
Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Software Testing

Sibylle Schupp1

1Institute for Software Systems/Institut für Softwaresysteme
Hamburg University of Technology (TUHH)

Spring 2022

Lecture 8

Sibylle Schupp Software Testing - Lecture 8 2022 1

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Logic coverage II

Sibylle Schupp Software Testing - Lecture 8 2022 2

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Recall

Clause (predicate without logic operators)
Semantic coverage
Logic coverage criteria (semantic):

PC, CC for predicate and clause coverage
CoC for complete clause coverage
ACC (GACC, CACC, RACC) for active clause coverage

A major clause c of a predicate p determines p if the minor clauses have
values so that changing the value of c changes the value of p.
Active clause coverage (ACC) is formulated in terms of determination
but ambiguous.
Three unambiguous interpretations: general, correlated, restricted

ICC for inactive clause coverage

Sibylle Schupp Software Testing - Lecture 8 2022 3

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Logic coverage II

Semantic logic coverage of programs
Logic coverage for specifications
Semantic logic coverage of FSMs

Sibylle Schupp Software Testing - Lecture 8 2022 4

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Logic coverage for source code

Predicates are derived from test expressions (decisions)
In programs, most predicates have not more than 3 or 4 clauses.
If a predicate has one clause only, CoC, ACC, ICC, CC, PC coincide.

Applying logic criteria to program source code is not trivial:
Reachability: how to get to the test expression?
Controllability: which input values assign the right values to the
variables in the predicate?
Variables of a predicate that are not input variables are called
internal variables.

Sibylle Schupp Software Testing - Lecture 8 2022 5

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (semantic coverage of source code)

// I n t r o d u c t i o n to So f tware T e s t i n g
// Authors : Paul Ammann & J e f f O f f u t t
p u b l i c c l a s s Thermostat
{

p r i v a t e i n t curTemp ; // c u r r e n t t empe ra tu r e r e a d i n g
p r i v a t e i n t t h r e s h o l d D i f f ; // temp d i f f e r e n c e u n t i l we t u r n

h e a t e r on
p r i v a t e i n t t imeS inceLas tRun ; // t ime s i n c e h e a t e r s topped
p r i v a t e i n t minLag ; // how long I need to wa i t
p r i v a t e boolean o v e r r i d e ; // has u s e r o v e r r i d d e n the program
p r i v a t e i n t overTemp ; // o v e r r i d i n g t empe ra tu r e
p r i v a t e i n t runTime ; // output o f turnHeaterOn − how

long to run
p r i v a t e boolean heaterOn ; // output o f turnHeaterOn −

whether to run
p r i v a t e Per i od p e r i o d ; // morning , day , even ing , o r n i g h t
p r i v a t e DayType day ; // week day or weekend day

// Dec ide whether to t u r n the h e a t e r on , and f o r how long .
p u b l i c boo lean turnHeaterOn (ProgrammedSett ings pSet) { . . }

Sibylle Schupp Software Testing - Lecture 8 2022 6

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (cont’d)
// I n t r o d u c t i o n to So f tware T e s t i n g
// Authors : Paul Ammann & J e f f O f f u t t
// Dec ide whether to t u r n the h e a t e r on , and f o r how long .

p u b l i c boo lean turnHeaterOn (ProgrammedSett ings pSet) {
i n t dTemp = pSet . g e t S e t t i n g (pe r i od , day) ;
i f (((curTemp < dTemp − t h r e s h o l d D i f f)

| | (o v e r r i d e && curTemp < overTemp − t h r e s h o l d D i f f))
&& (t imeS inceLas tRun > minLag))

{ // Turn on the h e a t e r
// How long ? Assume 1 minute pe r deg r ee (F a h r e n h e i t)
i n t t imeNeeded = curTemp − dTemp ;
i f (o v e r r i d e)

t imeNeeded = curTemp − overTemp ;
setRunTime (t imeNeeded) ;
setHeaterOn (t r ue) ;
r e t u r n (t r ue) ;

}
e l s e {

setHeaterOn (f a l s e) ;
r e t u r n (f a l s e) ;

