Software Testing

Sibylle Schupp¹

¹Institute for Software Systems/Institut für Softwaresysteme Hamburg University of Technology (TUHH)

Spring 2022

Lecture 9

Slides and audiovisual material for private use only. Download or further distribution prohibited.

Outline

Sibylle Schupp

Recall

- Logic coverage criteria (semantic): PC, CC, CoCC, ACC (GACC, CACC, RACC), ICC
- Semantic logic coverage is concerned with possible meanings (truth values) of a clause or predicate.
 - Advantage: tests are independent of the particular way ("syntax") a predicate is written.
 - Limitation: syntax mistakes cannot be detected.

Slides and audiovisual material for private use only. Download or further distribution prohibited.

Outline

Syntactic logic coverage
 Karnaugh maps

Slides and audiovisual material for private use only. Download or further distribution prohibited.

Disjunctive normal form (DNF)

Definition

- A <u>literal</u> is a clause or the negation of a clause.
- A term is a set of literals connected by a logical "and."
- A predicate is in <u>disjunctive normal form</u> (DNF) if it is a set of terms connected by logical "or."

Example (DNF)

Notation

- For DNF, + and concatenation are commonly used as operators (for \lor, \land), negation is indicated by a bar and can only be applied to clauses ("atoms").
- Logic operators, in two different notations:

			example
and	\wedge	(concat)	ab
or	\vee	+	a+b
not	_	÷	ā

- Examples (DNF): ab, $a\overline{b}$, $a\overline{b} + \overline{a}$, $a\overline{c} + b\overline{c}$,
 - Counter example: $\overline{a+b}$, $(a+b)\overline{c}$
- As names for boolean values, we will use both True, False and 0,1.

Implicants

Definition

- A <u>normal term</u> is a term in which a clause ("atom") occurs not more than once.
- An <u>implicant</u> of a predicate is a normal term that implies the predicate: whenever the implicant is true, the predicate is true.

Discussion

- By the previous definition of "term", every term is normal.
- By the previous definition of DNF, every term is an implicant.

Implicant coverage (IC)

Definition

Given a DNF representation of a predicate f and its negation \overline{f} . For implicant coverage (IC) TR contains for every implicant in f and \overline{f} the requirement that the implicant evaluates to true.

Example

$$f = ab + b\overline{c}$$
 $\overline{f} = \overline{b} + \overline{a}c$

- Implicants: ab, $b\overline{c}$, \overline{b} , $\overline{a}c$
- Possible *TR*: {TTF, FFT}

Boolean algebras, again

DNF notation

- De Morgan
 - $\begin{array}{ccc}
 \hline a \\
 \hline$
- ② Associativity
 - (ab)c = a(bc)(a+b)+c = a+(b+c)
- ③ Distributivity
 - a(b+c) = (ab) + (ac)
 a + (bc) = (a+b)(a+c)
- ④ Commutativity
 - ab = ba
 a + b = b + a
- 5 Absorption
 - 1 a(a+b) = a + (ab) = a2 $\overline{a} + (\overline{a}b) = \overline{a}$

Example (Boolean algebra)

$$\overline{f} := \overline{ab + b\overline{c}} \\
= \overline{ab} + \overline{b}\overline{c} \\
= (\overline{a} + \overline{b})(\overline{b} + \overline{c}) \\
= \overline{ab} + \overline{ac} + \overline{b}\overline{b} + \overline{bc} \\
= \overline{ab} + \overline{b}\overline{b} + \overline{bc} + \overline{ac} \\
= (\overline{a} + \overline{b})\overline{b} + \overline{bc} + \overline{ac} \\
= \overline{b} + \overline{bc} + \overline{ac} \\
= \overline{b} + \overline{ac}$$

Prime implicants and redundant implicants

Let f be a function in DNF, t be a term of f.

Definition

- A proper subterm of an implicant *i* is *i* with one or more literals removed.
 - Ex.: proper subterms of *i*=abc: ab, bc, ac, a, b, c.
- A prime implicant of *f* is an implicant such that no proper subterm is also an implicant of *f*.
 - Ex.: $f = abc + ab\overline{c} + b\overline{c}$
 - *abc* is not a prime implicant: if subterm *ab* true, then either *abc* true or *abc* true, thus *f* true and *ab* implicant;
 - $ab\overline{c}$ not a prime implicant (subterms ab, $b\overline{c}$)
- An implicant of a predicate *f* is <u>redundant</u> if it can be omitted without changing the value of *f*.

