Institute of I UHH
Software Security

Hamburg University of Technology

2

Threat and Risk Analysis

Riccardo Scandariato
Institute of Software Security, TUHH, Germany

ric***do . scanda™***to @ tuhh.de

Master Course “Secure Software Engineering”
Summer Semester 2022

* Learning fundamentals/terminology of

 Introduction to

Reading material
See project

 Knowledge repositories of security

Institute of I UHH
Software Security Hamburg University of Technology

What is risk?
Definition from I1SO 31000 ISO (2018)

,Effect of uncertainty on objectives”

* Objectives can have different aspects, and can be
applied at different levels
* An effect is a deviation from the expected

— Can be positive or negative (or both)
— Can result in opportunities and threats

e Risk is usually expressed in terms of risk sources,

ootential events, their consequences and their
ikelihood

Hamburg University of Technology

Asset: something to which a party assigns value and hence for which

the party requires protection

Risk: the of an unwanted incident and its fora
specific asset

Threat: a potential cause of an unwanted incident

Unwanted Incident: an event that harms or reduces the value of an
asset

Vulnerability: a weakness, flaw or deficiency that opens for, or may
be exploited by, a threat to cause harm to or reduce the value of an

asset

Hamburg University of Technology

* Risk management is primarily concerned with (i)
and (ii) the risks for the software

system when in operation

e As well as (iii) those risks to reduce their
impact on the software and its environment
* Questions
— (i) What can go wrong?
— (ii) What is the likelihood of it going wrong?
— (ii) What will the damage be?
— (iii) What can we do about it?

Risk management can be applied also to:
* security risks for the IT infrastructure
* security risks for the software development infrstructure (supply chain),

* Etc... 5

e ‘ Institute of TUHH

Software Security Hamburg University of Technology

Components of Risk Management

Plan and organize Risk
the process identification
Categorize system

components
Inventory and
categorize assets
Identify threats
Specify
vulnerable assets
Assign value to Risk
Assess likelihood
of attack on
vulnerabilities
Calculate relative
risk factor for assets
_Review
mb'e controls Risk treatment
Document findings

Whitman, Michael E., and Herbert J. Mattord. "Principles of Information Security." (2007). 6

Hamburg University of Technology

TECHNIQUES FOR THREAT & RISK
IDENTIFICATION

g Institute of TUHH

Software Security Hamburg University of Technology

Several TARA techniques available

Katja Tuma, Gul Calikli, Riccardo Scandariato, Threat analysis of software systems: A
systematic literature review, Journal of Systems and Software, 2018

38 papers grouped into 26 techniques

Methodology Ref Technique

Abe et al. 25) Threat patterns, negative scenarios

Almorsy et al. 3] Attack scenarios

Attack and Defense Trees 26 27| Attack trees, defense trees

Beckers et al. 28 MUC .

Berger et al. Q:] DFDs, rule-based graph matching 3 grou ps .

CORAS 29] Threat, risk, treatment diagrams and descriptions . .

Chen et al. [22] Attack paths RISk ce ntrlc
Dianxiang Xu and K. E. Nygard [20] Petri-nets .
El Ariss and Xu 30 State charts Softwa re centric
Encina et al. 31 Misuse patterns

Extended i* [32] Attacker agents with goals .
Haley et al. 36, Threat tuple-descriptions with rebuttals to claims AttaCk ce ntrlc
Halkidis et al. 37] STRIDE, Fault tree analysis

Hatebur, Heisel et al. 38, (39 [40] Problem frames

J. McDermott et al. 41, Abuse cases

KAOS 43 Threat graphs rooted in anti-goals, anti-models, threat trees

Karpati et al. 46 47| MUC maps, MUC, attack trees

LINDDUN 48] Threat to (DFD) element mapping, threat tree patterns, MUC scenarios

Liu et al. [49] Attacker agents with goals

P.AS.T.A. [50] Threat scenarios with associated risk and countermeasures

STRIDE 9, 10] Threat to (DFD) element mapping

Sheyner et al. [51] Attack graphs 5-

Sindre and Opdahl [52] MUC

Tong Li et al. 53] Automated generation of attack trees 4-

Tgndel et al. [54] MUC, attack trees

Whittle et al. 5] MUC

Number of publications
w

2000 2005 2010
Year of publication

2015

Institute of
Software Security

See next
lecure

Risk-centric (e.g., CORAS)

* Focus on assets and their value to the organization

* Higher-level model of the system (top-level functionality, assets)

* Aim at estimating the financial loss for the organization in case of threat occurrence

* And finding the appropriate mitigations to minimize it

* Method: brainstorming sessions

* Assets dictate the priority of elicited security requirements

#79893140

https://stock.adobe.com/

M. S. Lund, B. Solhaug, K. Stlen, A guided tour of the coras method, in: Model-Driven Risk Analysis, Springer, 2011, pp. 23-43.

