Apache Common FileUpload added an if-precondition to check if
the null byte existed in the input repository patch. If it does, an IOException is
thrown. Developers also added some new test cases in the patch. These tests
are the potential PoV tests, especially, those ones that assert the IOException
will be thrown in the execution.

To verify our insight, we will run all the tests of the project on the vulnerable
revision to see if there were any failing tests then re-run them on the patched

revision to see if they were passing after removing vulnerability from the code
base.

To perform the tests execution, run the below command:

$ cd CVE-2013-2186
$ mvn test

And the test result:

testInvalidRepositoryWithNullChar(org.apache.commons.fileupload.DiskF
ileItemSerializeTest) Time elapsed: 0.098 sec <<< FAILURE!
testInvalidRepository(org.apache.commons.fileupload.DiskFileItemSeria
lizeTest) Time elapsed: 0.001 sec <<< FAILURE!
Failed tests:

Expected exception: java.io.IOException
Expected exception: java.io.IOException

Tests run: 70, Failures: 2, Errors: 0, Skipped: 0

So we found two failing tests:
testInvalidRepositoryWithNullChar(org.apache.commons.fileuplo
ad.DiskFileItemSerializeTest),
and
testInvalidRepository(org.apache.commons.fileupload.DiskFileI
temSerializeTest)

Now we need to verify if these two tests are passing after the patch is applied.
To applied the patch, run the below command:

$ git checkout -f 163a6061fbc077d4b6e4787d26857c2baba495d1

163a6061fbc077d4b6e4787d26857c2baba495d1 is the commit hash of the
patch commit (see in the table)

Then we re-run the tests:

$ mvn test

And now, there are no failing tests found in the test results:

Results :
Tests run: 70, Failures: 0, Errors: 0, Skipped: 0

So we could conclude the PoV tests for our vulnerability are:

- testInvalidRepositoryWithNullChar(org.apache.commons.fil
eupload.DiskFileItemSerializeTest)

- testInvalidRepository(org.apache.commons.fileupload.Disk
FileItemSerializeTest)

Task 2. Find/Write the PoV tests for CVE-2016-7051
Hint: This vulnerability might be reproduced in a similar way as the first one.

Task 3. Find/Write the PoV tests for CVE-2018-1324
Hint: Did you take a look at the bug report to see what causes the infinite loop
that leads to this vulnerability?

Task 4. Find/Write the PoV tests for CVE-2016-3720
Hint: Could you reuse boilerplate code from the PoV test for CVE-2016-7051?

(Supplementary) The Dockerfile for the lab
FROM ubuntu:20.04

ENV DEBIAN_FRONTEND=noninteractive
ENV LANG=C.UTF-8

install required softwares
RUN apt update \

&& apt install -y wget curl git python3 python3-pip vim zsh unzip
bzip2 xz-utils \

openjdk-8-jdk maven \
openssh-client patch software-properties-common time

build-essential \
&& rm -rf /var/lib/apt/lists/*

RUN wget
https://github.com/robbyrussell/oh-my-zsh/raw/master/tools/install.sh
-O - | zsh || true

WORKDIR /SSE_LAB
ENV JAVA_HOME /usr/lib/jvm/java-8-openjdk-amd64

CVE-2013-2186
RUN git clone https://github.com/apache/commons-fileupload
CVE-2013-2186; cd CVE-2013-2186; git checkout
163a6061fbc077d4b6e4787d26857c2baba495d1; git checkout HEAD~1 --
src/main/java/org/apache/commons/fileupload/disk/DiskFileItem.java

CVE-2018-1324
RUN git clone https://github.com/apache/commons-compress
CVE-2018-1324; cd CVE-2018-1324; git checkout
2a2f1dc48e22a34ddb72321a4db211da91aa933b; git checkout HEAD~1 --
src/main/java/org/apache/commons/compress/archivers/zip/X0017_StrongE
ncryptionHeader.java

CVE-2016-7051
RUN git clone https://github.com/FasterXML/jackson-dataformat-xml
CVE-2016-7051; cd CVE-2016-7051; git checkout
eeff2c312e9d4caa8c9f27b8f740c7529d00524a; git checkout HEAD~1 --
src/main/java/com/fasterxml/jackson/dataformat/xml/XmlFactory.java

CVE-2016-3720
RUN git clone https://github.com/FasterXML/jackson-dataformat-xml
CVE-2016-3720; cd CVE-2016-3720; git checkout
f0f19a4c924d9db9a1e2830434061c8640092cc0; git checkout HEAD~1 --
src/main/java/com/fasterxml/jackson/dataformat/xml/XmlFactory.java