Example (redundant implicants)

Ex.

- $f = ab + ac + b\overline{c} \equiv ac + b\overline{c}$, thus ab is redundant.
 - If ab true, then either ac or $b\overline{c}$ true.
- A prime implicant can be redundant: see above, *ab* is prime.

Minimal DNFs

Definition

A <u>minimal</u> DNF representation consists only of prime, non-redundant implicants.

Discussion

- Minimal DNFs can be computed automatically.
- In the following, we assume minimal DNFs (no practical restriction).
- The feasibility of some coverage criteria depends on minimality.

Unique true points

Given a minimal DNF representation of a predicate f.

Definition

A <u>unique true point</u> (UTP) with respect to a given implicant is a truth assignment such that the given implicant is true and all other implicants are false.

Examples

• Unique true points
$$f = ab + b\overline{c}$$

• Unique true points $\overline{f} = \overline{b} + \overline{a}c$

Multiple unique true point coverage (MUTP)

Definition

Given a minimal DNF representation of a predicate f. For multiple unique true point coverage (MUTP) TR requires for each implicant i unique true points (UTPs) so that clauses **not** in i take on both values true and false.

Discussion

- Minimality guarantees the existence of at least one UTP for each implicant. MUTP, however, might be infeasible.
- Example $f = ab + b\overline{c}$
 - MUTP infeasible (both implicants have one UTP only)
- Example $\overline{f} = \overline{b} + \overline{a}c$
 - For implicant \overline{b} : could select FFF and TFT.
 - MUTP infeasible for the second implicant

Near false points

Let f be as above.

Definition

A <u>near false point</u> (NFP) with respect to a clause c in a given implicant i is a truth assignment such that f is false, but if c is negated and all other clauses remain unchanged, the implicant i (and hence f) evaluates to true.

- Example: f = ab + cd.
 - Consider clause *a* in implicant *ab*. A near false point is FTFF.
 - Check: f evaluates to false; for $\overline{\overline{a}}$, ab and f evaluate to true.
- At a near false point, a clause *c* determines the predicate.

Corresponding unique true point and near false point pair coverage (CUTPNFP)

Definition

Given a minimal DNF representation of a predicate f. For corresponding unique true point and near false point pair coverage (CUTPNFP) TR contains for each clause c in each implicant i a unique true point for i and a near false point for c such that the points differ only in the truth value of clause c.

Discussion

• CUTPNFP subsumes RACC.

Example (CUTPNFP)

f = ab + cd

- Implicant *ab* has 3 UTPs: {TTFF, TTFT, TTTF}
 - Ex.: for clause a pair UTP TTFF with NFP FTFF.
 - Ex.: for clause *b* pair UTP TTFF with NFP TFFF.
- Implicant *cd* has 3 UTPs: {FFTT, FTTT, TFTT}
 - For clause c pair UTP FFTT with NFP FFFT
 - For clause *d* pair UTP FFTT with NFP FFTF.
- CUTPNFP test requirements: {TTFF, FFTT, TFFF, FTFF, FFTF, FFFT }

In-class exercise

- Determine the prime implicants of f.
 - A prime implicant of f is an implicant such that no proper subterm is an implicant.
- 2 Determine the UTPs for each implicant of f.
 - Let *i* be an implicant. A unique true point of *i* is a valuation so that *i* is true and all other implicants are false.
- ③ Specify the TR for MUTP coverage.
 - MUTP: for each implicant *i* choose UTPs so that clauses not in *i* take on both true and false.
- ④ Determine the NFPs for clause a in "the first" implicant i
 - Let *i* be an implicant, let *c* be a clause in *i*. A near false point of *c* is a valuation of *f* so that *f* is false, but if *c* is negated, *i* and *f* evaluate to true.
- What is the test size for CUTPNFP coverage?
 - CUTPNFP: for each clause *c* in an implicant *i* choose a UTP for *i* and a NFP for *c* such that those points differ only in the truth value of *c*.

