_ and audiovisual material for private use only. Download or further distributio_

Software Testing

Sibylle Schupp?!

Lnstitute for Software Systems/Institut fiir Softwaresysteme
Hamburg University of Technology (TUHH)

Spring 2022

Lecture 5

d audiovisual material for private use only. Download or further distribut
Outline

0 Graph coverage |l

Slides and audiovisual material for private use only. Download or further distribution pro_

Recap

Graph-based testing:
o Test sets are represented by test paths. A path is a test path if it starts

at an initial node and ends at a final node.
o Test sets assume a concrete executable (modeled by the graph).

o Test requirements are derived from a graph-based coverage criterion.
o TRs assume a concrete graph.

o TRs are formulated in terms of graph entities.
o Major classes: structural criteria, data-flow criteria

o Loop testing requires special criteria, based on prime paths.
o Prime paths contain no inner loops (“simple path”) and are no proper

subpath of another simple path.

Sibylle Schupp Software Testing - Lecture 5

Slides and audiovisual material for private use only. Download or further distribution pro_

Recap (structural coverage)

Complete Round
Trip Cove

Sibylle Schupp Software Testing - Lecture 5 _

d audiovisual material for private use only. Download or further distribut

In-class exercise

nd audiovisual material for private use only. Download or further distributi
Outline

@ Data-flow criteria

@ Structural coverage for source code
0 Graph coverage Il @ Data-flow coverage for source code

Slides and audiovisual material for private use only. Download or further distribution pr_
Data-flow criteria

o Data-flow testing tests whether values are computed and used correctly.

A program point (node) is a def node if the value of a variable is stored at
it. It is a use node if the value of a variable is accessed at it.

The set of variables that are defined by node n (edge e) is denoted as def(n)
(or (def(e)). The set of variables that are used by node n (edge e) is
denoted as use(n) (or (use(e)).

o Example:

def(1) = {X}, def(5) = {Z} = def(6)
use(5)= {X} = use (6)

Sibylle Schupp Software Testing - Lecture 5 —

_des and audiovisual material for private use only. Download or further distribution _
DU pairs and def-clear paths

o A pair of program points (n;, n;) is called a DU pair if there exists a
variable that is defined at n; and used at n;.
o A path from n; to nj is called a def-clear path with respect to variable
v if v & def(nk) for any node ny, k # i, on that path.
o If v € def(n;) and there is a def-clear path from n; to n; with respect to
v, the def of v at n; reaches the use of v at n;.
o The definition can also be expressed in terms of edges. A path from n;
to n; is called a def-clear path with respect to variable v if v ¢ def(ex)
for any edge ex = (nk, ny), k,I # i,/ on that path.

_es and audiovisual material for private use only. Download or further distribution —
DU paths

o A simple subpath that is def-clear with respect to v from a def of v to
a use of v is called a DU path.
o Properties
o A DU path is always qualified by a particular variable.
o A DU path contains one def, it may contain more than one use.
o The following sets of DU paths are relevant:

o The def-path set du(n;, v) is the set of DU paths for v that start at n;.
o The def-pair set du(n;, nj, v) is the set of DU paths for v that start at n;
and end at nj.

v

_and audiovisual material for private use only. Download or further distributio—
Touring DU paths

A test path p du-tours a subpath d with respect to v if p tours d and the
subpath taken is def-clear with respect to v.

o Sidetrips possible (as before)

Slides and audiovisual material for private use only. Download or further distribution pr_

Data-flow coverage criteria

@ The most general criterion is ADUPC, which includes every DU path.
All-du-path coverage (ADUPC): For each def-pair set S,
S= du(n;, nj,v), TR contains every path d € S.

o All-uses coverage includes for every du-pair at least one path:
All-uses coverage (AUC): For each def-pair set S,
S= du(n;, nj,v), TR contains at least one path d € S.

o All-defs coverage includes one DU path per definition:
All-defs coverage (ADC): For each def-path set S,
S=du(n,v), TR contains at least one path d € S.

