
Security Analysis of Software Design

Master Course “Secure Software Engineering”
Summer Semester 2022

Riccardo Scandariato
Institute of Software Security, TUHH, Germany

ric***do . scanda***to @ tuhh.de

Learning objectives

• What are architectural weaknesses?
– CAWE

• How to find architectural weaknesses with
model-based security analysis?
– Manual inspection vs automated checking

(UMLsec)

2

Reading material
Jan Jürjens, Model-Based Security Engineering with UML,
Chapter 4 of the book “Secure Systems Development with UML”
Link: https://link.springer.com/chapter/10.1007/3-540-26494-9_4

Reading material
Mehdi Mirakhorli, Common Architecture Weakness Enumeration (CAWE),
http://blog.ieeesoftware.org/2016/04/common-architecture-weakness.html

https://link.springer.com/chapter/10.1007/3-540-26494-9_4
http://blog.ieeesoftware.org/2016/04/common-architecture-weakness.html

Goals of model-based security analysis

• Discover security/privacy issues early on,
even before developing the code
(forward engineering case)

• Certification of a system (also existing one)
– Evidence that risks are identified
– Evidence that ‘reasonable’ security mechanisms

are in place

3

Model Based Security Analysis

Why security analysis at the architecture level?
For the early identification of the security design flaws
A different type of issues (than, e.g., implementation vulnerabilities)

Are security tests/validation on the implementation
not sufficient?
Quite evident with the no. of attacks!
Late detection and fixing security flaws causes loss of time, money and
reputation of the organization

4

Architectural Flaws
• Flaws of Omission. Such design flaws result from ignoring

a security requirement or potential threats.
• Flaws of Commission. Such design flaws refer to the

design decisions which were made and could lead to
undesirable consequences.

• Flaws of Realization. The design decision is correct but the
implementation of that suffers from a coding mistake.
Code vulnerabilities TERRITORY

• Common Architecture Weakness Enumeration (CAWE)
• By Mehdi Mirakhorli
• http://blog.ieeesoftware.org/2016/04/common-

architecture-weakness.html

5

http://blog.ieeesoftware.org/2016/04/common-architecture-weakness.html

An example

6

Architectural weaknesses

7

High-level
description

Mix of code,
design,

process…

Top 10 Software Security Design Flaws
1. Earn or Give, but Never Assume, Trust
2. Use an Authentication Mechanism that Cannot be Bypassed or

Tampered With
3. Authorize after You Authenticate
4. Strictly Separate Data and Control Instructions, and Never Process

Control Instructions Received from Untrusted Sources
5. Define an Approach that Ensures all Data are Explicitly Validated
6. Use Cryptography Correctly
7. Identify Sensitive Data and How They Should Be Handled
8. Always Consider the Users
9. Understand How Integrating External Components Changes Your

Attack Surface
10. Be Flexible When Considering Future Changes to Objects and

Actors

8

CAWE

9

Common Architectural Weakness Enumeration
Accepted as a “view” in CWE

Model-based security analysis

• Inspection guidelines

• Algorithmically
(e.g., model checking, pattern matching, etc.)

• Threat and risk analysis → Later in this course ;)

10

Types of model-based security analysis

• Inspection guideleines
(performed manually, possibly tool assisted)

• Benchmark is a ‘trendier’ term
(see CIS – Center for Internet Security)
– Also more focus on tool support for the rules

11

K. Tuma et al., Automating
the Early Detection of

Security Design Flaws,
MODELS 2020

Manual vs Automated Model Analysis
Accessing the software design/software architecture for
detection of flaws

12

Analysis Advantages Disadvantages

Manual ● Interpretation of
improper
representation of
models

● Fewer false
positives

● Time consuming
● Requires expertise
● Completeness ?

