
Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Software Testing

Sibylle Schupp1

1Institute for Software Systems/Institut für Softwaresysteme
Hamburg University of Technology (TUHH)

Spring 2022

Lecture 1

Sibylle Schupp Software Testing - Lecture 1 2022 1

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Welcome!
http://www.sts.tuhh.de

Software Testing is brought to you by the

Institute for Software Systems

Lecturer
Prof. Sibylle Schupp

Teaching assistant
Sascha Lehmann

Sibylle Schupp Software Testing - Lecture 1 2022 2

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

When, where, & what

Lectures: weekly
Projects: throughout the term (6 deadlines)
Course homepage

Stud.IP is a “learning platform”
Go to https://e-learning.tu-harburg.de
Login with your TUHH-username/password
Search for course “Software Testing”

Check the Stud.IP page for
Project descriptions
News, announcements, . . .

The course language is English.

Sibylle Schupp Software Testing - Lecture 1 2022 3

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Project-based course

This course is entirely project-based. No exam.

Your task is to test a real-world project:
Divided in a sequence of project phases
Defined along different testing methods

All work takes place during the lecture period.
Clear focus on writing software

Sibylle Schupp Software Testing - Lecture 1 2022 4

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Terminology and test automation

Sibylle Schupp Software Testing - Lecture 1 2022 5

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

In-class exercise

Read carefully through the following code.

Sibylle Schupp Software Testing - Lecture 1 2022 6

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

In-class exercise: FindLast

Sibylle Schupp Software Testing - Lecture 1 2022 7

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

In-class exercise: LastZero

Sibylle Schupp Software Testing - Lecture 1 2022 8

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

In-class exercise: CountPositive

Sibylle Schupp Software Testing - Lecture 1 2022 9

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

In-class exercise: OddOrPos

Sibylle Schupp Software Testing - Lecture 1 2022 10

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Terminology and test automation

Terminology
Test automation
Organization

Sibylle Schupp Software Testing - Lecture 1 2022 11

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Fault, error, failure

Definition
A fault is a static defect in the code.
A failure is incorrect, externally visible behavior of the software with
respect to a (formal or informal) specification or description of the
expected behavior.
An error is an incorrect internal state, where a fault manifests itself.

Sibylle Schupp Software Testing - Lecture 1 2022 12

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (fault, failure, error)

Sibylle Schupp Software Testing - Lecture 1 2022 13

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Analogies

A patient reports to the physician a set of symptoms (⇝ failure).
The physician identifies the ailment (⇝ fault).
The physician examines anomalous parameters such as blood values
(⇝ error).

Where the analogy breaks down:
The software fault results from a human mistakes.

Sibylle Schupp Software Testing - Lecture 1 2022 14

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

What’s a bug, then?

This thing gives out and then that. ’Bug’—as such little faults and
difficulties are called—show themselves, and months of anxious
watching, study, and labor are requisite before commercial success—
or failure—is certainly reached. (Edison, 1878)

Term not well-defined.
What is the meaning of “bug” in the following famous quote:

Testing shows the presence, not the absence of bugs
(Dijkstra, 1970)

Sibylle Schupp Software Testing - Lecture 1 2022 15

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Correctness

Failure: incorrect behavior (with respect to . . .)
Correct behavior?

No natural laws, no mathematics
Requirements/specification only!

Finding incorrect behavior
Software (behavior) complex
Abstractions needed
Model-driven test design

Sibylle Schupp Software Testing - Lecture 1 2022 16

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

From failures to faults

Testing: software quality assessment by running the software and
observing its execution.
A test failure denotes the execution of a test that results in a failure.

Given a failure. Next step: find the underlying fault (debugging).
Yet, not every test effects a fault to manifest itself (in a failure).

Sibylle Schupp Software Testing - Lecture 1 2022 17

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

RIP model

The RIP model captures three necessary conditions so that a failure can be
observed:

1 Reachability: the location(s) of the fault must be reached.
2 Infection: the state of the program must be corrupt.
3 Propagation: the infected state must effect an incorrect output or

incorrect final state.

