
Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Software Testing

Sibylle Schupp1

1Institute for Software Systems/Institut für Softwaresysteme
Hamburg University of Technology (TUHH)

Spring 2022

Lecture 5

Sibylle Schupp Software Testing - Lecture 5 2022 1

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Graph coverage II

Sibylle Schupp Software Testing - Lecture 5 2022 2

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Recap

Graph-based testing:
Test sets are represented by test paths. A path is a test path if it starts
at an initial node and ends at a final node.

Test sets assume a concrete executable (modeled by the graph).
Test requirements are derived from a graph-based coverage criterion.

TRs assume a concrete graph.
TRs are formulated in terms of graph entities.
Major classes: structural criteria, data-flow criteria

Loop testing requires special criteria, based on prime paths.
Prime paths contain no inner loops (“simple path”) and are no proper
subpath of another simple path.

Sibylle Schupp Software Testing - Lecture 5 2022 3

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Recap (structural coverage)

Sibylle Schupp Software Testing - Lecture 5 2022 4

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

In-class exercise

Sibylle Schupp Software Testing - Lecture 5 2022 5

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Graph coverage II

Data-flow criteria
Structural coverage for source code
Data-flow coverage for source code

Sibylle Schupp Software Testing - Lecture 5 2022 6

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Data-flow criteria
Data-flow testing tests whether values are computed and used correctly.

Definition
A program point (node) is a def node if the value of a variable is stored at
it. It is a use node if the value of a variable is accessed at it.
The set of variables that are defined by node n (edge e) is denoted as def(n)
(or (def(e)). The set of variables that are used by node n (edge e) is
denoted as use(n) (or (use(e)).

Example:

def(1) = {X}, def(5) = {Z} = def(6)
use(5)= {X} = use (6)

Sibylle Schupp Software Testing - Lecture 5 2022 7

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

DU pairs and def-clear paths

Definition
A pair of program points (ni , nj) is called a DU pair if there exists a
variable that is defined at ni and used at nj .
A path from ni to nj is called a def-clear path with respect to variable
v if v ̸∈ def(nk) for any node nk , k ̸= i , on that path.

If v ∈ def(ni) and there is a def-clear path from ni to nj with respect to
v , the def of v at ni reaches the use of v at nj .
The definition can also be expressed in terms of edges. A path from ni
to nj is called a def-clear path with respect to variable v if v ̸∈ def(ek)
for any edge ek = (nk , nl), k, l ̸= i , j on that path.

Sibylle Schupp Software Testing - Lecture 5 2022 8

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

DU paths

Definition
A simple subpath that is def-clear with respect to v from a def of v to
a use of v is called a DU path.
Properties

A DU path is always qualified by a particular variable.
A DU path contains one def, it may contain more than one use.

The following sets of DU paths are relevant:
The def-path set du(ni , v) is the set of DU paths for v that start at ni .
The def-pair set du(ni , nj , v) is the set of DU paths for v that start at ni
and end at nj .

Sibylle Schupp Software Testing - Lecture 5 2022 9

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Touring DU paths

Definition
A test path p du-tours a subpath d with respect to v if p tours d and the
subpath taken is def-clear with respect to v .

Sidetrips possible (as before)

Sibylle Schupp Software Testing - Lecture 5 2022 10

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Data-flow coverage criteria

The most general criterion is ADUPC, which includes every DU path.
All-du-path coverage (ADUPC): For each def-pair set S,
S= du(ni , nj , v), TR contains every path d ∈ S.

All-uses coverage includes for every du-pair at least one path:
All-uses coverage (AUC): For each def-pair set S,
S= du(ni , nj , v), TR contains at least one path d ∈ S.

All-defs coverage includes one DU path per definition:
All-defs coverage (ADC): For each def-path set S,
S= du(n, v), TR contains at least one path d ∈ S.

Sibylle Schupp Software Testing - Lecture 5 2022 11

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (data-flow testing)

All-defs for X: [1,2,4,5]
All-uses for X: [1,2,4,5], [1,2,4,6]
All-du-paths for X: [1,2,4,5], [1,2,4,6], [1,3,4,5], [1,3,4,6]

Sibylle Schupp Software Testing - Lecture 5 2022 12

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Subsumption

ADUPC subsumes AUC, and AUC subsumes ADC.
Further, Prime Path Coverage subsumes ADUPC.

Next: From graphs at the abstract level . . . to graphs at source-code level,
specification level, design level.

