
Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Software Testing

Sibylle Schupp1

1Institute for Software Systems/Institut für Softwaresysteme
Hamburg University of Technology (TUHH)

Spring 2022

Lecture 2

Sibylle Schupp Software Testing - Lecture 2 2022 1

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Criteria-based test design

2 Input space partitioning I

Sibylle Schupp Software Testing - Lecture 2 2022 2

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Test design

Main test activities
Design tests and turn them into executables
Run tests against program
Observe and evaluate results

Test design
What are the requirements on the tests?
What are appropriate input values for running the tests?
Mathematical and technical issues

Focus on criteria-based test design
Alternative: human-based test design

Sibylle Schupp Software Testing - Lecture 2 2022 3

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Two views on testing

Phase-oriented
Different test designs for different development phases
Unit, module, integration, system tests

Structure- and criteria-driven
Same test design applicable for different phases
At the same time: models (“structures”) within one phase differ. Also:
different value selection and different test automation
Structures: input space, graph, logic expression, syntax

We will follow the structure-driven view.

Sibylle Schupp Software Testing - Lecture 2 2022 4

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Sources of structures

Structures are extracted from different software artifacts
Graphs: UML use cases, finite state machines, source code, . . .
Logic expressions: conditional in use cases, guards in FSMs, branches in
source code, . . .

Structures are used to model software
Abstraction; focuses on particular aspects

Similar to “model-based testing” (MBT) but not the same:
MBT uses models that specify the system.
Structures use models that represent the system. May use the MBT
models, but not the other way around.

Sibylle Schupp Software Testing - Lecture 2 2022 5

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Test coverage criteria

Definition
A test requirement (TR) is a specific element of a software artifact that a
test set must satisfy. A coverage criterion is a set of rules that impose test
requirements on a test set.

Abstract definition (“artifacts” can be instantiated in different ways)
Unifies the zoo of criteria

Sibylle Schupp Software Testing - Lecture 2 2022 6

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Examples (structures)

Input domain characterizations:
A : {0, 1, > 1}, B : {workday, weekend}, C : {[1 . . . 28 − 1], ≥ 28}
for parameters A, B, C
Graphs:
G = ({s0, s1, s2}, {(s0, s1), (s0, s2), (s1, s2)}), pair of vertices and edges
Logic expressions:
(not X and not Y) and A

Syntax:
i f (x > y)

z = x − y ;
e l s e

z = 2∗ x ;

Sibylle Schupp Software Testing - Lecture 2 2022 7

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example: jelly bean coverage
Source: Wikipedia

Six flavors: lemon, pistachio, cantaloupe, pear, tangerine, apricot
Four colors: yellow (lemon, apricot), green (pistachio), orange
(cantaloupe, tangerine), white (pear)
Two possible coverage criteria:

Test one jelly bean per flavor
Test one jelly bean per color

Corresponding test requirements
TR1 = { lemon, pistachio, cantaloupe, pear, tangerine, apricot }
TR2 = { lemon/apricot, pistachio, cantaloupe/tangerine, pear }

Sibylle Schupp Software Testing - Lecture 2 2022 8

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Coverage

Definition
Given a set of test requirements TR for a coverage criterion C , a test set T
satisfies C iff for every test requirement tr ∈ TR there is at least one test t
in T such that t satisfies tr.

Example (jelly beans):
T1 ={ lemon, lemon, lemon, pistachio, cantaloupe, cantaloupe, pear,
tangerine, apricot, apricot, apricot, apricot}
T2 ={ lemon, pistachio, pistachio, pear, tangerine, tangerine,
tangerine}
Does test set T1 satisfy the flavor criterion? The color criterion? What
about test set T2?

Sibylle Schupp Software Testing - Lecture 2 2022 9

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Infeasible test requirements

Definition
Test requirements that cannot be satified are called infeasible test
requirements.