* Focus is the software system under analysis and
its (components)

e Architectural threat analysis

* Important to include developers in the analysis
for 2 reasons:

— Accurate model of the software
— Developers learn about assets, risk analysis

e See

A. Shostack, Threat modeling: Designing for security, John Wiley & Sons, 2014.

* Focus the analysis around the hostility of the
environment

* Put emphasis on identifying attacker profiles
and attack complexity for exploiting any
system vulnerability —

* Main objectives
— Achieve high threat coverage
— identify appropriate threat migitations

T. Abe, S. Hayashi, M. Saeki, Modeling security threat patterns to derive negative scenarios, 20th Asia-Pacic Software Engineering Conference (APSEC), 2013 11

Hamburg University of Technology

RISK & THREAT ASSESSMENT AND
PRIORITIZATION

Institute of I UHH
o) re Securit Hamburg University of Technology

Risk value (a.k.a. rating)

* Goal: attach an importance value to risks

 Why: can be used to prioritize risks and decide
on treatment

* Quantitative & qualitative methods for
assessing risk, but in general:

Risk value = f(impact, likelihood)

13

Institute of

2

Software Security

TUHH

Hamburg University of Technology

Threats and risk analysis
ISO/IEC 15408 (Common Criteria)

LIKELIHOOD

Attacker model
Intensions,

Motivation,
means

N

has

Attacker

has

IMPACT

value
Stakeholders

Requirements
Design
Implementation
Configuration
FEASIBILITY

Weakness . .
(i.e., assumptions)

e TUHH
Hamburg University of Technology

Software Security

2

Starting point: Impact and Likelihood

* Impact

— How much value to the stakeholder is involved (e.g.,
loss of assets, harm of system mission, injury of
humans)

— Loss of value due to a vulnerability/weakness and the
resulting successful compromise

e Likelihood

— How hard it is to mount the attack (nature of the
weakness and existence and effectiveness of controls)

— How motivated and skillful the attacker is

15

Hamburg University of Technology

Idea: Decompose risk into “parameters” and use a formula N

Ranking with DREAD (from Microsoft)

risk =dp + r + e + a + di

* Damage potential (dp)

* If the threat exploit is successful, how much
damage will be caused?

e Reproducibility (r)

* How easy is it to reproduce the threat
exploit? What is the cost to the attacker once

he has a working exploit for the problem?
* Exploitability (e)

* Whatis needed to exploit the threat? What is
the cost to develop an exploit for the
problem?

* Affected users (a)

* What users are actually affected if an exploit
were to be widely available?

* Discoverability (di)
* How easy is it to discover a threat?

Ranking - categorizing. E.g., “Threats with overall
ratings between 100 and 50 are classified as high
risk, between 50 and 10 are classified as medium
risk and between 10 and 1 as low risk”

SP-800-30 -- Guide for Conducting Risk Assessments

Ranking with OCTAVE

risk =
w.* reputation +
wg * financialloss +
wp* productivity +
ws * safety +
w, * legalpenalties +
w, * others

* Focus on impact (probability is optional)

Where is
the impact
in DREAD?

16

Institute of I UHH
Software Security Hamburg University of Technology

Reflection: garbage in garbage out?

* Subjectivity in the input parameters is still
present

* Sensitivity of the formula to the input
parameters needs to be studied

17

Institute of TUHH

Software Security Hamburg University of Technology

2

Qualitative methods based on , heat maps“
Risk Assessment Matrix - Example

Damage potential

v

Negligible Minor Moderate | Significant

b

S A Risk 2
v Very Likely : d | Medium | Med Hi

| -

o .

S Likely 0 Medium | Med Hi Risk 1
H6 -

5 Possible 0 : ; Medium Med Hi Med Hi

o - -

2 Unlikely 0 owMed | LowMed | Medium | Med Hi

= | |

il_‘ Very Unlikely 0 0 - i \Medium | Medium

\1 Risk 3

18

Institute of
Software Security

Qualitative Risk Assessment

* Riskis defined in more subjective and general

terms such as high, medium, and low

* Qualitative assessments depend more on the
expertise, experience, and judgment of those

conducting the assessment

« Useful to adequately communicate the

assessment to the organization’s management

19

Study at home

« Arisk assessment matrix or risk control matrix is a
tool used during the risk assessment stage. It's used to
identify and document the possibility of risks, as well
as to assess the possible harm or disruption that such
risks could create.