}
} // End turnHeaterOn

Sibylle Schupp Software Testing - Lecture 8 2022 7

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (predicates)
The example code contains two predicates:
// p r e d i c a t e p1
i f (((curTemp < dTemp − t h r e s h o l d D i f f)

| | (o v e r r i d e && curTemp < overTemp − t h r e s h o l d D i f f))
&& (t imeS inceLas tRun > minLag))

// p r e d i c a t e p2
i f (o v e r r i d e)

We introduce abbrevations for the clauses:
a curTemp < dTemp - thresholdDiff
b override
c curTemp < overTemp - thresholdDiff
d timeSinceLastRun > minLag

Thus,
p1 ≡ (a || (b && c)) &&d) and p2 ≡ b

Sibylle Schupp Software Testing - Lecture 8 2022 8

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Reachability

Reachability: when are p1, p2 reached?

Condition
p1 true (“p1 is always reached”)
p2 (a || (b && c)) &&d) (“p2 depends on p1”)

Determine reachability conditions before defining TRs (for a certain
coverage criterion).

Sibylle Schupp Software Testing - Lecture 8 2022 9

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Controllability

Assume predicate coverage.
Consider the true cases of p1, p2. Set as TR: a = b = c = d = true
(other truth assignments exist as well)
Find test values (other test values exist as well):

Clause Test Values
a curTemp < dTemp - thresholdDiff 63, 69, 5
b override true
c curTemp < overTemp - thresholdDiff 63, 70, 5
d timeSinceLastRun > minLag 12, 10

Problem: controllability.
Predicate p1 depends on the local variable dTemp.

Sibylle Schupp Software Testing - Lecture 8 2022 10

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Predicate coverage (true case)

@Test
p u b l i c vo id turnHeaterOn_True () {
// a t r u e

thermo . setCurrentTemp (63) ;
thermo . s e t T h r e s h o l d D i f f (5) ;
// b t r u e . . c t r u e . . d t r u e
thermo . setMinLag (10) ;
thermo . se tT imeS inceLas tRun (12) ;

a s s e r t T r u e (thermo . turnHeaterOn (s e t t i n g s)) ;
}
@BeforeEach
p u b l i c vo id setUp () {

thermo = new Thermostat () ;
s e t t i n g s = new ProgrammedSett ings () ;

s e t t i n g s . s e t S e t t i n g (Pe r i od .MORNING, DayType .WEEKDAY, 69) ;
thermo . s e t P e r i o d (Pe r i od .MORNING) ; // param . f o r g e t S e t t i n g
thermo . setDay (DayType .WEEKDAY) ;

}

Sibylle Schupp Software Testing - Lecture 8 2022 11

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Selected laws of the Boolean algebra
Mathematical notation

Active clause coverage depends on determining values. The computation of
determining values uses laws of the Boolean algebra.

de Morgan laws
¬(a ∨ b) ≡ ¬a ∧ ¬b
¬(a ∧ b) ≡ ¬a ∨ ¬b

⊕ laws
true ⊕ a ≡ ¬a
false ⊕ a ≡ a
a ⊕ b ≡ (a ∧ ¬b) ∨ (¬a ∧ b)

∨ laws and ∧ laws
a ∨ a ≡ a
a ∧ a ≡ a
a ∨ ¬a ≡ true
a ∧ ¬a ≡ false

Sibylle Schupp Software Testing - Lecture 8 2022 12

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Finding values for minor clauses

Let c be a clause in p. We assume that each clause occurs only once.
Denote by pc=true the predicate in which the occurence of c in p has
been replaced by true. Similarly, pc=false denotes the predicate that one
obtains if one replaces c in p by false.
Set

pc = pc=true ⊕ pc=false

For all values for which pc=true, c determines p.

Sibylle Schupp Software Testing - Lecture 8 2022 13

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (correlated active clause coverage, CACC)

Consider again
p ≡ (a || (b && c)) &&d)

Compute determining values for major clause a:

pa ≡ (true || (b && c)) &&d) ⊕ (false || (b && c)) &&d)
= (true&& d) ⊕ ((b && c) && d)
= d ⊕ ((b && c) && d)
(= true ⊕ ((b && c) && true))
= !(b && c)
= (!b || !c)

The clause a determines the predicate p iff d=true and b or c=false.
Similarly, pb =!a && c && d , pc =!a && b && d , pd = a || (b && c)