Common sources: dead code, inconsistent constraints
Detecting infeasibility is undecidable for most criteria
In practice, 100% coverage often not achievable

Sibylle Schupp Software Testing - Lecture 2 2022 10

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Subsumption

Definition
A test criterion C1 subsumes a test criterion C2 iff every set of test cases
that satisfies C1 also satisfies C2.

Example
The flavor criterion subsumes the color criterion.
You might know from your software engineering class:
The branch criterion subsumes the node criterion.

Sibylle Schupp Software Testing - Lecture 2 2022 11

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

In-class exercise

Again, the definition

Definition
A test criterion C1 subsumes a test criterion C2 iff every set of test cases
that satisfies C1 also satisfies C2.

Sibylle Schupp Software Testing - Lecture 2 2022 12

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Coverage level

Definition
Given a set of test requirements TR and a test set T , the coverage level of
T is the ratio of the number of test requirements satisfied by T to the size
of TR.

Example:
T2 ={ lemon, pistachio, pistachio, pear, tangerine, tangerine,
tangerine} satisfies 4 of 6 test requirements of the flavor criterion.

Sibylle Schupp Software Testing - Lecture 2 2022 13

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Work flow (test criteria)

Test criteria can be used in two ways.
1 Generate test values so that they satisfy the criterion directly.

Generator-based approach
Hard to achieve with automated tools

2 Generate test values, measure coverage afterwards
Recognizer-based approach
What to do if coverage not 100%?

Coverage-analysis tools
Both the generator- and recognizer-based approach are undecidable for
most criteria.
But recognition is easier and in practice “good” coverage is often
possible.

Sibylle Schupp Software Testing - Lecture 2 2022 14

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Criteria-based test design

2 Input space partitioning I

Sibylle Schupp Software Testing - Lecture 2 2022 15

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Criteria-based test design

2 Input space partitioning I
Introduction
Input domain modeling

Sibylle Schupp Software Testing - Lecture 2 2022 16

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Input space coverage

Sibylle Schupp Software Testing - Lecture 2 2022 17

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Input domains

Definition
The input domain (“space”) of a program is the multi-set of all possible
values of its input parameters.

Input parameters
Run-time parameters (user input)
Method parameters
Global variables, data from files
Internal object state

Input domains are large.
Testing by partitioning the input domain in regions

Assumption: all regions are equally good
For test sets: pick one value from each region

Sibylle Schupp Software Testing - Lecture 2 2022 18

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Benefits of input-space partioning (ISP)

Applicable at several levels of testing
Unit, integration, system

Applicable by hand
No implementation knowledge needed

Sibylle Schupp Software Testing - Lecture 2 2022 19

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Partitioning domains

Definition
Let D be a domain. A partition scheme q of D defines a set of blocks
Bq = b1, . . . , bQ such that⋃

b∈Bq

b = D bi ∩ bj = ∅ ∀i ̸= j , bi , bj ∈ Bq

Note: completeness and disjointness
“Blocks” are called “equivalence classes‘’ in mathematics.

Sibylle Schupp Software Testing - Lecture 2 2022 20

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

In-class exercise

Sibylle Schupp Software Testing - Lecture 2 2022 21

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Characteristics

Partitioning is based on characteristics of a program.
Examples of characteristics

Values: input A is null (vs. not-null)
Predicates: input array is ascendingly sorted (vs. unsorted, descendingly
sorted)
Relations: minimal separation of two objects (vs. unknown, arbitrary)
Events (external): requestA (vs. request B, failure)

Sources of characteristics
Program parameters, specification, environment

Steps
Find characteristics
Partition each characteristic
Choose tests by combining values from characteristics

Sibylle Schupp Software Testing - Lecture 2 2022 22

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (partitioning)

Consider the characteristic “order of array A” and the following
definition
b1 = sorted ascendingly
b2 = sorted descendingly
b3 = arbitrary, unsorted

Careful: not a partition!
Disjointness violated for arrays of length 1
Source of the problem: characteristic addresses more than one property