« Risk assessment matrix is also a visual depiction of
the risk analysis that categorises risks according to

their likelihood, impact, and overall severity

20

Hamburg University of Technology

THREAT ANALYSIS WITH STRIDE

« Threat Model: Process that reviews the
security of any system, identifies problem
areas, and determines the risk associated
with each area

« Threat Modeling is lterative (continuous)

22

ey

Security threat assessment

* Systematic approach for threat identification

* Threats are organized into categories, it terms of what
attacker is trying to achieve

e STRIDE is a mnemonic

— Spoofing (e.g., impersonate legit user)
— Tampering (e.g., defacing web site)

— Repudiation (e.g., it wasn’t me)

— Information disclosure (e.g., Heartbleed)

— Denial of service (e.g., flooding)

— Elevation of privilege (e.g., running as root)

A. Shostack, Threat Modeling : Designing for Security, Wiley 2014 23

Institute of
Software Security

TUHH

Hamburg University of Technology

STRIDE categories

Threat =» Property = Countermeasure

e N

Spoofing Pretend to be someone else.
Tampering Change data or code.
Repudiation Claiming notto do a

particular action.

Information Disclosure Leakage of sensitive

information.

Denial of Service Non-availability of service

Elevation of privilege Able to perform unauthorized

action

Authentication

Integrity

Non-repudiation

Confidentiality

Availability

Authorization

Hack victim’s email and use to send
messages in name of the victim.

Software executive file is tampered
by hackers.

“I have not sent an email to Alice”.

Credit card information available on
the internet.

Web application not responding to
user requests.

Normal user able to delete admin
account

24

e I UHH
Hamburg University of Technology

Software Security

2

Methodology

 Define users and realistic use scenarios

* Gather assumptions
ase

Model

Map

Refine ;
Knowledge-

Document e

e Assign priority via risk analysis (to counter threat
explosion problem)

* Draft mitigation associated to threats

25

Where will the application be deployed

DMZ/Internal — complete end to end scenarios

Who will be the Users (Actors)?

Customers, sales agents, public users, administrators, DBAs
What are the Data Elements?

User account data, credit card info, patient information
What rights will the actors have?

Create, Read, Update, Delete

What Technologies will be used?

0S, Web/App Servers, Databases, Architectures (SOA/EJB)

Programming Language?
What security mechanisms applied?

Hamburg University of Technology

26

g Institute of TUHH

Software Security Hamburg University of Technology

Data Flow Diagram (DFD)

« A data-flow diagram is a way of representing a flow of data through a
process or a system.

« DFDs also provide information about the outputs and inputs of each
entity and the process itself.

« Shows all relevant steps data goes through

Entity

_—
Data flow

|
|
|
|
|
: Data store
|
|
|
|

Trust boundary

DFD of a Social Network application (1)

(1) Deng, M., Wuyts, K., Scandariato, R., Preneel, B., & Joosen, W. (2011). A privacy threat analysis framework:

supporting the elicitation and fulfillment of privacy requirements. Requirements Engineering, 16(1), 3-32. o

Institute of
Software Security

DFD Elements

* Process

— A process is a unit of work that operates on the data

e Data flow

— A data flow is a named flow of data through a system
of processes

* Data store
— A data store is a logical repository of data

e External entity

— An external agent is a source or destination of data

28

Institute of

Software Security

TUHH

Hamburg University of Technology

STRIDE in Action

Web Clients

SQL Clients

'
'
'
'
'
'
'
'
'
'
'

External Entity X

Process

DBA (Human)

Acme
Front End(s)

DB Admin

THREAT EXAMPLES

Spoofing a process on
the same machine

DB
Users
(Human)

WHAT THE ATTACKER DOES

Creates a file before the real
process

NOTES

Renaming/linking

Creating a Trojan "su’ and alter-
ing the path

Renaming

Naming your process “sshd”

Spoofing afile

Data Flow

Data Store

>

Creates afile in the local
directory

This can be a library, execut
able, or config file.