Sibylle Schupp Software Testing - Lecture 1 2022 18

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Coverage criteria

Complete testing is infeasible
Ex.: int foo(int A, int B, int C)
32-bit: 4 · 109 values per parameter, 43 · 1027 combinations

Goal: find “good” input values
Coverage:

Defines “good”
Guides the search through the input space
Helps to avoid overlap of tests

Sibylle Schupp Software Testing - Lecture 1 2022 19

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Terminology and test automation

Terminology
Test automation
Organization

Sibylle Schupp Software Testing - Lecture 1 2022 20

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

JUnit
https://junit.org/junit5

JUnit is a popular framework for test automation in Java. It supports
the organizion of test prerequisites
the execution of tests
the comparison between expected and actual output

Unit tests are tests of the functional requirements of methods and
objects.

In contrast, system tests concern the behavior of the entire system.
System-level tests (of performance, security, usability, . . .) concern
non-functional properties.

Sibylle Schupp Software Testing - Lecture 1 2022 21

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

A simple example
https://junit.org/junit5/docs/current/user-guide/#writing-tests

p u b l i c c l a s s C a l c u l a t o r {
// . . .
p u b l i c i n t add (i n t a , i n t b) {

r e t u r n a + b ;
}

}

import s t a t i c org . j u n i t . j u p i t e r . a p i . A s s e r t i o n s . a s s e r t E q u a l s ;
import org . j u n i t . j u p i t e r . a p i . Test ;

c l a s s C a l c u l a t o r T e s t {
p r i v a t e f i n a l C a l c u l a t o r c a l c u l a t o r = new C a l c u l a t o r () ;

@Test
vo id a d d i t i o n () {

a s s e r t E q u a l s (2 , c a l c u l a t o r . add (1 , 1)) ;
}

}

Sibylle Schupp Software Testing - Lecture 1 2022 22

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (writing JUnit tests)

Tests are Java classes that use JUnit 5 annotations.
In the example: @Test, assertEquals
For the full API, see:
https://junit.org/junit5/docs/current/user-guide/#writing-tests-
annotations

For the file names of tests naming conventions exists so that tests can
be found automatically

Ex. (Maven): https://junit.org/junit5/docs/current/user-
guide/#running-tests-build-maven-filter-test-class-names

Sibylle Schupp Software Testing - Lecture 1 2022 23

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example (running JUnit tests)

j a v a c C a l c u l a t o r . j a v a
j a v a c −cp j u n i t −p la t fo rm −conso l e −s tanda l one −1.8.0−SNAPSHOT. j a r : .

C a l c u l a t o r T e s t . j a v a
j a v a −j a r j u n i t −p la t fo rm −conso l e −s tanda l one −1.8.0−SNAPSHOT. j a r −−

d i s a b l e −ans i −c o l o r s −−c l a s s −path . −c C a l c u l a t o r T e s t

Compile the class under test and the test class as usual with javac.
Make sure the CLASSPATH variable is set properly (or set -cp).

JUnit 5 tests can be run from the command line (as above), using the
console launcher.

Include in the CLASSPATH the jar file
junit-platform-console-standalone-<version>.jar.

Alternatively, JUnit tests can be run within various IDEs (IntelliJ,
Eclipse, . . .) and build systems (Maven, Cradle, Ant, . . .).

Sibylle Schupp Software Testing - Lecture 1 2022 24

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example: JUnit 5 output

Note the tree structure. The tests are in the leaves.
Make sure that the tests are found by setting appropriate options.

Ex.: --classpath . -c CalculatorTest

Sibylle Schupp Software Testing - Lecture 1 2022 25

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Example: assertions
https://github.com/junit-team/junit5/tree/master/documentation/src/test/java/
import s t a t i c org . j u n i t . j u p i t e r . a p i . A s s e r t i o n s . a s s e r t A l l ;
import s t a t i c org . j u n i t . j u p i t e r . a p i . A s s e r t i o n s . a s s e r t N o t N u l l ;
import org . j u n i t . j u p i t e r . a p i . Test ;

c l a s s A s s e r t i o n s T e s t {
p r i v a t e f i n a l Person pe r son = new Person (" Jane " , "Doe") ;
@Test
vo id d e p e n d e n t A s s e r t i o n s () {

a s s e r t A l l (" p r o p e r t i e s " ,
() −> {

S t r i n g f i r s t N a m e = per son . ge tF i r s tName () ;
a s s e r t N o t N u l l (f i r s t N a m e) ;
a s s e r t A l l (" f i r s t name" , // dependent a s s e r t i o n

() −> a s s e r t T r u e (f i r s t N a m e . s t a r t s W i t h (" J ")) ,
() −> a s s e r t T r u e (f i r s t N a m e . endsWith (" e "))

) ;
} ,
() −> {

S t r i n g lastName = per son . getLastName () ;
a s s e r t N o t N u l l (lastName) ;

}) } ; }

Sibylle Schupp Software Testing - Lecture 1 2022 26

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Assertions in JUnit 5

Test oracles are expressed using assertions.
Assertions can be named, grouped, nested.
Lambda expressions delay execution.

