
Security Requirements Engineering

Master Course “Secure Software Engineering”
Summer Semester 2022

Riccardo Scandariato
Institute of Software Security, TUHH, Germany

ric***do . scanda***to @ tuhh.de

Learning objectives
• What are security goals and security

requirements ?

2

Reading material about goals and requirements
Charles Haley, Robin Laney, Jonathan Moffett, Bashar Nuseibeh, Security
Requirements Engineering: A Framework for Representation and
Analysis," Transactions on Software Engineering, 2008

Reading material about MUCs
Guttorm Sindre, Andreas Opdahl, Eliciting security requirements with misuse
case, Requirements Engineering 10(1), 2005

• How to elicit security requirements with MUCs ?

• How to prioritize security requirements ?

http://charles.the-haleys.org/papers/Haley-TSE-04359475-for_web.pdf

Learning objectives
• What are security goals and security

requirements ?

• How to elicit security requirements with
MUCs?

• How to prioritize security requirements ?

3

Reading material about goals and requirements
Charles Haley, Robin Laney, Jonathan Moffett, Bashar Nuseibeh, Security
Requirements Engineering: A Framework for Representation and
Analysis," Transactions on Software Engineering, 2008

Reading material about MUCs
Guttorm Sindre, Andreas Opdahl, Eliciting security requirements with misuse
case, Requirements Engineering 10(1), 2005

http://charles.the-haleys.org/papers/Haley-TSE-04359475-for_web.pdf

Software Requirements

4

Requirements:
• Descriptions of what a system should do in terms of the services it

must provide and constraints on its operation [Somerville 2011].
• Conditions or capabilities the system must meet to satisfy a

contract, standard, specification, or other formally imposed
documents [IEEE].

• Reflect the needs of different stakeholders (clients, customers,
and end-users) for a system that must serve a certain purpose.

Requirements Engineering:
• The process of capturing, analyzing, documenting and checking

system requirements.
• It is critical to the success of any major development project.

Functional and Non-Functional Requirements

5

Software system requirements can be classified into functional and
non-functional:

• Functional: Statements of what services the system should
provide, how should it react to certain inputs, and how should it
behave in specific situations.
– “The system shall be able to search the students for all lectures”.

– “The system shall generate a list of students attending to an exam”.

• Non-Functional: Define constraints on the services or functions
offered by a system
– Often referred as quality attributes.

– Examples: USABILITY, RELIABILITY, SAFETY, and SECURITY.

Non-Functional Requirements

6

• Non-functional requirements often apply to the system as a
“whole” rather than individual features or services
– The system shall limit the access to specific authorized users (security).

• A single non-functional requirement may generate many related
functional requirements and restrict existing ones.

• Unlike functional requirements, non-functional ones are difficult to
relate to individual system components (cross-cuttingness).

• Non-functional requirements may affect the overall architecture
of a system rather than its individual components.

Non-functional requirements are often more critical than individual
functional requirements!

7

Sources of Security Flaws (i)

Ambiguous and Incomplete Requirements

8

Typical problems of requirement engineering:

1. Not including all relevant stakeholders at the elicitation phase.

2. Restrict the analysis to functional requirements only.

3. Lack of systematic and structured methodology.

Negative consequences:

✘ Ambiguous requirements can lead to multiple interpretations that
do not meet the stakeholder’s expectations.

✘ Incomplete requirements can introduce delays and increase costs.

Imprecision in the specification of requirements is the cause of many
software engineering problems including security flaws.

In case of security
• Incomplete asset analysis (information,

functionality)
– E.g., failing to identify the sensitivity of login data

• Incomplete understanding and assessment of
the threat/attack landscape
– E.g., not being aware of phishing attacks

• Incomplete, wrong, weak selection of security
countermeasures
– E.g., not specifying a two-factor authentication

9

10

Sources of Security Flaws (ii)

Technical Debt and Security Debt

11

Compromising quality aspects of a software project can be seen as
“borrowing money thinking you never have to pay it back”.

→ When not paid back promptly, interests on the debt can compromise the
whole revenue of the project.

The term Technical Debt is used to describe the structural, long-term
problems of software products caused by quality compromises.

Security Debt: A technical debt that entails a security risk.

✘ Security work is generally under-prioritized (strict production deadlines).

✘ Features and functionality, dubbed as “customer value”, are pushed for
as early release as possible.

✘ Security benefits are difficult to demonstrate and costs hard to justify.

Security-by-design

12

✓ Security should not be an “after though”, but an integral part of a
software development project.

✓ In order to systematically develop secure solutions, security must be
emphasized throughout the whole software lifecycle.

– Security considerations should be integrated into the early stages of
the development life cycle (i.e., the requirements phase).