Creates alink and changes it

From the attacker’s perspec-
tive, the change should hap-
pen between the link being
checked and the link being
accessed

Creates many files in the
expected directory

Automation makes it easy to cre
ate 10,000 files in /tmp, to fill the
space of files called /tmp
/"pid.NNNN, orsimilar

Spoofing amachine

ARP spoofing

IP spoofing
DNS spoofing

Forward or reverse

DNS Compromise

Compromise TLD, registrar or
DNS operator

IP redirection

At the switch or router level

Spoofing a person

Sets e-malil display name

Takes over areal account

Spoofing arole

Declares themselves to be
that role

Sometimes opening a special
account with arelevant name

29

Spoofing Threats

Study at home

« Only a subset of threat categories are relevant
« Not “everything” can go wrong

(unless it’s a process)

S T R | D E
External Entity X X
Process X X X X X X
Data Flow X X X

Data Store X ? X X

30

Institute of

Software Security

2

Spoofing threats — Examples

Table 3-2: Spoofing Threats

THREAT EXAMPLES

Spoofing a process on
the same machine

WHAT THE ATTACKER DOES

Creates a file before the real
process

NOTES

Renaming/linking

Creating a Trojan “su” and alter-
ing the path

Renaming

Naming your process “sshd”

Spoofing afile

Creates a file in the local
directory

This can be a library, execut-
able, or config file.

Creates a link and changes it

From the attacker’s perspec-
tive, the change should hap-
pen between the link being
checked and the link being
accessed.

Creates many files in the
expected directory

Automation makes it easy to cre-
ate 10,000 files in /tmp, tofill the
space of files called /tmp

Spoofing a machine

/"pid.NNNN, or similar.
ARP spoofing
IP spoofing
DNS spoofing Forward or reverse

DNS Compromise

Compromise TLD, registrar or
DNS operator

IP redirection

At the switch or router level

Spoofing a person

Sets e-mail display name

Takes over a real account

Spoofing arole

Declares themselves to be
that role

Sometimes opening a special
account with a relevant name

Given by the methodology
to get the novice analyst
started

31

* Microsoft
— Draw DFD
— Add a lot of properties to the DFD elements
— Tool generates threats
— Your mileage may vary!

* OWASP

— Open source version

32

Institute of TUHH

Software Security Hamburg University of Technology

2

Is STRIDE effective?

R. Scandariato, K. Wuyts, W. Joosen, A descriptive study of Microsoft’s threat modeling technique, Requirements Engineering), 2015

45
(7]
©
v 30 - o 81 %
© £ <©
3 QO%
" 15 - A3 Correctness
oD
<>E 0 - Good guidance
Errors Correct Missing
45
v
= G
© W
S 30 - or! 36 %
® £
:nf 15 - Completeness
oo
3: 0 - Problem of threat explosion

Errors Correct Missing

Institute of I U H H
Software Security Hamburg University of Technology

KNOWLEDGE REPOSITORIES OF
SECURITY ATTACK

Especially for (non security experts)

Knowledge of is needed
— Adversary tactics, techniques and procedures
— Knowledge of vulnerabilities and how they can be exploited

This helps

Collections of attack types are available
1. To provide inspiration (mainly for novices)
2. When performing a gap analysis (also for experts)

Known ones: ATT&K, CAPEC (both from MITRE)

35

Institute of I UHH
Software Security

Hamburg University of Technology

2

MITRE‘s CAPEC

« Common Attack Pattern Enumerations and Classifications

o CAPEC “is a comprehensive dictionary and classification taxonomy of
known attacks that can be used by analysts, developers, testers, and
educators to advance community understanding and enhance
defenses”[1]

e CAPEC provides a publicly available catalog of common attack patterns
(with quite some focus on software security) that helps users
understand how adversaries exploit weaknesses in applications (i.e.,

ideal for application threat modeling)

36

Hamburg University of Technology

« Descriptions of the common approaches employed by adversaries to exploit
known weaknesses in cyber-enabled systems

about how are designed and
executed, and gives guidance on ways to mitigate the attack's effectiveness
o Containan”“ ¥ — step-by-step instructions for an adversary to

explore for potential targets, experiment with their assets and defensive
mechanisms, if any, and then to carry out the exploit

CAPEC-66: SQL Injection

Attack Pattern ID: 66 Status: Draft
Abstraction: Standard

Presentation Filter: | Basic v

v Description

This attack exploits target software that constructs SQL statements based on user input. An attacker crafts input strings so that when the target software constructs
SQL statements based on the input, the resulting SQL statement performs actions other than those the application intended. SQL Injection results from failure of the
application to appropriately validate input. When specially crafted user-controlled input consisting of SQL syntax is used without proper validation as part of SQL
queries, it is possible to glean information from the database in ways not envisaged during application design. Depending upon the database and the design of the
application, it may also be possible to leverage injection to have the database execute system-related commands of the attackers' choice. SQL Injection enables an
attacker to interact directly to the database, thus bypassing the application completely. Successful injection can cause information disclosure as well as ability to add or
modify data in the database.

