
Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Software Testing

Sibylle Schupp1

1Institute for Software Systems/Institut für Softwaresysteme
Hamburg University of Technology (TUHH)

Spring 2022

Lecture 11

Sibylle Schupp Software Testing - Lecture 11 2022 1

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Syntax-based testing I

Sibylle Schupp Software Testing - Lecture 11 2022 2

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Introduction

RIPR model: reachability, infection, propagation, revealability
Graph coverage: reachability
Logic coverage: infection
(Input space partitioning: independent of RIPR model)

Model-based testing so far:
Input domain model
Graph model
Logic model

Syntax-based testing
Propagation
Syntax as model

Sibylle Schupp Software Testing - Lecture 11 2022 3

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Syntax coverage

Sibylle Schupp Software Testing - Lecture 11 2022 4

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Syntax-based testing I

Grammars and mutation
Program-based coverage

Sibylle Schupp Software Testing - Lecture 11 2022 5

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Using the syntax for testing

Many artifacts follow syntax rules:
Programs, input descriptions, design documents, . . .

The rules are often expressed as grammar.
Common grammars: regular grammars, context-free grammars
Theoretical foundation: automata theory

Possible test goals
Cover the syntax in some way
Violate the syntax

Sibylle Schupp Software Testing - Lecture 11 2022 6

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Regular expressions
Definition
Let Σ be an alphabet and denote by ϵ the empty string. The set of
regular expressions is defined inductively.

1 ϵ and every a ∈ Σ is a regular expression.
2 If r , s are regular expressions, then their concatenation, choice, and

repetition is a regular expression.
3 Every regular expression is obtained from the previous two rules.

example (Σ = {0, 1, 2, 3, 4, r , s, x})
Operators choice r + s

sequence rs
repetition r∗

Additional op. (range) [0 − 3]
fixed rep. xn

Sibylle Schupp Software Testing - Lecture 11 2022 7

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (regular expression)

Example: Σ = {G , B, n, s, t}, (Gsn|Btn)∗

Interpretation: G , B methods, commands, events;
n, s, t parameters or values

Each regular expression defines a set of strings. A string that is
element of that set is said to be in the grammar (or in the language).

Gsn, Btn, BtnGsn, BtnBtn, . . .
A test case is a string that satisfies the regular expression.

Example: Σ = {G , B, 0, . . . 9, a, . . . z},
regular expression: (G [0 − 9]∗[a − z]∗ | B[0 − 9]∗[a − z]∗)∗

G99a, B1abc, G0aB1b, . . .

Sibylle Schupp Software Testing - Lecture 11 2022 8

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

BNF grammars: example
Backus-Naur form

Stream ::= action*
action ::= actG | actB
actG ::= “G” s n
actB ::= “B” t n
s ::= digit1−3

t ::= digit1−3

n ::= digit2 “.” digit2 “.” digit2

digit ::= “0” | “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9”

Notation
A grammar consists of a set of productions. A production is a pair (lhs,
rhs), where rhs rewrites lhs. Productions with the same lhs can be
combined via | and ∗.
Terminal symbols are enclosed in quotes, all other symbols are called
non-terminals. The first symbol (Stream) is the start symbol.

Sibylle Schupp Software Testing - Lecture 11 2022 9

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Using grammars

In grammar-based testing, tests are strings. A string of terminals obtained
by applying a sequence of derivations is said to be in the grammar (or in
the language).

Definition
A ground string is a string in the grammar.

Recognition
Is a test (string) in a grammar?

Parsing problem
Useful for input validation

Ex.: G2508.01.90 is in the grammar
Proof by derivation: start with the start symbol, apply production rules
to obtain a tree the leaves of which, concatenated, form that string.

Generation: given a grammar, derive tests (strings) from it.

Sibylle Schupp Software Testing - Lecture 11 2022 10

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Classification

Sibylle Schupp Software Testing - Lecture 11 2022 11

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Terminal symbol coverage and production coverage

Definition
For terminal symbol coverage (TSC), TR contains each terminal
symbol in the grammar.
For production coverage (PDC), TR contains each production in the
grammar.

Discussion
PDC subsumes TSC.
Grammars can be considered graphs (PDC equivalent to edge
coverage.)
Other grammar coverage criteria?

Sibylle Schupp Software Testing - Lecture 11 2022 12

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Derivation coverage

Definition
For derivation coverage (DC), TR contains every possible string that can
be derived from the grammar.

Discussion
Infeasible
Compare the size of the test set for the Stream grammar

TSC: 13 symbols, thus max. 13 tests
PDS: 18 productions, thus max. 18 tests
DC: consider just the number of subtrees of node “action”:
2 · 109 derivations = subtrees = strings possible!

Other criteria? What about tests that are not in the grammar?

Sibylle Schupp Software Testing - Lecture 11 2022 13

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Mutation testing: idea

Grammars describe both valid and (implicitly) invalid strings.
Both types can be produced by mutating a valid string.

