
Project Phase 03
Software Testing - Graph Coverage

Software Testing - Summer 2022 - May 6, 2022 - Sibylle Schupp / Sascha Lehmann

How to succeed with the project?
The project task sheets for each phase are published on the course homepage
"Lecture: Software Testing" at StudIP. As described in the first lecture, each
successfully completed project earns you points that sum up to the total score
(applying the "5 out of 6" rule) which determines your final grade. Cheating
does not help you - but we will!

How to complete a project phase successfully?
In order to complete a project phase successfully, you must upload your answers
on StudIP. This can be done before the main deadline printed on the exercise
sheet for a potential full amount of points, or before the second deadline
for a reduced number of points. We will not consider any solutions handed
in after the deadline! Furthermore, you must create the solutions to your
project contributions on your own, and your test suite must compile. We
encourage you to actively discuss all remaining problems in your groups, and -
if that does not help - with one of the project advisors.

Technically, the project files you submit on StudIP must have the format as
specified at the end of this task sheet. Furthermore, we will consider your last
submission only. Therefore, if your first submission works as intended, and a
second one does not, you will only get points based on the latter upload. Make
sure your last submission is working!

How to get additional information?
We encourage you to discuss past and present project tasks, difficulties, and
ideas with us. You can approach us during the project session, or during the
weekly "office" hours.

MAIN DEADLINE: 23:59, May 18, 2022
UTC: 2022-05-18T23:59:00+02:00

SECOND DEADLINE: 23:59, June 01, 2022
UTC: 2022-06-01T23:59:00+02:00

1

The concepts of Graph Coverage are the main topic of the third project
phase. Within these tasks, we will focus on the code-based version of graph
coverage and data flow criteria, and - as usual - follow the triple division of
basic questions, a sample case, and the application of graph-based coverage
criteria to your team project.
To support you with the actual coverage determination, the tool EclEmma

is used, which was once the Eclipse plugin implementation of the well-known
Emma code coverage tool for Java, but is now fully based on the code coverage
library JaCoCo. Due to its Eclipse plugin nature, it can be easily integrated
into its normal workflow of test case creation and execution.

Setting Up EclEmma
a) In Eclipse, go to Help → Eclipse Marketplace...

b) Search for EclEmma

c) Install EclEmma Java Code Coverage (preferably version 3.1.3), if not
already installed

d) Right-Click a *.java file containing JUnit tests, then Coverage As →
JUnit Test

e) The results are found in the "Coverage" tab (Click on the three dots in
the top right corner of the tab to switch between the Instruction, Branch,
Line, Method, and Type counters, as well as cyclomatic complexity)

f) Take a look at the user guide1 for more information on the features and
handling of EclEmma

Graph Coverage - Tasks
Task 1 - Answer basic questions on Graph Coverage [3 P]
In this first task, you will do some basic research on the most important terms
and criteria in the domain of graph coverage. For that purpose, answer the
following questions in 2-3 sentences each:

a) Define the following terms in your own words:
1) Graph
2) (Test-)Path
3) Syntactic and Semantic Reach

b) Which testing situations are suitable for the Graph Coverage approach?

c) What is the difference between Tours, Tours With Sidetrips, and Tours
With Detours?

d) Describe (1-2 sentences) the Node Coverage (NC) and Edge Coverage
(EC) criterion. What are their counterparts for code-based coverage?

1http://www.eclemma.org/userdoc/index.html2

http://www.eclemma.org/userdoc/index.html

e) Name and describe (2-3 sentences) 2 Path Coverage Criteria OR 2 Data
Flow Test Criteria. Does one of these two criteria subsume the other?

Submission: *.pdf file with your answers

Task 2 - Apply Graph Coverage criteria to a sample program [5 P]
In the following, you will analyze a sample program with respect to its control
flow, and create test cases that fulfill specific coverage criteria. The function of
interest in this task is an excerpt of a constructor routine for the HashMap
class, as found in a previous OpenJDK 6 implementation2. Solve the following
tasks for the code section shown in Figure 0.1.