Assertions need to be imported before they can be used. The assertion
language is rich:

We have seen: assertEqual, assertNotNull, assertAll
Other assertions: assertArrayEquals, assertThrow,
assertDoesNotThrow, assertSame, assertTimeout
For the complete API, see the documentation:
https://junit.org/junit5/docs/current/api/org.junit.
jupiter.api/org/junit/jupiter/api/Assertions.html
JUnit 5 also allows for the use of assertions from JUnit 4.

Sibylle Schupp Software Testing - Lecture 1 2022 27

https://junit.org/junit5/docs/current/api/org.junit.jupiter.api/org/junit/jupiter/api/Assertions.html
https://junit.org/junit5/docs/current/api/org.junit.jupiter.api/org/junit/jupiter/api/Assertions.html

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Exceptions
import s t a t i c org . j u n i t . j u p i t e r . a p i . A s s e r t i o n s . a s s e r t E q u a l s ;
import s t a t i c org . j u n i t . j u p i t e r . a p i . A s s e r t i o n s . a s s e r tTh rows ;
import org . j u n i t . j u p i t e r . a p i . Test ;

p u b l i c c l a s s E x c e p t i o n T e s t s {
p r i v a t e f i n a l C a l c u l a t o r c a l c u l a t o r = new C a l c u l a t o r () ;

@Test
vo id e x c e p t i o n T e s t i n g () {

Excep t i on e x c e p t i o n = as s e r tTh rows (
A r i t h m e t i c E x c e p t i o n . c l a s s ,
() −> c a l c u l a t o r . d i v i d e (1 , 0)) ;

a s s e r t E q u a l s ("/ by z e r o " , e x c e p t i o n . getMessage ()) ;
}

}

Exceptions are tested using the assertThrows assertion.
Its arguments are the expected exception type and an executable.
Its return value is an exception. This exception can be used in other
assertions.

Sibylle Schupp Software Testing - Lecture 1 2022 28

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Outline

1 Terminology and test automation

Terminology
Test automation
Organization

Sibylle Schupp Software Testing - Lecture 1 2022 29

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Teaching method

In this class, we take a project-based approach.
All deadlines during the term. Must work regularily during the term
Must be able to attend the mandatory meetings.
No exam. No peak performance required

Sibylle Schupp Software Testing - Lecture 1 2022 30

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Project organization

The project phases should be done in a team.
Exception: each student must pass Project Phase 0 individually.
Register your group in StudIP.
Use the forum if you are looking for additional team members.

You organize the tasks mostly independently. You are also responsible
for setting up meetings in your group.

In the exercise session, you can ask for help and feedback.
You upload your artifacts electronically.

Each project phase description specifies the form and format of the
deliverables.
Submissions must meet that specification (will not be graded otherwise)

You meet with the course assistant roughly bi-weekly.
The meeting is mandatory.
Those meeting are the only mandatory part of the course.
They take place during the exercise session.

Sibylle Schupp Software Testing - Lecture 1 2022 31

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Prerequisites

Coding-intensive course at the Master level.
Prerequisites in programming

Knowledge of object-oriented programming.
The subject system is in Java, the implementation language is Java.

Prerequisites in software engineering/computer science
Project experience beyond homework assignments, e.g., through
programming labs or small software projects
Knowledge of the fundamental data structures of computer science
(stack, list, tables, tree, graphs)
Rudimentary knowledge of JUnit testing.

All students with a IIW/CS Bachelor meet the prerequisites
Students with other degrees might have to catch up quickly

Further, you must have the time to take the course

Sibylle Schupp Software Testing - Lecture 1 2022 32

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Research component

One project phase is a research project. You are exposed to papers
accepted by ISSTA or ICST, two leading conferences in the field and
. . .

learn about scientific writing;
practice academic presentations and discussion.