STEP 1. ASSETS AND SECURITY
GOALS

13

Assets

• Assets can also live in the physical world (hw, sensors, devices). This
is becoming more and more important in IoT and CPS
– IoT – Internet of Things
– CPS – Cyber-physical systems

• Assets can also be non-technical (e.g, reputation, employees time,
revenue from service)

14

Stakeholders

Asset
value interested in

Attacker

Technical assets are information (e.g., credit card data) or functionality (e.g.,
logging component) of value that must be properly protected

Asset analysis
• Identifying the assets in a system

– E.g., looking at business goals (white hat)
– However, attacker has interest too (black hat)
– Challenge: overlooking why things might be of interest to an

attacker (e.g., in the case of privacy)

• Assessing the value to us ($$$) in case they are
compromised
(useful in risk assessment)
– Usually non-problematic for technical assets

• Assessing the reason why they are valuable
(leading to goals)

15

Security concern: CIA+
ISO/IEC 7498-2: Information Processing Systems - Open Systems
Interconnection - Basic Reference Model - Part 2: Security Architecture

• Confidentiality (C): Protection against unauthorized disclosure of stored,
processed, or transferred information.

• Integrity (I): Ensure the authenticity (e.g. origin/source) and accuracy of
information. It entails restrictions for unauthorized data modification.

• Availability (A): Ensure the access (for authorized parties) to the data,
resources and services necessary for the proper functioning of the system

• Access Control: only legitimate access is permitted (goal or mechanism?)
• Accountability (& non-repudiation): prove that an entity was involved in

some event
– Accountability: Ensure the recording of security relevant events and the user

identities associated with these events
– Non-repudiation: Provide unforgeable evidence that a specific action occurred

(e.g., sending and receiving a message)

16
+ Authenticity (not in the standard)

• Concerns are abstract (taxonomical value)

• Goals represent the perceived specific needs of one or more stakeholders

• Security goals (primarily) entail the protection of an asset against a harm

– ACCIDENTAL HARM → SAFETY

– INTENTIONAL HARM → SECURITY

17

Security goals

Stakeholders

Asset
(Info or Svc) value

Threat
harmsApplication

Business Goal

elicited from

Security GoalControl
principles

mandated by

18

Non-Functional Requirements Revisited

Security goals/requirements are dependent on business goals

– E.g., define those privileges that are needed for the application, then
exclude those privileges that are not needed

Elicitation by conducting a harm analysis

▪ CIA+ concerns

▪ In general, harms can be recognized by negating security concerns →
“What harm could come to [asset here] from an action violating [concern here]?”

Security goals as “avoid” goals

19

Elicitation of security goals (i)

“Avoid” goals can be expressed as a triple {action, asset, harm}
where action(s) on the asset(s) listed in threat descriptions should be avoided

Sources of security requirements: the product (internal sources)

Security goals may have been set elsewhere, especially when assets are covered by
organization-wide policies

• Generated by applying the management principles to the assets and business
goals of the system

• Apply globally throughout an organization

Provide constraints that would otherwise have to be derived repeatedly for each
security risk analysis!

20

Elicitation of security goals (ii)

The result is a collection of “achieve” security goals such as “achieve separation of
duties when paying invoices” or “audit all uses of account information”

Sources of security requirements: the product environment (extrernal sources)

Elicitation of security goals (ii) - Examples

• Company policies
– E.g., “no administrative rights to employees”
– “audit all uses of account information”
– “achieve Separation of Duties when paying

invoices”
• Regulations and laws
– E.g., GDPR, compliance to HIPAA, etc.

• Business rules
– E.g., registered user versus paying user

21

STEP 2. CONCRETE REQUIREMENTS

22

Goals, requirements, architecture

o Goal (WHY): Something that any stakeholder wishes to achieve
Conflicts are possible and must be solved!

o Requirement (WHAT): A detailed (i.e., more concrete) commitment for the
system-to-be (e.g., behaviours and constraints)
They must be realistic → achievable and verifiable

o Architecture (HOW): A description of the means needed for achieving the
requirements, in terms of a configuration of interacting components

23

Strict separation not possible
(Twin Peaks → T. Heyman, et al.,

The security twin peaks, ESSoS, 2011)

Operatonalization of goals into requirements

24

Goal

Application
Business Goal Security GoalAsset Control

principles

mandated byelicited from

Functional req

Req

Constraint

Security Req
constraints

operationalizes

derived from

operationalizes

How can we
operationalize

???

Sandboxing/Partitioning…Authenticity

Operationalization of security

25

Why How

[Sym/asym] Cryptography

[Token-based] Authorization

Auditing

[RBAC/ABAC] Authentication

Monitoring

Confidentiality

Availability

Accountability and
non-repudiation

Integrity

Security concerns Security solutions

[White-list] Input ValidationSecurity
requirements

What

Reality check
• Requirements often contain solution-oriented

mechanisms (security building blocks, or even
security solutions)

• “Messages exchanged between A and B
should be …”
– Confidential
– Encrypted with symmetric encryption
– Ecrypted with AES 256

26

Useful? Maybe too
close to the goal

Too detailed ?