Automated ● Faster
● Re-executed if

model changes

● Specific Model with precise
notation/formalism are
required

● Additional info to be added
to models based on rules
and requirements

UMLSec

Unified Modeling Language (UML)
UML: Industry standard object oriented modeling technique

Relatively precisely defined
Widely adopted and accepted

UML Diagrams
Rich set of diagrams, covering a spectrum of abstractions
(more/less detailed descriptions)
Visual representation of the architecture and detailed design of
complex software systems

14

UMLsec – Phylosophy
• Annotate design diagrams with various recurring

security requirements (secrecy, integrity,
authenticity…) and security assumptions

• Annotations as
– Stereotypes
– Tags

• Goal
– Documentation / keep track of info
– Formal semantics → tool-supported analysis

15

UMLSec Extension Mechanisms
UML profile collects the relevant definitions of stereotypes, tagged values,
and constraints

Stereotypes Define new sub-types of modelling elements, hence extending
the UML metamodel. Stereotype definition can include zero or more tags

Example: <<guarded>> can only be used on Objects

Tagged values: Name-value pair that add properties to model elements. Can
be used in the context of a stereotypes that defines them

Example: {guard = obj} identifies the guard object

Constraints Define the formal semantics of a model element (e.g., written in
first-order logic). That is, the desired security property.

Example: “guarded objects only accessible via guard object”

16

Foo Boolean values, {tag} means {tag = true}

Example

17

Deployment diagram with

Node

Component

Link
(between nodes)

Dependency
(between components)

Security annotationsSubsystem (think of package)
Integrate the information
between the different kinds of
diagrams and between different
parts of the system specification

UMLSec: usage scenarios
(from more abstract to more concrete)

19

In UMLsec: Define secure business processes

In UMLsec: Capture security requirements

Activity diagrams
Specify the control flow between several components
within the system, usually at a higher degree of
abstraction than statecharts and sequence diagrams.
They can be used to put objects or components in the
context of overall system behaviour or to explain use
cases in more detail.

Usecase diagrams
Seen before

20

In UMLsec: Check physical security

Deployment diagrams
Describe the physical layer on which the system is to be implemented.

21In UMLsec: Define security critical interactions

Sequence diagrams
Describe interaction between objects arranged in time sequence and also
sequence of the messages exchanged.

Class diagrams
Define the static class structure of
the system: classes with
attributes, operations, and signals
and relationships between
classes. On the instance level, the
corresponding diagrams are called
object diagrams.

22

In UMLsec: Information flow analysis

Statechart diagrams
Give the dynamic behaviour of an individual object
or component: events may cause a change in
state or an execution of actions.

UMLsec profile at a glance

23

Stereotypes 1/3

24

Internet, encrypted LAN: Denote communication links- Stereotypes on
links in deployment diagrams denote the corresponding requirements on
communication links nodes. Each link or node carries at most one of
these stereotypes.

Secure Dependency
This stereotype, used to label subsystems containing object diagrams or static
structure diagrams, ensures <<call>> or <<send>> dependencies respect the
security requirements on the data that may be communicated along them, as
given by the tags secrecy, integrity and high of the stereotype <<critical>>
Secrecy, integrity, high
Stereotypes denote dependencies in static structure or component diagrams that
provide security requirement for the data that is sent as arguments or return values of
operations or signals.

Study at home

Stereotypes 2/3
Secrecy
<<call>> or <<send>> dependencies in object or component diagrams stereotyped
<<secrecy>> provide security requirement for the data that is sent as arguments or
return values of operations or signals
Both are used in the constraint of the stereotype <<secure links>>
Critical
This stereotype labels objects or subsystem instances containing
data that is critical in some way, which is specified in more detail using
the tags secrecy, integrity, fresh and high.
No down flow
This stereotype of subsystems enforces secure information flow by making use of the
associated tag high. According to the <<no-down flow>> constraint, the stereotyped
subsystem prevents down-flow wrt messages and their return messages specified as
high

25

Study at home

Stereotypes 3/3
Fair exchange
Tags start and stop whenever a start state in the activity diagram is reached, then
eventually corresponding stop state will be reached.
Provable
Tags action and cert whenever a start state in the activity diagram is reached, then
eventually corresponding stop state will be reached.
Guarded Access
Each object in the subsystem that is <<guarded>> can only be accessed through the
objects specified by the tag guard attached
to <<guarded>> object.
Guarded
Labels objects (in particular in the scope of the stereotype <<guarded access>>
above) that are supposed to be guarded. It has a tagged value guard which defines
the name of the corresponding guard object.