Sibylle Schupp Software Testing - Lecture 5 2022 13

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Graph coverage II

Data-flow criteria
Structural coverage for source code
Data-flow coverage for source code

Sibylle Schupp Software Testing - Lecture 5 2022 14

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Graph coverage for source code

Structural coverage
Graph = control-flow graph (CFG)
Node coverage: execute every statement
Edge coverage: execute every branch

Data-flow coverage
Graph = augmented CFG
defs: assignments
uses: readings

Sibylle Schupp Software Testing - Lecture 5 2022 15

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

CFGs

A CFG models all executions of a method.

Definition
A control-flow graph of a function is a graph where each statement (or
each basic block) of the function forms a node, and edges represent the
transfer of control.
A basic block is a sequence of statements such that if the first statement is
executed, all statements will be.

The CFG can be annotated with extra information (predicates, defs,
uses).
The CFG can be obtained automatically from the source code.

Sibylle Schupp Software Testing - Lecture 5 2022 16

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

If-statements

The CFG fragment contains a fork and a join node.

Sibylle Schupp Software Testing - Lecture 5 2022 17

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

If-return statements

Sibylle Schupp Software Testing - Lecture 5 2022 18

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

While- and for-statements

While- and for-loops require separate nodes for the loop header.

Sibylle Schupp Software Testing - Lecture 5 2022 19

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Do loop, break and continue

Sibylle Schupp Software Testing - Lecture 5 2022 20

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Case statements

Note: for languages with a different semantics (no fall through), the
CFG fragment looks different.

Sibylle Schupp Software Testing - Lecture 5 2022 21

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Try-catch statements

Sibylle Schupp Software Testing - Lecture 5 2022 22

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (CFG)
1 p u b l i c s t a t i c vo id computeStats (i n t [] numbers)
2 {
3 i n t l e n g t h = numbers . l e n g t h ;
4 double med , var , sd , mean , sum , varsum ;
5 sum = 0 ;
6 f o r (i n t i = 0 ; i < l e n g t h ; i ++)
7 {
8 sum += numbers [i] ;
9 }

10 med = numbers [l e n g t h / 2] ;
11 mean = sum / (double) l e n g t h ;
12 varsum = 0 ;
13 f o r (i n t i = 0 ; i < l e n g t h ; i ++)
14 {
15 varsum = varsum + ((numbers [i] − mean) ∗ (numbers [i] − mean)) ;
16 }
17 va r = varsum / (l e n g t h − 1 .0) ;
18 sd = Math . s q r t (va r) ;
19 System . out . p r i n t l n (" l e n g t h : " + l e n g t h) ;
20 System . out . p r i n t l n ("mean : " + mean) ;
21 System . out . p r i n t l n (" median : " + med) ;
22 }

Sibylle Schupp Software Testing - Lecture 5 2022 23

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (CFG), cont’d

Sibylle Schupp Software Testing - Lecture 5 2022 24

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

TRs and test paths (EC)

TR Test path
A. [1,2] [1,2,3,4,3,5,6,7,6,8]
B. [2,3]
C. [3,4]
D. [3,5]
E. [4,3]
F. [5,6]
G. [6,7]
H. [6,8]
I. [7,6]

Sibylle Schupp Software Testing - Lecture 5 2022 25

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

TRs and test paths (EPC)
TR Test paths Tours

A. [1,2,3] i. [1,2,3,4,3,5,6,7,6,8] A,B,D,E,F,G,I,J
B. [2,3,4] ii. [1,2,3,5,6,8] A,C,E,H
C. [2,3,5] iii.

[1,2,3,4,3,4,3,5,6,7,6,7,6,8]
A,B,D,E,F,G,I,J,
K, L

D. [3,4,3]
E. [3,5,6]
F. [4,3,5]
G. [5,6,7]
H. [5,6,8]
I. [6,7,6]
J. [7,6,8] Sidetrips
K. [4,3,4] Test i: C, H
L. [7,6,7] Test iii: C, H
∪ E ∪ N

Could reduce the test set to Test (iii), at the price of 2 side trips.

Sibylle Schupp Software Testing - Lecture 5 2022 26

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

TRs and test paths (PPC)

TR Test paths Tours
A. [3,4,3] i.