Mutating valid strings can result in valid as well as invalid strings.
Mutation testing

Proceed systematically, using well-defined rules
A.k.a. mutation analysis

Sibylle Schupp Software Testing - Lecture 11 2022 14

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Mutants and mutation operators

Recall that a ground string is a string in the grammar.

Definition
A mutation operator is a rule for generating syntactic variations of ground
strings. A mutant is the result of the application of a mutation operator.

Example:
Ground string G2508.01.90

Valid mutant B2508.01.90
Invalid mutant F2508.01.90

Sibylle Schupp Software Testing - Lecture 11 2022 15

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Practical issues

Should more than one mutation operator be applied to the same
string?

Usually not (interference), but higher-order mutants exist
Should every possible application of an operator be considered?

Typically yes for program-based mutations
For which languages can mutation operators be defined?

Programming languages (Fortran, . . . , Java)
Specification languages (NuSMV. . . .)
Modeling languages (UML statecharts, activity diagrams)
Input grammars (XML, . . .)

Sibylle Schupp Software Testing - Lecture 11 2022 16

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Killing mutants

Definition
Given a mutant m for a derivation D. A test t is said to kill m iff the
output of t on D is different from the output of t on m.

Discussion
Does the mutated ground string yield a string that exhibits different
behavior?

“Output of t” will be interpreted in different ways.
Ex: D, m programs. Then, the output of the two programs is compared.

D can be represented as list of productions or as the final string.

Sibylle Schupp Software Testing - Lecture 11 2022 17

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Mutation coverage (MC): valid strings

Definition
Let M be a set of mutants. Given a mutant m ∈ M. For mutation coverage
(MC) TR contains one requirement per m, namely to kill m. The amount of
mutants killed is called the mutation score.

For valid strings, the testing goal is to kill a mutant: coverage ∼ killing
Ex.: consider ground string G2509.01.90 and its mutant B2509.01.90
(valid). Assume both strings represent subroutines. A killing test finds
parameters that result in different return values.

Sibylle Schupp Software Testing - Lecture 11 2022 18

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Mutation coverage: invalid strings

Definition
For mutation operator coverage (MOC), TR contains for each
mutation operator exactly one requirement, to create a mutated string
m that is derived using that operator.
For mutation production coverage (MPC), TR contains for each
mutation operator and each production that operator can be applied to
the requirement to create a mutated string m from that production.

If mutation results in invalid strings, the testing goal is simply to run
mutants.
In this case, mutation operators define test requirements directly.

Sibylle Schupp Software Testing - Lecture 11 2022 19

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (mutation coverage)

Consider the Stream grammar from before.
We introduce three (non-standard) mutation operators:

1: Change G to B; 2: change B to G; 3: replace digit by another digit
Now consider the two ground strings G2509.01.90 and B2106.27.94

Applying the mutation operators each on the two ground strings yields,
e.g., B2509.01.90, G2106.27.94, G2309.01.90, B1106.27.94 (all valid).
TR: find test cases that kill the four mutants

Now assume the following 2 mutation operators: change “G” to “F”,
change “B” to “C”

TR for MOC: apply the mutation operators to the ground strings above
Tests (for MOC coverage): F2509.01.90 and C2106.27.94 (all invalid)

Sibylle Schupp Software Testing - Lecture 11 2022 20

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

In-class exercise

Sibylle Schupp Software Testing - Lecture 11 2022 21

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Mutation testing as gold standard

Gold standard for comparing other test methods (see below for more)
More effective, more expensive
Number of tests depends on

Size of the syntactic description
Number of mutation operators

Also applicable if there is no oracle available!
Automation

Hard (and expensive) to apply by hand

Sibylle Schupp Software Testing - Lecture 11 2022 22

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Classification (grammar-based testing)

Sibylle Schupp Software Testing - Lecture 11 2022 23

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Overview (valid and invalid tests)

Sibylle Schupp Software Testing - Lecture 11 2022 24

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Syntax-based testing I

Grammars and mutation
Program-based coverage

Sibylle Schupp Software Testing - Lecture 11 2022 25

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Program-based grammars

Syntax-based testing originates in program testing.
Mutation testing

Commonly used for unit testing and integration testing
BNF-based testing

Used for testing language-based tools, e.g., compilers

Sibylle Schupp Software Testing - Lecture 11 2022 26

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Overview (program-based grammars)

Sibylle Schupp Software Testing - Lecture 11 2022 27

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Program-based grammars: mutations

Ground string: the program under test
Mutation operators modify the ground string, create mutant programs.

Mutants must compile (valid strings).
Mutants are not tests (test requirements), but are used to define TRs.

Tests must “make a difference.” We refine the previous definition:

Definition
Given a mutant m for a ground string program P. A test t is said to kill m
iff the output of t on P is different from the output of t on m.

Different mutation operators are defined for different programming
languages and different testing goals.