Sibylle Schupp Software Testing - Lecture 5 —

Slides and audiovisual material for private use only. Download or further distribution pro_
Example (data-flow testing)

o All-defs for X: [1,2,4,5]
o All-uses for X: [1,2,4,5], [1,2,4,6]
o All-du-paths for X: [1,2,4,5], [1,2,4,6], [1,3,4,5], [1,3,4,6]

Sibylle Schupp Software Testing - Lecture 5 _

_es and audiovisual material for private use only. Download or further distribution —

Subsumption

o ADUPC subsumes AUC, and AUC subsumes ADC.
o Further, Prime Path Coverage subsumes ADUPC.

Next: From graphs at the abstract level ...to graphs at source-code level,
specification level, design level.

nd audiovisual material for private use only. Download or further distributi
Outline

@ Data-flow criteria

@ Structural coverage for source code
0 Graph coverage Il @ Data-flow coverage for source code

_es and audiovisual material for private use only. Download or further distribution—

Graph coverage for source code

o Structural coverage
o Graph = control-flow graph (CFG)
o Node coverage: execute every statement
o Edge coverage: execute every branch
o Data-flow coverage
o Graph = augmented CFG
o defs: assignments
o uses: readings

_es and audiovisual material for private use only. Download or further distribution —

o A CFG models all executions of a method.

A control-flow graph of a function is a graph where each statement (or

each basic block) of the function forms a node, and edges represent the
transfer of control.

A basic block is a sequence of statements such that if the first statement is
executed, all statements will be.

o The CFG can be annotated with extra information (predicates, defs,
uses).

o The CFG can be obtained automatically from the source code.

Slides and audiovisual material for private use only. Download or further distribution prohi

[f-statements

Introdhsction 1o Saltwase Testing, Editica 2 {Ch 7)

o The CFG fragment contains a fork and a join node.

Sibylle Schupp Software Testing - Lecture 5

Slides and audiovisual material for private use only. Download or further distribution prohibiteds]

[f-return statements

if (x<y)
{

return;
} x>=y
print (x);
return;

print (x)
return

No edge from node 2 to 3.
The return nodes must be distinct.

Introduction \o Saltwase Tesing, Editiea 2 {Ch 7}

Sibylle Schupp Software Testing - Lecture 5

Slides and audiovisual material for private use only. Download or further distribution proh_

While- and for-statements

x=0;
while (x<y)

y=1f(x,y); ;
,X=X+1: initializes lo

_4 =f(xy)

x=x+1

for (x =0; x <y; X++) ' x‘
{ v-‘f(x,v

y=1(x,y)
) XI,F‘I-

Introdisetio 1o Softwaee Tewing, Editiea 2 {Th 7)

o While- and for-loops require separate nodes for the loop header.

Sibylle Schupp Software Testing - Lecture 5 _

Slides and audiovisual material for private use only. Download or further distribution prol

Do loop, break and continue

x=0;
while (x <y)
{

y=f(xy);
X=x+1; if (y ==10)
} while (x <y); {
printin (y) break;
}else f (y <0)
{

y=y'2;
continue;

y=10)\
x= x+1_//

X<y

Introductic i Softwase Tesing, Edition 2 {Ch 7}

Sibylle Schupp Software Testing - Lecture 5

Slides and audiovisual material for private use only. Download or further distribution proh_

Case statements

Cases without breaks fall
through to the next case

Itroisetio 1o Softwae Tewing, Editiea 2 (Ch 7)

o Note: for languages with a different semantics (no fall through), the
CFG fragment looks different.

Sibylle Schupp Software Testing - Lecture 5 _

Slides and audiovisual material for private use only. Download or further distribution prol

Try-catch statements

try

{
s = br.readLine();
If (s.Jength() > 96)
throw new Exception
(“too long”);
if (s.length() = 0)
throw new Exception
(“too short™);
} (catch IOException e) {

e.printStackTrace();
} (catch Exception e) {
e.getMessage();

H
return (s);

Itroduetion i5 Softwaee Tewing, Editiea 2 {Ch 7}

Sibylle Schupp Software Testing - Lecture 5

Slides and audiovisual material for private use only. Download or further distribution p_
Example (CFG)

1| public static void computeStats (int [| numbers)

21{

3 int length = numbers.length;

4 double med, var, sd, mean, sum, varsum;

5 sum = 0;

6 for (int i = 0; i < length; i+4)

o

8 sum += numbers[i];

of '}

10 med = numbers[length /2];