[1,2,3,4,3,5,6,7,6,8]
A,D,E,F,G

B. [4,3,4] ii.
[1,2,3,4,3,4,3,5,6,7,6,7,6,8]

A,B,C,D,E,F,G

C. [7,6,7] iii. [1,2,3,4,3,5,6,8] A,F,H
D. [7,6,8] iv. [1,2,3,5,6,7,6,8] D,E,F,I
E. [6,7,6] v. [1,2,3,5,6,8] J

F. [1,2,3,4] Sidetrips
G. [4,3,5,6,7] Test i: H,I,J
H. [4,3,5,6,8] Test ii: H,I,J

I. [1,2,3,5,6,7] Test iii: J
J. [1,2,3,5,6,8] Test iv: J

Sibylle Schupp Software Testing - Lecture 5 2022 27

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Graph coverage II

Data-flow criteria
Structural coverage for source code
Data-flow coverage for source code

Sibylle Schupp Software Testing - Lecture 5 2022 28

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Data-flow coverage

defs
initialization, l-values
actual parameters of a method that are changed
formal parameters of a method that are (implicitly) initialized
input parameters

uses
r-values (in statements, expressions, tests)
actual parameters of a method
return parameters of a method
output parameters

DU pairs
If v ∈ def(n) and v ∈ use(n), the pair (n, n) forms a DU pair only if the
def executes after the use and n is within a loop.

Sibylle Schupp Software Testing - Lecture 5 2022 29

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (data-flow testing)
p u b l i c s t a t i c vo id computeStats (i n t [] numbers)
{

i n t l e n g t h = numbers . l e n g t h ;
double med , var , sd , mean , sum , varsum ;
sum = 0 ;
f o r (i n t i = 0 ; i < l e n g t h ; i ++)
{

sum += numbers [i] ;
}
med = numbers [l e n g t h / 2] ;
mean = sum / (double) l e n g t h ;
varsum = 0 ;
f o r (i n t i = 0 ; i < l e n g t h ; i ++)
{

varsum = varsum + ((numbers [i] − mean) ∗ (numbers [i] − mean)) ;
}
va r = varsum / (l e n g t h − 1 .0) ;
sd = Math . s q r t (va r) ;
System . out . p r i n t l n (" l e n g t h : " + l e n g t h) ;
System . out . p r i n t l n ("mean : " + mean) ;
System . out . p r i n t l n (" median : " + med) ;

}

Sibylle Schupp Software Testing - Lecture 5 2022 30

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (cont’d)

Sibylle Schupp Software Testing - Lecture 5 2022 31

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (cont’d): from annotations to defs and uses

Sibylle Schupp Software Testing - Lecture 5 2022 32

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example: DU pairs

Sibylle Schupp Software Testing - Lecture 5 2022 33

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example: from DU pairs to DU paths

var DU pair DU path
number (1,4) [1,2,3,4]

(1,5) [1 2,3,5]
(1,7) [1,2,3,5,6,7]

length (1,5) [1,2,3,5]
(1,8) [1,2,3,5,6,8]
(1,(3,4)) [1,2,3,4]
(1,(3,5)) [1,2,3,5]
(1,(6,7)) [1,2,3,5,6,7]
(1,(6,8)) [1,2,3,5,6,8]

med . . .
. . .

Sibylle Schupp Software Testing - Lecture 5 2022 34

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example: unique DU paths

In the example, there is a total of 12 (unique) DU paths.
4 paths skip the loop

[1,2,3,5], [2,3,5], [1,2,3,5,6,8], [5,6,8]
6 paths require at least one iteration

[1,2,3,4], [1,2,3,5,6,7], [2,3,4], [4,3,5], [5,6,7], [7,6,8]
2 paths require two iterations

[4,3,4], [7,6,7]

Sibylle Schupp Software Testing - Lecture 5 2022 35

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Test cases and test paths

Test case: numbers = [44], length = 1
Test path: [1,2,3,4,3,5,6,7,6,8]
DU paths covered without sidetrip: 5 of the 6 paths that require at least
one iteration ([1,2,3,4], [2,3,4], [4,3,5], [5,6,7], [7,6,8])

Test case: numbers = [2,10,15], length = 3
Test path: [1,2,3,4,3,4,3,4,3, 5,6,7,6,7,6,7,6,7,6,8]
DU paths covered without sidetrip: both paths that require two
iterations [4,3,4], [7,6,7] (plus some that require one iteration)

Test case: numbers [], length = 0
Test path: [1,2,3,5!
Failure (med = numbers[length/2]). Good!

Sibylle Schupp Software Testing - Lecture 5 2022 36

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

References

AO, Ch. 7.2.3, 7.3

Sibylle Schupp Software Testing - Lecture 5 2022 37

	Graph coverage II
	Data-flow criteria
	Structural coverage for source code
	Data-flow coverage for source code