Sibylle Schupp Software Testing - Lecture 1 2022 33

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Grades

Points Grade
51-55 4.0
56-60 3.7
61-65 3.3
66-70 3.0
71-75 2.7
76-80 2.3
81-85 2.0
86-90 1.7
91-95 1.3

96-100 1.0

Sibylle Schupp Software Testing - Lecture 1 2022 34

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Grading
In the course of the term, each student accumulates points.

You are graded individually, even if you work in a team.
Details vary per project phase, see the project phase sheets

Mandatory meetings:
The entire group meets with the teaching assistant
Be prepared for practical and theoretical questions on the parts you
“signed” with your name.
If you miss an arranged meeting, you will not get points for the project
phase discussed.

Exceptions: you are excused for the reasons the examination office
accepts, provided you can give proper proof (e.g., a note from the
medical doctor).
If you miss a meeting excused, you can make up for it.

Cheating: if you submit solutions that are not your own:
1 You lose all points earned up to that time , including the ones for the

submission in question.
2 The originator loses all points for that submission if known to us.

Sibylle Schupp Software Testing - Lecture 1 2022 35

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Deliverables

out due points
0. Project Phase 0 - (W1) 0
1. Project Phase 1 W1 W3 20
2. Project Phase 2 W3 W5 20
3. Project Phase 3 W5 W7 20
Research (Special Sessions) W7 W10 20
4. Project Phase 4 W8 W10 20
5. Project Phase 5 W12 W14 20

The table shows the maximal points for each deliverable.
The points add up to 120 points. For the final grade, the best 5 results
count.
W1 refers to the first week of classes, W8 is the week after the
Pentecost break. For the deadlines: see project phase descriptions.

Deliverable 0 checks your prerequisites.
Sibylle Schupp Software Testing - Lecture 1 2022 36

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Passing requirements

The final grade is based on the individual students’ work.

A student passes the course if they meet the following requirements:
Pass Deliverable 0.
The sum of scores of the best 5 project phases is a passing score.

Sibylle Schupp Software Testing - Lecture 1 2022 37

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

What if . . . ?

You missed the deadline for
. . . deliverable ≥ 1 or want to achieve more points?
We put a late submission policy in place:

You may submit late (or resubmit) by a later deadline, but will miss
points.
The late submission deadline is exactly one week after the official
deadline. The maximal number of points is set down to 10 points.
For Deliverables 0,5 and the Research Component, there is no late
submission.

For the final grade of a project phase, the last submission counts (even
in case your performance worsened).

. . . deliverable 0? This deliverable is mandatory. If you do not pass it,
you cannot pass the course.

Sibylle Schupp Software Testing - Lecture 1 2022 38

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

What if . . . ? (part 2)

You missed
. . . the group meeting with the teaching assistant with a proper excuse:
a new meeting will be arranged
. . . without an excuse: the points of the project phase do not get counted

If you fail the entire course, please be aware of the fact that the course
is not offered in the winter.

Next possibility: next summer
No exception possible

Sibylle Schupp Software Testing - Lecture 1 2022 39

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Textbook

Sibylle Schupp Software Testing - Lecture 1 2022 40

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Lecture

Main focus on chapters 5-9
Project parts aligned with lecture topics

Lecture notes follow the slides from the textbook [AO]
Slides also available from the authors’ webpage:
https://cs.gmu.edu/˜offutt/softwaretest
Figures and slides from [AO] unless said otherwise

Sibylle Schupp Software Testing - Lecture 1 2022 41

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Rules: no cell phones

Sibylle Schupp Software Testing - Lecture 1 2022 42

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Material
Most material is available for download. For everything else, we keep the
rights. Distribution of the material is not permitted. Remember that, by
downloading, you confirmed personally not to pass on any material.

Author: https://de.freepik.com/fotos-vektoren-kostenlos/etikett

Sibylle Schupp Software Testing - Lecture 1 2022 43

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

Email!

TUHH professors, assistants, and administration communicate by email
with you.
Please use your TUHH address (not the one of a private provider).

Sibylle Schupp Software Testing - Lecture 1 2022 44

Slides and audiovisual material for private use only. Download or further distribution prohibited.]

References

AO, Ch03
AO, Ch01, Ch02, Ch04 for further reading
http://junit.org/

Sibylle Schupp Software Testing - Lecture 1 2022 45

	Terminology and test automation
	Terminology
	Test automation
	Organization

