
Security at Architectural Design Level

Put name of event HERE

Riccardo Scandariato
Institute of Software Security, TUHH, Germany

ric***do . scanda***to @ tuhh.de

Learning objectives
• What models are interesting for security? And

what properties are represented?

• What can I do with models?
– Analysis, testing, generation, …

• How to build a secure software architecture?
– Principles, tactics, patterns

2

Reading material on Security Tactics
Joanna Santos, et al., An Empirical Study of Tactical Vulnerabilities, JSS, 2019

Software model
• Provides an abstraction of the system

• Software engineering perspective
– Parts/components and interfaces
– Funcionality/logic …

3

We focus on architectural design

4

The set of design decisions that determine the
quality properties of a system

“The fundamental concepts and properties of a system in its
environment embodied in its elements, relationships, and in the
principles of its design and evolution.”

"The software architecture of a computing system is the structure of
the system, which comprise software components, the externally visible
properties of those components, and the relationships among them”

Len Bass

Jan Bosch

ISO/IEC/IEEE 42010
http://www.iso-architecture.org/ieee-1471/defining-architecture.html

Security – Commonly used models

5

UML Component Diagram

Security – Commonly used models

6

UML Sequence Diagram

Security – Commonly used models

7

UML Deployment Diagram

<<http>>

<<http>>

<<REST>>

Security – Commonly used models

8

Data Flow Diagram
We’ll see this later
(cf. Threat analysis)

Security model
• Provides an abstraction of the system
• Software engineering perspective
– Parts/components and interfaces
– Funcionality/logic …

• Security engineering perspective
– Data/assets, their sensitivities
– Information flows
– Security mechanisms
– Security assumptions/expectetions ...

9

Security engineering perspective

10

Examples

<<encrypted>>
<<integrity>>

<<Web Application FW>>

Authenticated
Session

user age : PII

PII : personally identifiable information

The problem of semantics J

Model, where from?
• Top-down, as an up-front blueprint
– “Security concept” developed in safety-critical

domains (automotive, aviation, medical)

• Bottom-up, reconstructed by experts
– Common case when security analysis starts
– E.g., most web-based systems

• Bottom-up, automatically extracted from code
– Research field (ArchSec, Gravity, etc)

11

Architectural documentation

12

Academic dream

Component diagram

Deployment diagram

Hirarchical
decomposition

Only for your info

Architectural documentation

13

Real life

Credit: https://c4model.com

Only for your info

Models, what for?
• Model analysis
• Code generation
• Model-based code generation

• More (e.g., monitoring, metrics…)

14

Next week

Model-based code generation
• Derive (draft) implementation code and

configuration

• E.g., code: Authorization pattern → Security
aspect woven in code

• E.g., config: access control policy
– derive roles from context/component diagrams
– derive permissions from use cases, workflows, etc.

15

Model-based test generarion
• Functional security testing
– E.g., test rules in a firewall, given the components

that are present in the model
– E.g., test access control rules, provided the roles in

the model
• Security vulnerability testing (penetration)
– Generate attack sequences using the system

topology
– Model-based fuzzing (e.g., alter order of messages

in a protocol), from a sequence diagram

16

Other uses
• Model-based runtime monitoring
– Monitoring the security assumptions made in the

model
– E.g., communication is encrypted, communication is

only allowed between A and B, …
• Model-to-model transformations
– Hardening the model by adding security

countermeasures
– Making the functionality more GDPR compliant

• Compute security metrics
– Mostly for for certification, but also prediction, etc

17

BUILDING SECURITY-AWARE
ARCHITECTURAL DESIGN

18

Asset

Secure architectural design
• Identify the assets of interest (by interacting with the stakeholders)
• Understand the relationship asset ↔ functionality
• Identify threats and their importance (impact, likelihood)
• Implement constraints (i.e., countermeasures) to deal with threats
• Hence achieving the security goals

Asset

value
Harm

may occur to

Threat
causes

Functionality

re
la

te
d

to

Countermeasures countersconstraint

Threat analysis and
risk analysis (TARA)

Secure design

Threat

Stakeholders

19

In the toolbox
• Previous slide has a “magic” step J

“Implement constraints (i.e., countermeasures) to
deal with threats”

• What security knowledge do we use?
– Security principles
– Security tactics
– Security patterns / security solutions

SECURITY DESIGN PRINCIPLES

21

Security Meta Principles
A. Simplicity
– Fewer components and cases to fail
– Fewer possible inconsistencies
– Easy to understand

B. Restriction
– Minimize access and inhibit communication

C. Minimal assumptions
– Avoid trust

22

Security Design Principles
1. Least Privilege
2. Fail-Safe Defaults
3. Economy of Mechanism
4. Complete Mediation
5. Open Design
6. Separation of Privilege
7. Least Common Mechanism
8. Psychological Acceptability

23

(VERY old)
J. Saltzer , D. Schroeder, The Protection of Information in Computer Systems, Proceedings of the IEEE
63(9), 1975

1. Least Privilege
• A subject/process should be given only those

privileges necessary to complete its task
– Function, not identity, controls
– Rights added as needed, discarded after use

• Architecture: component only has privileges to
interact with other appropriate components

• Common violation:
– Browsing the Internet while logged as administrator

or root

Study at home

24

2. Fail-Safe Defaults
• Default action is to deny access
• When an action fails, system must be restored to

a state as secure as the state it was in when it
started the action

• Example
– Card looked up in vendor database to check for stolen

cards
– If no connectivity, no authentication, but transaction

is logged -> NO!