26

Study at home

Summary of UMLsec tags

27

Only for your info

Key security requirements

28

Confidentiality & integrity
of communications

Information flow properties

Non-repudiation of actions

Architectural access control

Coarse-grain access control

UMLsec: Supported Security Requirements
Fair Exchange- This requirement postulates that the trade is performed in a way that
prevents both parties from cheating

Non-Repudiation- An action cannot subsequently be denied successfully. That is, the
action is provable, usually wrt. some trusted third party

Secure Logging- The auditing data is at each point during the transaction of the
system consistent with the actual state of the transaction (to avoid the possibility of
fraud by interrupting the transaction)

Message Authenticity or Data origin Authenticity- Allows to identify the original
source of data in the past

Entity Authenticity- Allows to identify active participation of a participant in a
particular protocol at that time

Guarded Access- Access control ensures that only legitimate parties have access to a
security-relevant part of the system. Access control can be enforced by guards.

29

Study at home

UMLsec: Supported Security Requirements

Freshness- A message is fresh if it is created under the current execution round of the
system under consideration and cannot replay an older message by the attacker

Secure Information Flow- This requirement is to ensure there is no indirect leakage of
sensitive information from a trusted to an untrusted part. Trusted parts of a system
are often marked as high, untrusted parts as low

Secrecy and Integrity- These are main data security requirements. A subsystem S
preserves the secrecy (a.k.a.confidentiality) of an expression E from adversary A if E
never appears in the knowledge set K of A during execution of S. Integrity means that
some information can be modified only by legitimate parties.

Secure Communication Link- Sensitive communication between different
parts of a system needs to be protected. The relevant requirement of a secure
communication link is here assumed to provide secrecy and integrity for the
data in transit.

30

Study at home

UMLSec: model analysis

UML Model Analysis with CARiSMA
• Analyse security

requirements based on the
information from
(i) formal semantics
(ii) adversary behaviour

• UMLsec diagrams are
converted to first-order logic
formulas (including epistemic
constructs)

• Analysis of the diagrams
using automated first-order
logic theorem provers (e.g.,
e-SETHEO or SPASS)

32

Study at home

Automatic
analysis

Class Diagram annotated

More information about CARiSMA:
https://rgse.uni-koblenz.de/carisma/
https://youtu.be/b5zeHig3ARw

https://rgse.uni-koblenz.de/carisma/
https://youtu.be/b5zeHig3ARw

Adversary in UMLsec

33

34

Threats from default attacker

• Type of adversary can be specified in the
UML diagram

• If not specified, capability of default attacker
is used

Adversary in UMLsec

Threats from insider attacker

Security analysis for Secure Links
• The model does not meet the secure requirements against the default adversary:

– In the model, the call dependency is label with the <<secrecy>> constraint
– The link is labeled as <<Internet>>
– The default attacker has delete, read and insert capability

• An attacker can read messages on an Internet link
• Internet connections do not provide secrecy against attacker
• Constraint is violated

35

<<LAN>>

Example is a simple security protocol.
1. The sender requests the public

key K together with the certificate
to certify authenticity of the key
from the receiver

2. Receiver sends certificate and the
public key to the sender

3. Sender then sends the data back
encrypted using K to the receiver

4. Receiver decrypts the ciphertext
from the sender using K

The sender and receiver components
can interact with each other because
of provided <<call>> and <<send>>
An internet connection <<internet>> is
established between the sender and
the receiver

36

Security analysis for Data Security

Secrecy of d is preserved

Other approaches

Analysis based on Formalized Signatures

• Detailed model describing the system

• System descrition model
– Component-based model

(components, interface funcions)
– Deployment model (components in nodes)

• Security specification model
– Security objectives (e.g., a component is critical)
– Security controls

(e.g., component enforces user authentication)
(e.g., node in trusted zone)

38
M. Almorsy, et al., Automated Software Architecture Security Risk Analysis using Formalized
Signatures, ICSE 2013

Analysis based on Formalized Signatures

• OCL signatures are provided
(16 in total, more can be added)

• Tool runs the checks on the models
(model queries and graph navigation)

• Report of results

39

How does it work

Attack scenario as OCL signature
context System inv Man-in-the-Middle Attack:

self.components->select(C1 |
C1.DeploymentZone = 'Untrusted' and

self.components.exists(C2 |
C2.Channels->exists(Ch |

Ch.TargetComponent = C1 and
Ch.Encryption = false)

…
)

40

Graph navigation

Model query

Security metric as OCL signature
context System inv AttackSurface:

self.components
->select(C1 |

C1.DeploymentZone = 'Untrusted‘)
->collect(C2 |

C2.Functions)
->size()

41

