nstitute o TUHH
Software Security
g ‘ o rty Hamburg University of Technology

SSE-LAB 2: Secure Software Design

Riccardo Scandariato
Institute of Software Security, TUHH, Germany

ric***do . scanda***to @ tuhh.de

Lecturer: Nicolas Diaz Ferreyra

Brief conceptual review

- Architectural Patterns

- Architectural Tactics
Practical case

Security requirements
Identification of security tactics

Identification of security patterns

An architectural pattern is a package of design decisions that:

* Is found repeatedly in practice.

 Has known properties that permit reuse (can be named, formalized)
* Describes a class of architectures.

Patterns are found in practice, not invented, they are discovered!

 There will never be a complete list of patterns.

e Patterns spontaneously emerge in reaction of environmental

conditions = when these conditions change new patterns emerge!

Architectural design seldom starts from scratch. It is often a process
process where patterns are selected, tailored and combined.

Context:
For interactive GUI based systems, to keep modifications to the user
interface separate from the rest of the system, and support multiple or
alternative views of computing results or current state of data.

Problem:

 How can user interface functionality be kept separate from
application functionality and still be responsive to user input, or
changes in the underlying application’s data?

 How can multiple views of user interface be created, maintained,

and coordinated when the underlying application data changes?

0

TUHH

Hamburg University of Technology

Model-View-Controller (MVC) Pattern

Solution:

MVC System | . -7

-
shows status gene}Qtes events

7~
e

e

\
\

N

View(s)

Controller(s)

N

N

N\
N\

\ L

Model

P&
&
provides data chapées
/
/

http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/mvc.html

http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/mvc.html

TUHH

Hamburg University of Technology

Model-View-Controller (MVC) Pattern

TABLE 13.3 Model-View-Controller Pattern Solution

Overview The MVC pattern breaks system functionality into three components: a
model, a view, and a controller that mediates between the model and
the view.

Elements The modelis a representation of the application data or state, and it

contains (or provides an interface to) application logic.

The view is a user interface component that either produces a
representation of the model for the user or allows for some form of
user input, or both.

The controller manages the interaction between the model and the
view, translating user actions into changes to the model or changes to
the view.

Relations The notifies relation connects instances of model, view, and controller,
notifying elements of relevant state changes.

Constraints There must be at least one instance each of model, view, and
controller.

The model component should not interact directly with the controller.
Weaknesses The complexity may not be worth it for simple user interfaces.

The model, view, and controller abstractions may not be good fits for
some user interface toolkits.

Bass, L., Clemens, P., Kazman, R.: Software Architecture in Practice.
SEl Series in Software Engineering, Addison-Wesley, 2 edn. (2003)

The architecture of a complex system can contain multiple patterns.

* Tactics are building blocks (of design) from which architectural

patterns are created.

e Patterns package tactics = most of patterns consists of (are

constructed from) several different tactics.
Tactics are rather simple ideas. They are fine grained but abstract and

thus (as opposed to patterns) expressible in just a few sentences.

 Asimple idea explained in one sentence and a few examples!

“Authentication is ensuring that a user or remote computer is actually
who she purports to be. Passwords, one-time passwords, digital
certificates, and biometric identifications provide authentication”

B ! Hamburg University of Technology

Tactics and Patterns: Relationship

Modifiability
Increase Defer Binding
Cohesion Reduce Coupling Time
o c s
=1 o) [] o
= £ 5 € 3 £
£ > (4] ' ()
338 & §8 § .5 EfE3 &
25 €98 2 = 5 ® £06 € E T O € o
g8 ¢ 8 = Ea. 5t 28 &3 BE &S
5 @2 © o "E 0o 29 0O 02 02
O Qo o (2 D ©) = © Q n o [/ 0 =
Pattern L0 <w» w D £a DL £ oKX Dm SOMm
Layered X X X X X X
Pipes and Filters X X X X X
Blackboard X X X X X X X
Broker X X X X X X X
Model View X X X X
Controller
Presentation X X X X
Abstraction Control
Microkernel X X X X X
Reflection X X

Bass, L., Clemens, P., Kazman, R.: Software Architecture in Practice. SE| Series in
Software Engineering, Addison-Wesley, 2 edn. (2003) -> Section 13.3

Security
Resisting Dectecting Recovering
Attacks Attacks from an Attack
E— =
Attack System
- : : Detects,
Authenticate Users Intrusion ~ Restoration Identification | Resists, or
Authorize Users Detection 1 l :Recovers
Maintain Data Yom
Confidentiality Altacks
intai : See Audit
il ST Availability Trail
Limit Exposure
Limit Access
& 4

University of Technology

Bass, L., Clemens, P., Kazman, R.: Software Architecture in Practice. SE| Series in
Software Engineering, Addison-Wesley, 2 edn. (2003) -> Section 9.2

Maintain integrity: Data should be delivered as intended. It can have redundant

information encoded in it, such as checksums or hash results, which can be
encrypted either along with or independently from the original data.

Limit exposure: Attacks typically depend on exploiting a single weakness to attack

all data and services on a host. The architect can design the allocation of services
to hosts so that limited services are available on each host.

Authorize users: Authorization is ensuring that an authenticated user has the

rights to access and modify either data or services. This is usually managed by
providing some access control patterns within a system. Access control can be by
user or by user class. Classes of users can be defined by user groups, by user roles,

or by lists of individuals.

Security tactics can be used in combination to achieve security goals like
Confidentiality, Integrity, Availability,... CIA+

10

B i TUHH

Hamburg University of Technology

Lab Tasks

We have outlined a 7 security requirements for the Metaverse:
* Contextual information.
 Additional constraints.

* Security pattern catalogue.

You must select adequate patterns and tactics for each requirement.

1. Identify security tactics.
2. ldentify security patterns.

3. Discuss you your solution in pairs.

11

https://people.cs.kuleuven.be/~koen.yskout/icse15/catalog.pdf

g Institute of TUHH
Software Security
. e 7 Hamburg University of Technology

Questions ?