1 import java.util.Map.Entry;
2
3 public class HashMap<K,V> {
4 static final int MAXIMUM_CAPACITY = 1 << 10;
5 transient Entry<K,V>[] table;
6 int threshold;
7 final float loadFactor;
8
9 public HashMap(int initialCapacity, float loadFactor) {

10 if (initialCapacity < 0)
11 throw new IllegalArgumentException("Illegal initial capacity: " +

initialCapacity);
12 if (initialCapacity > MAXIMUM_CAPACITY)
13 initialCapacity = MAXIMUM_CAPACITY;
14 if (loadFactor <= 0 || Float.isNaN(loadFactor))
15 throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
16
17 // Find a power of 2 >= initialCapacity
18 int capacity = 1;
19 while (capacity < initialCapacity)
20 capacity <<= 1;
21 this.loadFactor = loadFactor;
22 threshold = (int)(capacity ∗ loadFactor);
23 table = new Entry[capacity];
24 }
25
26 public int getCapacity() {
27 return table.length;
28 }
29 }

Fig. 0.1: Sample code of the HashMap constructor method2

a) Create the control flow graph for the given constructor.

b) Create a minimum set of test cases that reaches 100% coverage for the
instruction coverage criterion.

c) Extend the set of test cases so that it additionally reaches 100% coverage
for the branch coverage criterion. Describe the necessity of the added
tests.

2http://hg.openjdk.java.net/jdk6/jdk6/jdk/file/8deef18bb749/src/share/
classes/java/util/HashMap.java 3

http://hg.openjdk.java.net/jdk6/jdk6/jdk/file/8deef18bb749/src/share/classes/java/util/HashMap.java
http://hg.openjdk.java.net/jdk6/jdk6/jdk/file/8deef18bb749/src/share/classes/java/util/HashMap.java

d) Analyze the code regarding the following data flow criteria, and list all
relevant DU pairs. Does your test suite require additional tests to cover
them?
1) All-defs with respect to capacity

2) All-uses with respect to loadFactor

Submission: *.pdf file with your control flow graph, *.pdf file with answers, *.java file
with test implementations, *.jpg of a sample screenshot showing the EclEmma results
of one subtask

Task 3 - Apply Graph Coverage criteria to your software project [8 P]
You will now apply the concepts of graph coverage to your selected software
projects. For the extension of your test suite, you are allowed to choose
between two different tasks, depending on your current project focus and
findings. During this task, EclEmma is again the recommended tool for the
coverage analysis, but you are not bound to it, especially in case that you want
to work with specific coverage criteria that are not supported by this tool.

a) Measure the coverage of your given project test suite (which includes
the existing test suite as well as the tests that you created in previous
project phases) by three graph coverage criteria which you can freely
choose. Describe each individual result in 2-3 sentences.

b) Extend the test suite with own tests, which have to fullfil one of the
following criteria:
1) Increase the coverage values of all three coverage criteria that you

applied in the previous subtask with at least 10 tests (compare and
describe the effects on coverage for each individual test), OR

2) Reveal a new bug in the software project (describe the bug, its
context, and a potential fix in detail)

(NOTE: Make sure that you pick coverage criteria that do not already reach a
coverage of 100%, so there is some room for your improvements)

Submission: *.pdf file with answers, *.java file with test cases

NOTE: The task solutions for this phase should be uploaded as a *.zip
file to the folder project_uploads/phase_03/group_XX on StudIP, using the
name convention Solution_Phase03_[StudentName], followed by an optional
_V[VersionNumber] in case that you submit multiple versions of your solutions.
Example: Solution_Phase03_SaschaLehmann_V1

Please use the given LaTeX file project_phase03_template.tex for your
solutions (also add your relevant java code parts to the indicated sections) and
compile it into *.pdf format. Additionally, do not forget to include your actual
java code files (*.java) in the *.zip file as well.

4