Sibylle Schupp Software Testing - Lecture 11 2022 28

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Classes of mutants

From a testing purpose, not all mutants are desirable. One distinguishes:
Dead mutant

Killed by a test case
Stillborn mutant

Syntactically illegal
Trivial mutant

Killable by almost any test case
Equivalent mutant

Impossible to kill by any test (same behavior as original)

Sibylle Schupp Software Testing - Lecture 11 2022 29

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (program-based mutation)

i n t Min (i n t A, i n t B)
{

i n t minVal ;
minVal = A;
i f (B < A) {

minVal = B;
}
r e t u r n (minVal) ;

} // end Min

What are reasonable mutations?

Sibylle Schupp Software Testing - Lecture 11 2022 30

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (mutants)

i n t Min (i n t A, i n t B)
{

i n t minVal ;
// minVal = A; // o r i g i n a l
minVal = B; // r e p l a c e v a r i a b l e by ano the r v a r i a b l e
// i f (B < A) // o r i g i n a l
i f (B > A) // r e p l a c e o p e r a t o r
i f (B < minVal) // r e p l a c e v a r i a b l e by ano the r v a r i a b l e
{

minVal = B;
Bomb() ; // i n s e r t immediate runt ime f a i l u r e
minVal = A; // r e p l a c e v a r i a b l e by ano the r v a r i a b l e
minVal = f a i l O n Z e r o (B) // i n s e r t runt ime f a i l u r e

} // i f B==0
r e t u r n (minVal) ;

} // end Min

6 mutants, each represents a separate program (6 diff. programs)
“runtime failure”: only if program point reached

Sibylle Schupp Software Testing - Lecture 11 2022 31

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Strong and weak killing

Definition
Let M be a set of mutants.

Given a mutant m ∈ M that modifies a location l in a program P. A
test t is said to strongly kill m iff the output of t on P is different from
the output of t on m.
Given a mutant m ∈ M that modifies a location l in a program P. A
test t is said to weakly kill m iff the state of the execution of P on t is
different from the state of the execution of m on t immediately after l .

RIP: Weakly killing satisfies reachability and infection, but not
propagation.

Sibylle Schupp Software Testing - Lecture 11 2022 32

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Weak mutation

For weak mutation coverage (WMC), TR contains for each m ∈ M exactly
one requirement, to weakly kill m.

Easier in practice than strong mutation: less analysis
In practice: most test sets that weakly kill all mutants also strongly kill
(many of) them. (Or so we hope.)

Sibylle Schupp Software Testing - Lecture 11 2022 33

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (weak mutation)
i n t Min (i n t A, i n t B) // the f i r s t mutant
{

i n t minVal ;
// minVal = A;
minVal = B; // (∗) r e p l a c e v a r i a b l e by ano the r v a r i a b l e
i f (B < A)
{

minVal = B;
}
r e t u r n (minVal) ;

} // end Min

A weakly killing test: A=5, B=3
State after (*) infected (different value for minVal)

Conditions for RIP
Reachability: line 2 always reachable
Infection: A ̸= B (minVal has different value),
Propagation ¬(B < A) and A ̸= B (Infection), thus B > A.

For B ≤ A, weak kills of this mutant do not also kill strongly
Sibylle Schupp Software Testing - Lecture 11 2022 34

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (equivalent mutant)

i n t Min (i n t A, i n t B) // t h i r d mutant
{

i n t minVal ;
minVal = A;
// i f (B < A) // o r i g i n a l
i f (B < minVal) // (∗) r e p l a c e v a r i a b l e by ano the r v a r i a b l e
{

minVal = B;
}
r e t u r n (minVal) ;

} // end Min

The mutant is equivalent
Argument: by substitution
No infection: state after (*) not infected;
in (B < minVal) both values B, minVal unchanged

Sibylle Schupp Software Testing - Lecture 11 2022 35

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (strong versus weak mutation)
boolean i s E v e n (i n t X)
{

i f (X < 0) {
// X = 0 − X; // o r i g i n a l
X = 0 ; // r e p l a c e v a r i a b l e by c o n s t a n t

}
i f (double) (X/2) == ((double X) / 2 . 0)

r e t u r n t ru e ;
e l s e

r e t u r n f a l s e ;
} // end i s E v e n

Consider test X = -6.
RIP conditions?

Reachability: X < 0
Infection X ̸= 0. Test weakly kills mutant.
Propagation: test does not strongly kill mutant.

Condition for strong killing?

Sibylle Schupp Software Testing - Lecture 11 2022 36

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

In-class exercise

p u b l i c s t a t i c i n t f i n d V a l (i n t [] numbers , i n t v a l) { // pre : va l >0
i n t f i n d V a l = −1;
// f o r (i n t i =1; i <numbers . l e n g t h ; i ++) { // o r i g i n a l
f o r (i n t i =0; i <numbers . l e n g t h ; i ++) { // mutant

i f (numbers [i] == v a l) {
f i n d V a l = i ;

}
}
r e t u r n (f i n d V a l) ;

}

Sibylle Schupp Software Testing - Lecture 11 2022 37

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Work flow

Sibylle Schupp Software Testing - Lecture 11 2022 38

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

References

AO, 9.1, (9.2.2)

Sibylle Schupp Software Testing - Lecture 11 2022 39

	Syntax-based testing I
	Grammars and mutation
	Program-based coverage