Sibylle Schupp Software Testing - Lecture 8 2022 14

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (TRs for correlated active clause coverage)

(a || (b && c)) &&d)

a b c d p
a, pa true true false true true

false true false true false
b, pb false true true true true

false false true true false
c, pc false true true true true

false true false true false
d , pd true true true true true

true true true false false

For CACC, six tests suffice (duplicates for pb, pc).
In the TRs, we capitalize the value of the major clause

Ttft FtFt fTTt fFtt tttT tttF

Sibylle Schupp Software Testing - Lecture 8 2022 15

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (cont’d): test cases
@Test
p u b l i c vo id turnHeaterOn_PaF () {

// F t f t
// a f a l s e
thermo . setCurrentTemp (66) ;
thermo . s e t T h r e s h o l d D i f f (5) ;

// b t r u e
thermo . s e t O v e r r i d e (t r ue) ;

// c f a l s e
thermo . setOverTemp (65) ;

// d t r u e
thermo . setMinLag (10) ;
thermo . se tT imeS inceLas tRun (12) ;

a s s e r t F a l s e (thermo . turnHeaterOn (s e t t i n g s)) ;
}

For each of the six test cases: set variables and oracle appropriately.

Sibylle Schupp Software Testing - Lecture 8 2022 16

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Program transformation: motivation (?)
Consider the following example:
i f ((a && b) | | c) {

S1 ;
}
e l s e {

S2 ;
}

ACC criteria are comparatively expensive. In the example, CACC
requires 4 tests:

a b c (a ∧ b) ∨ c CACC
1 true true true true
2 true true false true x
3 true false true true x
4 true false false false x
5 false true true false
6 false true false false x
7 false false true false
8 false false false false

Sibylle Schupp Software Testing - Lecture 8 2022 17

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (program transformation)

Could one transform the code into code with predicates that have
fewer clauses?
i f (a) {

i f (b)
S1 ;

e l s e {
i f (c)

S1 ;
e l s e

S2 ;
}

}
e l s e {

i f (c)
S1 ;

e l s e
S2 ;

}

Sibylle Schupp Software Testing - Lecture 8 2022 18

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (program transformation), cont’d

Predicate coverage requires 5 tests:
a b c PC (other choices exist)

1 true true true x
2 true true false
3 true false true x
4 true false false x
5 false true true x
6 false true false
7 false false true
8 false false false x

Problems:
More tests (need to reach each predicate)
CACC of the original problem not necessarily satisfied
Readability and maintainability hampered

Sibylle Schupp Software Testing - Lecture 8 2022 19

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Predicates with side effects

Another problem:
When a value changes while the predicate is evaluated, the program
has a side effect.
Conditions for a side effect:

1 A clause occurs twice; and
2 a clause in between changes one of its variables.

Ex.
i f (a && (b | | a))

where b could be the return value of the function changeVar(a) (and
thus requires its invocation).
Problem: cannot write a test that has two different values for the same
predicate.

Sibylle Schupp Software Testing - Lecture 8 2022 20

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Summary (logic coverage for source code)

In source code, predicates occur frequently (while, if, for)
The hard part in testing: reachability

Internal variables
Avoid transformations that hide the structure

Sibylle Schupp Software Testing - Lecture 8 2022 21

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Logic coverage II

Semantic logic coverage of programs
Logic coverage for specifications
Semantic logic coverage of FSMs

Sibylle Schupp Software Testing - Lecture 8 2022 22

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Logic coverage for specifications

Specifications can be formal and informal
Formal: mathematical logic (⇝ software verification)
Informal: natural languages

Formal specifications can be used (almost) directly
Informal specifications need to be formalized
Common example: preconditions

Sibylle Schupp Software Testing - Lecture 8 2022 23

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Preconditions

Preconditions are often expressed as comments in method headers.
vo id s aveAdd re s s (s t r i n g name , s t r i n g s t a t e , i n t z ip ,

s t r i n g s t r e e t , s t r i n g c i t y)
// name must not be empty
// s t a t e must be v a l i d
// z i p must be 5 numer ic d i g i t s
// s t r e e t must not be empty
// c i t y must not be empty

As a Boolean expression: name !=”” ∧ state in stateList ∧
zip ≥ 0000 ∧ zip ≤ 99999 ∧ street != ”” ∧ city != ””

Sibylle Schupp Software Testing - Lecture 8 2022 24

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Conjunctive Normal Form
Definition
A predicate is in conjunctive normal form (CNF) if it consists of clauses or
disjunctions, connected by the ∧ operator.