Type of security requirements

27

Study at home

Constraints
(on existing
operation)

Obligations
(i.e., additional

things to
before/after
operation)

Type of security requirements
• Simple constraint
– Predicates on the parameters of the operation, its

originator and source
– “The system shall not provide Personnel Information

except to members of Human Resources Department”
• Temporal constraints
– “The system shall not provide Personnel Information

outside normal office hours”
• Complex constraints on traces
– “The system shall not provide information about an

organization to any person who has previously accessed
information about a competitor organization (the Chinese
Wall Security Policy)”

28

Study at home

Type of security requirements
• Constraint on response time (availability)
– “The system shall provide Personnel Information

within 1 minute for 99% of requests”

• This differs only in magnitude from a
performance goal, which might use the same
format to require a sub-second response time
– “Response always within milliseconds” vs

“Degradation accepted and response within a
minute at worse”

29

Study at home

Type of security requirements
• Obligations (e.g., for auditability)
– “Invocation of a function should be logged

securely before execution starts”

30

Study at home

Security requirements revisited
• Constraint-like* security requirements are

preventative measures
– I.e., avoid attack altogether

• What about mitigation** techniques?
– I.e., monitor for attack and take reactive actions
– It’s a relaxed (less stringent) version of the

requirement due to feasibility reasons (technical,
money)

* But remember, we have obligations too
** Mitigation: not avoiding the risk, but rather dealing with the aftermath

31

Only for your info

More about mitigation
strategies when we

talk about design

Share your opinion

Security Goal

Security Req

operationalizes

How can we
operationalize

???

HOW TO DISCOVER SECURITY
REQUIREMENTS ?

33

Approach
• Perform threat analysis to discover threats Ti

where Ti is a malicious action that causes the
harm mentioned in the security goal

• SRk = ¬(Ti+ Tj …)
i.e., security requirements are the negation
(avoid) of the identified threats

• Not a one-to-one match
– One SR can cover multiple threats
– Same threat can be covered by multiple SRs

More on
threat analysis in
upcoming lecture

Harms, threats
• Harm refers to the impact
– Attacker-neutral (mostly)

• Threat refers to the causes
– Attacker-based (e.g. insider or outsider)

35
Stakeholders

value

Threat

harms

Attacker

Asset

poses
Weakness

exploits FEASIBILITY
(i.e., assumptions)

Requirements
Design

Implementation
Configuration

Intensions,
Motivation,

means

Attacker model

has

Difficulty

has

Loss of CIA+

Misuse Cases

36

• Way of performing threat analysis (at requirements level) by anticipating
abnormal behaviour and deriving security requirements

• Misuse Cases: They represent actions that systems should prevent

→ Extension/adaptation of use-cases and the corresponding notation.

• Use Cases: Identify the individual interactions between the system and its
users or other systems. Documented through Use Case Diagrams:

→ In its simplest form, a use case is shown as an ellipse with the actors
involved in the use case represented as stick figures.

Misuse case (MUC)
• A misactor is the inverse of an actor support
– An actor that the system should not

• A misuse case is the inverse of a use case
– A misuse case threatens a system functionality, it’s a

functionality that the system should not allow
– New functionality is introduced to mitigate the threat

3
37

Misuse case
Misactor

Misuse Cases

38

The association between a misuse case and a use case can
either be a threatens or a mitigates relationship.

"Misuse Case" is an intentional violation of the system by a "Mis-Actor".
Misuse Cases analyze user/actor threats to the system.

Example question

• What is the outcome of a threat analysis with
MUCs?

• Difference between threat analysis with MUCs
and with STRIDE?

• Can STRIDE threats be uses to derive SRs?

You need to study the lecture on STRIDE first ;)

39

Study at home

HOW TO PRIORITIZE SECURITY
REQUIREMENTS ?

40

Study at home

How to set priorities?
• Security requirements linked to threats

• If we can attach an rank to the threats, we can
prioritize the security requirements

41

Security
Threats

Security
Requirements

Security
Mechanisms

counter

prevent

require

Study at home

Ranking via risk assessment
• Ranking can be obtained via risk assessment

• Upcoming lecture J

42

Study at home

Learning objectives: checkpoint
• What are security goals and security

requirements ?
– Goal: protection of asset from harm
– Requirement: constraint or obligation to avoid

threats
• How to elicit security requirements ?
– Via threat analysis (e.g. via MUC)

• How to prioritize security requirements ?
– Risk = Impact on assets x Likelihood of threats

43