In-class exercise (cont'd)

In-class exercise

Fault detection: insertion faults

Let f = ab + cd and assume a fault L such that f = abL + cd. L is called an insertion fault.

- MUTP = { TTFT, TTTF, FTTT, TFTT }
- MUTP detects all insertion faults:

$$L = a \quad \text{no fault}$$

$$L = \overline{a} \quad \text{TTFT and TTTF fail}$$

$$L = b \quad \text{as for } a$$

$$L = \overline{b} \quad \text{as for } \overline{a}$$

$$L = c \quad \text{TTFT fails}$$

$$L = c \quad \text{TTTF fails}$$

$$L = d \quad \text{TTTF fails}$$

$$L = \overline{d} \quad \text{TTFT fails}$$

• MUTP cannot detect literal omission.

Fault detection: omission faults

- Let f = ab + cd and assume a fault such that f' = ab + c.
 - CUTPNFP = {TTFF, FFTT, TFFF, FTFF, FFTF, FFFT }
 - CUTPNFP detects all ommission faults. In the example:

FFTT and FFTF for faulty f' both return true

- Insertion and omission faults span the whole fault space.
- Note, though, that MUTP and CUTPNFP are not always feasible.

DNF fault classes

- Idea: classify faults
- Common faults (let f = ab + c).

Fault Description

ENF TNF	<i>f</i> incorrectly written as its negation: $\overline{ab + c}$ a term of <i>f</i> incorrectly written as its negation, e.g., $\overline{ab} + c$
LNF	a literal in f incorrectly written as its negation, e.g., $a\overline{b} + c$
TOF	a term of f incorrectly omitted, e.g., ab
LOF	a literal in f incorrectly omitted, e.g., $a + c$
LRF	a literal in f incorrectly replaced, e.g., $ac + c$
LIF	a literal in f incorrectly inserted, e.g., $ab + bc$
ORF+	an 'or' in f incorrectly replaced by 'and': abc
ORF*	an 'and' in f incorrectly replaced by 'or': $a + b + c$

Dependencies?

Fault dectection relationships

Multiple NFPs and MUMCUT

The MNFP criterion applies when MUTP or CUTPNFP are infeasible.

Definition

- Given a minimal DNF representation of a predicate *f*. For multiple near false point coverage (MNFP) *TR* contains for each literal in each implicant *i* near false points such that the clauses not in *i* take on both values true and false.
- Given a minimial DNF representation. For MUMCUT coverage *TR* combines the *TR*s of MUTP, CUTPNFP, and MNFP.

Minimal-MUMCUT

• One can show that the combined application of MUTP, CUTPNFP, and MNFP detects the entire fault hierarchy.

Slides and audiovisual material for private use only. Download or further distribution prohibited.

Outline

Syntactic logic coverage
 Karnaugh maps

Karnaugh maps Maurice Karnaugh (1953)

Karnaugh maps (K-map) are tabular representations of predicates.

- Boolean table
- Horizontal and vertical neighbors change 1 clause ("variable") only
- Used for simplification of boolean expressions
- Suitable for 5+ clauses

Construction of K-maps

- Adjacent pairs differ in one truth value only.
- Think of the table in 3D: edge points are connected (toroidal mapping to 3D).

٩	Example	(3 c	lauses	s ("va	ariables")):	$b\bar{c}$ +	ac +	Ъc
	c\ ab	00	01	11	10				
	0		1	1					
	1	1		1	1				
٩	Example	(4 c	lauses	s): ab	o + cd				
	$cd \setminus ab$	00) 01	. 11	. 10				
	00)		1					
	01			1					
	11	. 1	1	1	1				
	10)		1					

Simplification

Simplification is done by grouping adjacent cells containing 1-entries.

- A group is a maximal rectangle of size 2^k .
 - Wrap-around and overlapping is permitted.
 - 1-entries that cannot be grouped form singletons (rectangles of size 1)
- Each rectangle corresponds to a predicate of the form $X(a + \bar{a})$, which is equivalent to X (absorption law).
 - Each maximal rectangle represents a prime implicant.
 - If its entries are covered by other rectangles, the implicant is redundant.
- Obtain minimal DNF by forming the disjunction of all non-redundant rectangles.