Ex.: a ∧ b ∧ c ∧ d (where a, b, c, d can be disjunctions)
In CNF, a major clause is active (determines) when all other clauses
are true.
TR for ACC coverage: all true and the diagonal of “false” values

a b c
1 true true true true
2 false true true true
3 true false true true
4 true true false true
5 true true true false
6 . . .

Sibylle Schupp Software Testing - Lecture 8 2022 25

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Disjunctive Normal Form
Definition
A predicate is in disjunctive normal form (DNF) if it consists of clauses or
conjunctions, connected by the ∨ operator.

a ∨ b ∨ c ∨ d where a, b, c, d could be conjunctions.
In DNF, a major clause is active (determines) when all other clauses
are false.
TR for ACC coverage: “all false” and the diagonal of “true” values

a b c
1 false false false false
2 true false false false
3 false true false false
4 false false true false
5 false false false true
6 . . .

Sibylle Schupp Software Testing - Lecture 8 2022 26

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Summary (logic coverage of specifications)

Logic specifications are quite frequent.
Preconditions, asserts, OCL, design-by-contract
Formal languages: SAT, LTL

Available at different times in the software life cycle
Methods and classes (unit testing)
Dependencies between classes and components (module testing)
System (system testing)

CNF or DNF simplify finding TRs.

Sibylle Schupp Software Testing - Lecture 8 2022 27

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Logic coverage II

Semantic logic coverage of programs
Logic coverage for specifications
Semantic logic coverage of FSMs

Sibylle Schupp Software Testing - Lecture 8 2022 28

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Logic coverage for finite state machines

Recall: FSMs can be considered graphs
Nodes represent states
Edges represent transitions among states

Transitions are often guarded by a logical expression
Testing: cover “all” logical expressions

Sibylle Schupp Software Testing - Lecture 8 2022 29

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (FSM)

Sibylle Schupp Software Testing - Lecture 8 2022 30

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (determination)

The predicate p

trainSpeed = 0 ∧ platform=left ∧ (location = inStation ∨ (emergencyStop
∧ overrideOpen ∧ location = inTunnel))

For each of the 6 clauses, find the truth assignments that let the clause
determine the value of the predicate.
Compute ptrainSpeed=0, pplatform=left , . . .

Sibylle Schupp Software Testing - Lecture 8 2022 31

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (determination), cont’d
The predicate p

trainSpeed = 0 ∧ platform=left ∧ (location = inStation ∨ (emergencyStop
∧ overrideOpen ∧ location = inTunnel))

ptrainspeed=0 =
platform=left ∧ (location = inStation ∨ (emergencyStop ∧

overrideOpen ∧ location = inTunnel))
pplatform=left =

trainSpeed = 0 ∧ (location = inStation ∨ (emergencyStop ∧
overrideOpen ∧ location = inTunnel))

plocation=inStation =
trainSpeed = 0 ∧ platform=left ∧ (¬ emergencyStop ∨ ¬

overrideOpen ∨ ¬ (location = inTunnel)))

Sibylle Schupp Software Testing - Lecture 8 2022 32

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (CACC)
trainSpeed
= 0

platform
= left

location
= in-
Station

emergen-
cyStop

Over-
ride-
Open

location
= in-
Tunnel

trainSpeed=0
trainSpeed ̸= 0
platform=left
platform ̸=left
inStation
¬inStation
emergencyStop
¬emergencyStop
overrideOpen
¬overrideOpen
inTunnel
¬inTunnel

Sibylle Schupp Software Testing - Lecture 8 2022 33

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (CACC), cont’d
trainSpeed
= 0

platform
= left

location
= in-
Station

emergen-
cyStop

Over-
ride-
Open

location
= in-
Tunnel

trainSpeed=0 T
trainSpeed ̸= 0 F
platform=left T
platform ̸=left F
inStation T
¬inStation F
emergencyStop T
¬emergencyStop F
overrideOpen T
¬overrideOpen F
inTunnel T
¬inTunnel F