11| mean = sum / (double) length;

12 varsum = 0;

13 for (int i = 0; i < length; i++4)

14 {

15 varsum = varsum + ((numbers[i] — mean) % (numbers[i] — mean));
16 }

17 var = varsum / (length — 1.0);

18 sd = Math.sqrt(var);

19 System.out. println ("length: " 4+ length);
20 System .out. println ("mean: " + mean);
21 System.out. println ("median: "+ med);
2| }

Sibylle Schupp

Software Testing - Lecture 5

Slides and audiovisual material for private use only. Download or further distribution proh_
'
Example (CFG), cont'd

int length = pumbers.| .
double med, var, sd, meai

O Azzmarn & Offutt

Sibylle Schupp Software Testing - Lecture 5 _

Slides and audiovisual material for private use only. Download or further distribution prohibiteds]

TRs and test paths (EC)

TR Test path

[1,2] [1,2,3,4,3,5,6,7,6,8]
[2.3]

[3.4]

[3.5]

[4.3]

[5.6]

[6.7]

[6.8]

[7.6]

—ToOTmON®>

Sibylle Schupp Software Testing - Lecture 5 2022

Slides and audiovisual material for private use only. Download or further distribution prohibiteds]

TRs and test paths (EPC)

TR Test paths Tours
A. [1,2,3] i. [1,2,3,4,3,5,6,7,6,8] A,B,.D,EF.G,I,J
B. [2,3,4] ii. [1,2,3,5,6,8] ACEH
C. [2,3,5] iii. AB,D,EF,G|IJ,
[1,2,3,4,3,43,5,6,7,6,7,6,8] K, L
D. [3,4,3]
E. [3,5,6]
F. [4,3,5]
G. [5,6,7]
H. [5,6,8]
l. [6,7,6]
J. [7,6,8] Sidetrips
K. [4,3,4] Testi: C, H
L. [7.6,7] Test iii: C, H
UEUN

Could reduce the test set to Test (iii), at the price of 2 side trips.

Sibylle Schupp

Software Testing - Lecture 5 2022 26

Slides and audiovisual material for private use only. Download or further distribution prohibiteds]

TRs and test paths (PPC)

TR Test paths Tours

A. [3.43] i A.D,E,F,G
[1,2,3,4,3,5,6,7,6,8]

B. [4,3,4] ii. A.B,C,D,E,F,G

[1.2,3,4,3,4,3,5,6,7,6,7,6,8]
C. [7.6,7] iii. [1,23,4356,8 AFH
D. [7.6.8] iv. [1.2,3,5,6,7,6,8] D,EF,|I

E. [67.6] v.[12356.8] J
F. [1,2,3,4] Sidetrips
G. [4,3,5,6,7] Test i H,I,J
H. [4,3,5,6,8] Test ii: H,I,J
l. [1,2,3,5,6,7] Test iii: J
J. [1,2,3,5,6,8] Test iv: J

Sibylle Schupp Software Testing - Lecture 5

2022

27

nd audiovisual material for private use only. Download or further distributi
Outline

@ Data-flow criteria

@ Structural coverage for source code
0 Graph coverage Il @ Data-flow coverage for source code

Slides and audiovisual material for private use only. Download or further distribution pr_

Data-flow coverage

o defs
o initialization, |-values
o actual parameters of a method that are changed
o formal parameters of a method that are (implicitly) initialized
o input parameters
o uses
o r-values (in statements, expressions, tests)
o actual parameters of a method
o return parameters of a method
e output parameters
o DU pairs
o If v € def(n) and v € use(n), the pair (n, n) forms a DU pair only if the
def executes after the use and n is within a loop.