Source: https://capec.mitre.org/data/definitions/66.html

37

https://capec.mitre.org/data/definitions/66.html

Institute of

Software Security I UH H

Hamburg University of Technology

Execution flow — Example for SQL Injection

v Execution Flow
Explore

Survey application: The attacker first takes an inventory of the functionality exposed by the application.
Techniques
Spider web sites for all available links
Sniff network communications with application using a utility such as WireShark.

Experiment

1. Determine user-controllable input susceptible to injection: Determine the user-controllable input susceptible to injection. For each user-controllable input that the attacker suspects is vulnerable to SQL injection,
attempt to inject characters that have special meaning in SQL (such as a single quote character, a double quote character, two hyphens, a parenthesis, etc.). The goal is to create a SQL query with an invalid syntax.
Techniques
Use web browser to inject input through text fields or through HTTP GET parameters.

Use a web application debugging tool such as Tamper Data, TamperlE, WebScarab,etc. to modify HTTP POST parameters, hidden fields, non-freeform fields, etc.
Use network-level packet injection tools such as netcat to inject input

Use modified client (modified by reverse engineering) to inject input.

2. Experiment with SQL Injection vulnerabilities: After determining that a given input is vulnerable to SQL Injection, hypothesize what the underlying query looks like. Iteratively try to add logic to the query to extract
information from the database, or to modify or delete information in the database.

Techniques

Use public resources such as "SQL Injection Cheat Sheet" at http://ferruh.mavituna.com/makale/sql-injection-cheatsheet/, and try different approaches for adding logic to SQL queries.

Add logic to query, and use detailed error messages from the server to debug the query. For example, if adding a single quote to a query causes an error message, try : "' OR 1=1; --", or something else that would
syntactically complete a hypothesized query. Iteratively refine the query.

Use "Blind SQL Injection" techniques to extract information about the database schema.

If a denial of service attack is the goal, try stacking queries. This does not work on all platforms (most notably, it does not work on Oracle or MySQL). Examples of inputs to try include: "'; DROP TABLE SYSOBJECTS; --
"and "'); DROP TABLE SYSOBIJECTS; --". These particular queries will likely not work because the SYSOBJECTS table is generally protected.

Exploit

Exploit SQL Injection vulnerability: After refining and adding various logic to SQL queries, craft and execute the underlying SQL query that will be used to attack the target system. The goal is to reveal, modify, and/or
delete database data, using the knowledge obtained in the previous step. This could entail crafting and executing multiple SQL queries if a denial of service attack is the intent.

Techniques
Craft and Execute underlying SQL query

Source: https://capec.mitre.org/data/definitions/66.html

38

https://capec.mitre.org/data/definitions/66.html

Study at home

'Y I
Y ¥ Y
* How is CAPEC related to CWE?

* Have a look at examples in CWE
— CWE-89: SQL Injection
https://cwe.mitre.org/data/definitions/89.html
 And CAPEC

— CAPEC-66: SQL Injection
https://capec.mitre.org/data/definitions/66.html

39

https://cwe.mitre.org/data/definitions/89.html
https://capec.mitre.org/data/definitions/66.html

Institute of I UHH
Software Security

Hamburg University of Technology

The weakness(es) that the attack pattern is exploiting (CWEs) are listed in CAPEC-66, in
the “Related Weaknesses” section

Vv Related Weaknesses

© CWE-ID Weakness Name
89 Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
1286 Improper Validation of Syntactic Correctness of Input

Description in CWE-89

Example 2

The following code dynamically constructs and executes a SQL query that searches for items matching a specified
name. The query restricts the items displayed to those where owner matches the user name of the currently-
authenticated user.

Example Language: C#

string userName = ctx.getAuthenticatedUserName();

string query = "SELECT * FROM items WHERE owner = " + userName + "' AND itemname = "' + ItemName.Text + """;
sda = new SqglDataAdapter(query, conn);

DataTable dt = new DataTable();

sda.Fill(dt);

The query that this code intends to execute follows:

SELECT * FROM items WHERE owner = <userName> AND itemname = <itemName>;

However, because the query is constructed dynamically by concatenating a constant base query string and a user
input string, the query only behaves correctly if itemName does not contain a single-quote character. If an
attacker with the user name wiley enters the string:

name' OR 'a'='a

for itemName, then the query becomes the following:

SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name' OR 'a'='a’;

(CWE) is a
community-developed list of software (and
hardware) weakness types

— CWE serves as a and as a
baseline for weakness identification. As well as a
measuring stick for security tools

e A is typically a method

of leveraging a CWE to execute an attack

41