Applications

K-maps can be used for a variety of tasks in logic-based testing:

- Determination
- Negation
- Prime implicants and redundant implicants
- Unique true points
- Near false points

K-map: determination

Consider

$$f = b + \overline{ac} + ac$$

When does b determine f?

K-Map

- Dashed line signals where b changes its value.
- If two cells joined by the dashed line have different values for *f*, then *b* determines *f* for those cells.
- Thus, b determines f for $\overline{a}c + a\overline{c}$ (but not at ac or \overline{ac}).

K-map: negation

Consider

$$f = ab + bc$$

• K-map

- Find groups
- Negation: $\overline{f} = \overline{b} + \overline{ac}$

K-map: Prime and redundant implicants

Consider

$$f = abc + ab\bar{d} + \bar{a}bcd + a\bar{b}c\bar{d} + a\bar{c}d$$

K-map

<i>cd∖ab</i>	00	01	11	10	cd∖ab	00	01	11	10
00			1	1	00			abd, acd	acd
01					01				
11		1	1		11		ābcd	abc	
10			1	1	10			abc, abd	abcd

• Prime implicants (1x size 4, 2x size 2)

cd\ab	00	01	11	10		cd\ab	00	01	11	10	cd\ab	00	01	11	10
00			1	1	-	00					00				
01						01					01				
11						11			1		11		1	1	
10			1	1		10			1		10				

K-map: Prime and redundant implicants (cont'd)

• Again, the prime implicants of $f = abc + ab\bar{d} + \bar{a}bcd + a\bar{b}c\bar{d} + a\bar{c}\bar{d}$

cd\ab	00	01	11	10	cd\ab	00	01	11	10	cd\ab	00	01	11	10
00			1	1	00					00				
01					01					01				
11					11			1		11		1	1	
10			1	1	10			1		10				

Redundant: the first implicant of size 2 is redundant

- The 1111 entry is covered by the other implicant of size 2, the 1110 entry by the implicant of size 4
- The minimal DNF representation of f is $a\bar{d} + bcd$:

size 4	1100	size 2	0111
	1110		1111
	1000		
	1010		
	ad		bcd

K-Map: unique true points

- Unique points for *ab* : *TTFF*, *TTFT*, *TTTF*
 - TTTT is true point, but not unique
- Unique points for *cd* : *FFTT*, *FTTT*, *TFTT*
 - TTTT is true point, but not unique

K-map: multiple unique true points

Recall MUTP coverage: given a minimal DNF representation, for each implicant i choose UTPs so that clauses not in i take on both true and false. Consider

$$f = ab + cd$$

• K-map:

• For implicant *ab* choose: {TTFT, TTTF}, for implicant *cd*: {FTTT, TFTT}. MUTP test set: {TTFT, TTFT, FTTT, TFTT}

K-map: CUTPNFP

- Consider again f = ab + cd and recall CUTPNFP coverage
 - For each clause *c* in an implicant *i* choose a UTP for *i* and a NFP for *c* such that those points differ only in the truth value of *c*.

		$cd \setminus ab$	00	01	11	10
		00		Х	1	
•	K-map	01	х		1	х
		11	1	1	1	1
		10	х		1	

• Test requirements:

 $\mathsf{TR} = \mathsf{UTP} \cup \mathsf{NFP}$

= {TTFF,TTFT,FFTT} \cup {FTFF,FFFT,TFFT,FFTF}

K-map: multiple near false points Consider

$$f = ab + cd$$

• K-map:

- Recall MNFP: for each literal in each implicant *i* find NFPs so that clauses not in *i* take on values T and F.
- Implicant *ab*: choose {FTFT, FTTF} for *a*; for *b*: {TFFT, TFTF}
- MNFP TR : {TFTF, TFFT, FTTF, TFTF}

Summary (logic-based coverage)

Semantic criteria

- Active clauses (including MCDC)
- Definitional method for determination (boolean laws)
- Syntactic criteria
 - Implicants, unique true points, near false points
 - Minimal DNFs
 - K-maps
- Applications
 - Predicates in programs
 - Finite state machines

References

• AO, Ch. 8.2