Sibylle Schupp Software Testing - Lecture 2 2022 23

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (partitioning), cont’d

Consider the two characteristics:
C1 = “array A is sorted ascendingly”
C2 = “array A is sorted descendingly”
C1, C2 can be partitioned in two classes each:

Characteristic Partitions
C1 C1 is true C1 is false
C2 C2 is true C2 is false

Sibylle Schupp Software Testing - Lecture 2 2022 24

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

In-class exercise

p u b l i c c l a s s Gene r i cS tack <E> {
p r i v a t e j a v a . u t i l . A r r a y L i s t <E> l i s t

= new j a v a . u t i l . A r r a y L i s t <E>() ;

p u b l i c vo id push (E o) {
l i s t . add (o) ;

}
p u b l i c E pop () {

E o = l i s t . ge t (g e t S i z e () − 1) ;
l i s t . remove (g e t S i z e () − 1) ;
r e t u r n o ;

}
p u b l i c boo lean i sEmpty () {

r e t u r n l i s t . i sEmpty () ;
}
// . . .

}

Sibylle Schupp Software Testing - Lecture 2 2022 25

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Criteria-based test design

2 Input space partitioning I
Introduction
Input domain modeling

Sibylle Schupp Software Testing - Lecture 2 2022 26

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Input domain modeling: overview

Finding partitions in a systematic way requires input modeling.
Input domain modeling employs a 5-step process.
Step 3 yields the actual input domain model (IDM), other steps
prepare model resp. use model for test-value generation.

Step 1: Identify testable functions
Step 2: Identify all parameters
Step 4: Choose combinations of values according to test criterion
Step 5: Refine combinations of blocks into test inputs

Sibylle Schupp Software Testing - Lecture 2 2022 27

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Modeling the input domain: steps 1 and 2

Step 1: Identify testable functions
A method has one testable function (clear).
An API has a testable function per public method, but methods might
share characteristics.
A UML use case has one testable function.
An integrated system could have one testable function per component or
functionality.

Step 2: Identify all parameters
Parameters, internal state variables, global variables (including files,
databases)
Depends on step 1, mostly straightforward

Sibylle Schupp Software Testing - Lecture 2 2022 28

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Modeling the input domain: steps 3-5

Step 3: Model the input domain
The scope of the domain is defined by parameters.
The structure of the domain is defined by characteristics.
Each characteristic is partitioned into blocks.
Each block represents a set of values.

Step 4: Choose combinations of values according to test criterion
A test input is a tuple of values, one per parameter.
Values are selected per block (and characteristics).
Number of possible combinations (of blocks of the characteristics of the
various parameters) is typically infeasible.
Coverage criteria guide the choice.

Step 5: Refine combinations of blocks into test inputs
Choose appropriate values from each block.

Sibylle Schupp Software Testing - Lecture 2 2022 29

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Two approaches to input-domain modeling

1 Interface-based approach
Characteristics emerge directly from input parameters
Simple, partially automated
Ignores relations between parameters as well as other information
(domain, semantics)

2 Functionality-based approach
Characteristics emerge from a behavioral view on the program.
Requires more design effort, cannot be automated
Might result in better tests or fewer tests that are as effective

Sibylle Schupp Software Testing - Lecture 2 2022 30

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (interface-based approach)
http://www.cs.gmu.edu/˜offutt/softwaretest/edition2/java/Triangle.java

p u b l i c enum T r i a n g l e { Sca lene , I s o s c e l e s , E q u i l a t e r a l , I n v a l i d }
p u b l i c s t a t i c T r i a n g l e t r i a n g (i n t Side1 , i n t Side2 , i n t S ide3)

// Side1 , S ide2 , and S ide3 r e p r e s e n t the l e n g t h s o f the s i d e s
// o f a t r i a n g l e .
// Retu rns the a p p r o p r i a t e enum v a l u e .