Study at home

25

3. Economy of Mechanism
• Keep it as simple as possible (KISS)
– Use the simplest solution that works.
– Fewer cases and components to fail.
– Minimal retained state (harder for program to get

‘confused’)

• Reuse known secure solutions
– i.e., don’t write your own cryptography.

Study at home

26

4. Open Design
• Security should not depend on secrecy of

design or implementation
– No “Security through obscurity”
– Refers to security policy and mechanism

(not secrets like passwords and crypto keys)

• E.g., do not rely on obfuscation

Study at home

27

5. Complete Mediation
• Check every access
• Usually checked once, on first access:
– UNIX: File ACL checked on open(), but not on

subsequent accesses to file

• If permissions change after initial access,
unauthorized access may be permitted

• Also important for auditing!

Study at home

28

6. Separation of Privilege
Require multiple conditions to grant access
– Separation of duty
– Compartmentalization
– Defense in depth (or multiple layers of security)

29

Study at home

Separation of Duty
• Functions are divided so that one entity does

not have control over all parts of a
transaction.

• Example:
– Different persons must initiate a purchase and

authorize a purchase.
– Two different people may be required to arm and

fire a nuclear missile.

Study at home

30

Compartmentalization
• Problem: A security violation in one process

should not affect others.
• Solution: isolate components in deployment
– Physically
– Through virtual machines

• Also: Self-limit consumption of resources
• Also: Divide system into parts which are limited

to the specific privileges they require in order to
perform a specific task (privilege separation)

Study at home

31

Defense in Depth
• Diverse defensive strategies
– Different types of defenses

(protection, detection, reaction)
– Different implementations of defenses (variety)
– If one layer pierced, next layer may stop
– Avoid “crunchy on the outside, chewy on the

inside” security

• Contradicts “Economy of Mechanism”
– Think hard about more than 2 layers

Study at home

32

7. Least Common Mechanism
• Mechanisms used to access different

resources should not be shared
– Error or compromises of the mechanism while

accessing one resource allow compromise of all
other resources

– Use separate machines, separate networks
– All data in a blackboard mediated by a blackboard

component?

• Contradicts “Economy of Mechanism”?

Study at home

33

8. Psychological Acceptability
• Security mechanisms should not add to the

difficulty of accessing a resource

• Human factors are critical here
– Hide complexity introduced by security

mechanisms
– Make system secure in default configuration

• Security vs Usability

Study at home

Upcoming
lecture on
this topic

34

SECURITY TACTICS

35

Detect intrusion

Detect service denial

Verify massage integrity

Detect message delay See availability

Identify actors

Validate Inputs

Manage User Sessions

Authenticate actors

Authorize actors

Limit access

Limit exposure

Encrypt data

Separate entities

Change default settings

Revoke access

Lock computer

Inform actors

Detect attacks Recover from attacksResist attacks React to attacks

Attack

System
detects,
resists,

reacts or
recovers

Maintain audit trail Restore

Preventive controls Detective/reactive controls Corrective controls

Tactics for secure design
Security

36

More on
this in

your lab !

Tactics for secure design

37

Risk-aware design
• Preventive: avoid incidents before they occur
– E.g., access control to avoid disclosure

• Detective/Reactive: respond to incidents
while they occur
– E.g., detect anomalous activity and lock down

the network

• Corrective: handle incidents after they have
occurred (cf. resilience)
– E.g., restore correct state from backup

E.g., First line
of defense

E.g., Second
line of

defense

E.g., Third line
of defense

38

SECURITY DESIGN PATTERNS

39

Security patterns – Fashion items ?

40

Source: Wiley Book

Known Uses. UNIX telnet and Windows NT login applications use Single Access
Point for logging into the system.

Single Access Point

41

Example

A security model is difficult to validate when it has multiple “front doors”, “back
doors”, and “side doors” for entering the application

Reduce the attack surface by setting up only one way to get into the system and if
necessary, create a mechanism to decide which sub-application to launch.

Problem

Solution

More on
this in

your lab !

Single Access Point

Participants

Decision point

Single access pointUser Application

<<use>>

42

Single Access Point

Collaborations

Single
access point

43

Added to the design to fulfill new security functionality

Connect generic solution (pattern) to specific design. Wire
the newly added components to existing ones

Impose constraints on the rest of the design
(assumptions!). Need to either modify existing
components (or “wires”) to satisfy expectations, or modify
design “at large” (e.g., the account creation functionality,
so that a good password is chosen)

Application

“Make
credentials

hard to forge”

Some “theoretical” underpinning
What is a (security) design pattern?

New components

Roles

Expectations

Decision point

Client

Single
access
point

T. Heyman, et al, The security twin peaks, ESSoS 2011 44

Instantiating a pattern

45

Single Access Point
Role

(Application ➞ Pet Shop)New components

Single
access point

Admin
Desk

Pet Shop

Role
(Client ➞ Admin Desk)

WiringWiring

Expectation:
no

eavesdropping

Expectation:
no

back-doors