Sibylle Schupp Software Testing - Lecture 5 —

_es and audiovisual material for private use only. Download or further distribution —

Example (data-flow testing)

public static void computeStats (int [] numbers)
{
int length = numbers.length;
double med, var, sd, mean, sum, varsum;
sum = 0;
for (int i = 0; i < length; i+4)
{
sum += numbers[i];
}
med = numbers[length /2];
mean = sum / (double) length;
varsum = 0;
for (int i = 0; i < length; i++4)
{
varsum = varsum + ((numbers[i] — mean) % (numbers[i] — mean));
}
var = varsum / (length — 1.0);
sd = Math.sqrt(var);
System.out. println ("length: " 4+ length);
System.out. println ("mean: " 4+ mean);
System.out. println ("median: "+ med);
}

Software Testing - Lecture 5

Slides and audiovisual material for private use only. Download or further distribution prohibiteds]

Example (cont'd)

Annotate with the
statements ...

med = numbers [length /2]
mean = sum / (double) length

var = varsum / (length - 1.0)
= Math.sqgrt (var)
print (length, mean, med, var, sd)

© Asmmann & Offitt

Sibylle Schupp Software Testing - Lecture 5

Slides and audiovisual material for private use only. Download or further distribution prohibiteds]

Example (cont'd): from annotations to defs and uses

@d&[(1) = { numbers, sum, length }
use (1) = { numbers}

def (5) = { med, mean, varsum, i}
use (5) = { numbers, length, sum }

use (6,8) = {1, length }

def (8) = { var, sd }
def (7) = { varsum, i } o m(3)={vmmnn.leugd1,me.m.
use (7) = { varsum, numbers, 3 me med, var, sd }
Imimduction i Softwase Tsting, Biion 2 (Ch 7) © Ammamn & Offu

Sibylle Schupp Software Testing - Lecture 5 2022

32

Slides and audiovisual material for private use only. Download or further distribution pr_
Example: DU pairs
defs come before uses,
variable do not count as DU pairs
numbers (L4 (LFH]
[lengeh | (1,5) (1,8Y(1,3.4)) (1, 3.5)) (1,(67) (1,(68))
med |(5.8) /

0/
far— (88) 7 aetsaeruseinioop,
0 (@8) [/ |thessarevaiaDUpain

mean (5758 _/ = ————
No def-clear path
= ik e

(&3 {6»7)) (5' (6'3}) \

+(67) (7, (68) No path through graph
from nodes5and Tto4or3

Imroddsction i Software Tosting, Beition 2 (Ch 7) O Ammann & Offiatt

Sibylle Schupp Software Testing - Lecture 5 —

_es and audiovisual material for private use only. Download or further distribution —
Example: from DU pairs to DU paths

var DU pair DU path
number (1,4) [1,2,3,4]
(1,5) [123,5]
(1,7) [1,2,3,5,6,7]
length (1,5) [1,2,3,5]
(1,8) [1,2,3,5,6,8]
(1,(3,4)) [1,2,3,4]
(1,(3,5)) [1,2,3,5]
(1,(6,7)) [1,2,3,5,6,7]
(1,(6,8)) [1,2,3,5,6,8]
med o

_es and audiovisual material for private use only. Download or further distribution —
Example: unique DU paths

In the example, there is a total of 12 (unique) DU paths.
o 4 paths skip the loop
[1,2,3,5], [2,3,5], [1,2,3,5,6,8], [5,6,8]
o 6 paths require at least one iteration
[1,2,3,4], [1,2,3,5,6,7], [2,3,4], [4,3,5], [5.6,7], [7,6,8]
o 2 paths require two iterations
[4,3,4], [7,6,7]

Slides and audiovisual material for private use only. Download or further distribution pr_

Test cases and test paths

o Test case: numbers = [44], length =1
o Test path: [1,2,3,4,3,5,6,7,6,8]
o DU paths covered without sidetrip: 5 of the 6 paths that require at least
one iteration ([1,2,3,4], [2,3,4], [4,3,5], [5.6,7], [7.6.8])
o Test case: numbers = [2,10,15], length = 3
o Test path: [1,2,3,4,3,4,3,4,3, 5,6,7,6,7,6,7,6,7,6,8]
o DU paths covered without sidetrip: both paths that require two
iterations [4,3,4], [7,6,7] (plus some that require one iteration)
o Test case: numbers [], length =0
o Test path: [1,2,3,5!
o Failure (med = numbers[length/2]). Good!

Sibylle Schupp Software Testing - Lecture 5 —

_nd audiovisual material for private use only. Download or further distributi—

References

o AO, Ch. 7.23,73

	Graph coverage II
	Data-flow criteria
	Structural coverage for source code
	Data-flow coverage for source code