IDM for each parameter is the same.
Sensible characteristics?
Relation of a side to 0

Sibylle Schupp Software Testing - Lecture 2 2022 31

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (functionality-based approach)
http://www.cs.gmu.edu/˜offutt/softwaretest/edition2/java/Triangle.java

p u b l i c enum T r i a n g l e { Sca lene , I s o s c e l e s , E q u i l a t e r a l , I n v a l i d }
p u b l i c s t a t i c T r i a n g l e t r i a n g (i n t Side1 , i n t Side2 , i n t S ide3)

// Side1 , S ide2 , and S ide3 r e p r e s e n t the l e n g t h s o f the s i d e s
// o f a t r i a n g l e .
// Retu rns the a p p r o p r i a t e enum v a l u e .

Requirement/domains/semantics: the parameters form a triangle
IDM can combine all parameters
Sensible characteristics?
Type of the triangle

Sibylle Schupp Software Testing - Lecture 2 2022 32

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Finding characteristics

In the functionality-based approach: essentially a creative task
Where to look for characteristics?

Preconditions, postconditions
Special values (null, 0, . . .)
Invariants (incl. relationships between parameters)

Best practice
More characteristics with fewer blocks is better.

Sibylle Schupp Software Testing - Lecture 2 2022 33

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Another example
http://www.cs.gmu.edu/ offutt/softwaretest/edition2/java/

p u b l i c boo lean f i n d E l e m e n t (L i s t l i s t , Ob ject e l ement)
// E f f e c t s :
// i f l i s t o r e l ement i s n u l l throw N u l l P o i n t e r E x c e p t i o n
// e l s e r e t u r n t r u e i f e l ement i s i n the l i s t , f a l s e o t h e r w i s e

Sibylle Schupp Software Testing - Lecture 2 2022 34

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Another example (interface-based approach)

p u b l i c boo lean f i n d E l e m e n t (L i s t l i s t , Ob ject e l ement)
// E f f e c t s :
// i f l i s t o r e l ement i s n u l l throw N u l l P o i n t e r E x c e p t i o n
// e l s e r e t u r n t r u e i f e l ement i s i n the l i s t , f a l s e o t h e r w i s e

Two parameters: list, element

Characteristics and partitions:
Characteristics b1 b2
list is null true false
list is empty true false
element is null true false

Sibylle Schupp Software Testing - Lecture 2 2022 35

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Another example (functionality-based approach)
http://www.cs.gmu.edu/ offutt/softwaretest/edition2/java/Triangle.java

p u b l i c boo lean f i n d E l e m e n t (L i s t l i s t , Ob ject e l ement)
// E f f e c t s :
// i f l i s t o r e l ement i s n u l l throw N u l l P o i n t e r E x c e p t i o n
// e l s e r e t u r n t r u e i f e l ement i s i n the l i s t , f a l s e o t h e r w i s e

Two parameters: list, element

Characteristics and partitions:
Characteristics b1 b2 b3
number of occurrences of element in list 0 1 > 1
element occurs first in list true false
element occurs last in list true false

Sibylle Schupp Software Testing - Lecture 2 2022 36

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

In-class exercise

p u b l i c s t a t i c i n t s e a r c h (L i s t l i s t , Object e l ement)
// E f f e c t s : i f l i s t o r e l ement i s n u l l throw N u l l P o i n t e r E x c e p t i o n
// e l s e i f e l ement i s i n the l i s t , r e t u r n an i n d e x
// o f e l ement i n the l i s t ;
// e l s e r e t u r n −1
// f o r example , s e a r c h ([3 , 3 , 1] , 3) = e i t h e r 0 or 1
// s e a r c h ([1 , 7 , 5] , 2) = −1

Sibylle Schupp Software Testing - Lecture 2 2022 37

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

References

AO, Ch. 5.1 and 5.2
AO, Ch. 6.1

Sibylle Schupp Software Testing - Lecture 2 2022 38

	Criteria-based test design
	Input space partitioning I
	Introduction
	Input domain modeling