Sibylle Schupp Software Testing - Lecture 8 2022 34

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (CACC), cont’d
trainSpeed
= 0

platform
= left

location
= in-
Station

emergen-
cyStop

Over-
ride-
Open

location
= in-
Tunnel

trainSpeed=0 T t t t t t
trainSpeed ̸= 0 F t t t t t
platform=left t T t t t t
platform ̸=left t F t t t t
inStation t t T f f f
¬inStation t t F f f f
emergencyStop t t f T t t
¬emergencyStop t t f F t t
overrideOpen t t f t T t
¬overrideOpen t t f t F t
inTunnel t t f t t T
¬inTunnel t t f t t F

Sibylle Schupp Software Testing - Lecture 8 2022 35

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (CACC): problem

trainSpeed
= 0

platform
= left

location
= in-
Station

emergen-
cyStop

Over-
ride-
Open

location
= in-
Tunnel

inStation t t T f f f
¬inStation t t F f f f

The model contains two locations for the train: inStation and inTunnel.
Thus, the two predicates cannot both be false (or true).

“Dependent clauses”
Options

Rewrite the predicate to eliminate dependencies (not always possible)
Change truth assignment. In the example, change t t F f f f

Sibylle Schupp Software Testing - Lecture 8 2022 36

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (CACC): revised truth assignments
trainSpeed
= 0

platform
= left

location
= in-
Station

emergen-
cyStop

Over-
ride-
Open

location
= in-
Tunnel

trainSpeed=0 T t t t t f
trainSpeed ̸= 0 F t t t t f
platform=left t T t t t f
platform ̸=left t F t t t f
inStation t t T f f f
¬inStation t t F f f t
emergencyStop t t f T t t
¬emergencyStop t t f F t t
overrideOpen t t f t T t
¬overrideOpen t t f t F t
inTunnel t t f t t T
¬inTunnel t t f t t F

infeasible
Sibylle Schupp Software Testing - Lecture 8 2022 37

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (accidential transitions)

When the major clause is true, the transition is taken.
Major Clause Expected Output
trainSpeed=0 Left Doors Open
trainSpeed ̸= 0 All Doors Closed
platform=left Left Doors Open
platform ̸=left All Doors Closed
inStation Left Doors Open
¬inStation All Doors Closed
emergencyStop Left Doors Open
¬emergencyStop All Doors Closed
overrideOpen Left Doors Open
¬overrideOpen All Doors Closed
inTunnel Left Doors Open
¬inTunnel All Doors Closed

Sibylle Schupp Software Testing - Lecture 8 2022 38

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Accidental transitions

In the general case: when the major clause is true, the transition is
taken. When the major clause is false, no transition is taken.
Now consider

Major Clause Expected Output
platform=left Left Doors Open
platform ̸=left All Doors Closed ??

If platform̸=left, it holds that platform=right. The expected output
(transition) should be “Right Doors Open”.
The transition is accidental since it is implicit.
Obviously, accidential transitions must be recognized by hand.

Sibylle Schupp Software Testing - Lecture 8 2022 39

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Complicating issues for test automation

We have seen:
Dependent clauses
Accidental transitions
Reachability

The tests must reach the state where the transition starts (“prefix”).
Additional issues:

Some tests must reach particular final states.
Mapping

The predicates in the FSM may not match the predicates in the program.
The predicates in the FSM might encapsulate sequences of actions in
the program. Ex: trainspeed = 0.

Sibylle Schupp Software Testing - Lecture 8 2022 40

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Summary (FSM logic testing)

FSM is one of the most widely used notation.
Used at all levels of the software development process
Used in many domains, in particular embedded software

Many languages exist
UML state diagrams, Petri Nets, decision tables, Z, . . .

Safety
Often used in guards, often as safety constraints

Sibylle Schupp Software Testing - Lecture 8 2022 41

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

In-class exercise

Sibylle Schupp Software Testing - Lecture 8 2022 42

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

In-class exercise (cont’d)

Sibylle Schupp Software Testing - Lecture 8 2022 43

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

References

AO, Ch. 8.3, 8.4, 8.5

Sibylle Schupp Software Testing - Lecture 8 2022 44

	Logic coverage II
	Semantic logic coverage of programs
	Logic coverage for specifications
	Semantic logic coverage of FSMs

