_ and audiovisual material for private use only. Download or further distributio_

Software Testing

Sibylle Schupp?!

Lnstitute for Software Systems/Institut fiir Softwaresysteme
Hamburg University of Technology (TUHH)

Spring 2022

Lecture 8



_d audiovisual material for private use only. Download or further distribut_
Outline

0 Logic coverage Il



Slides and audiovisual material for private use only. Download or further distribution pr_

o Clause (predicate without logic operators)
@ Semantic coverage

o Logic coverage criteria (semantic):

o PC, CC for predicate and clause coverage
o CoC for complete clause coverage
o ACC (GACC, CACC, RACC) for active clause coverage
o A major clause ¢ of a predicate p determines p if the minor clauses have
values so that changing the value of ¢ changes the value of p.
o Active clause coverage (ACC) is formulated in terms of determination
but ambiguous.
o Three unambiguous interpretations: general, correlated, restricted

o ICC for inactive clause coverage

Sibylle Schupp Software Testing - Lecture 8 —



_nd audiovisual material for private use only. Download or further distributi_
Outline

@ Semantic logic coverage of programs

@ Logic coverage for specifications
e Logic coverage Il @ Semantic logic coverage of FSMs



Slides and audiovisual material for private use only. Download or further distribution pr_

Logic coverage for source code

o Predicates are derived from test expressions (decisions)

o In programs, most predicates have not more than 3 or 4 clauses.

o If a predicate has one clause only, CoC, ACC, ICC, CC, PC coincide.
o Applying logic criteria to program source code is not trivial:

o Reachability: how to get to the test expression?
o Controllability: which input values assign the right values to the

variables in the predicate?
o Variables of a predicate that are not input variables are called

internal variables.

Sibylle Schupp Software Testing - Lecture 8 —



Slides and audiovisual material for private use only. Download or further distribution pro_

Example (semantic coverage of source code)

// Introduction to Software Testing
// Authors: Paul Ammann & Jeff Offutt
public class Thermostat
{
private int curTemp; // current temperature reading
private int thresholdDiff; // temp difference until we turn
heater on
private int timeSinceLastRun; // time since heater stopped

private int minlLag; // how long | need to wait

private boolean override; // has user overridden the program

private int overTemp; // overriding temperature

private int runTime; // output of turnHeaterOn — how
long to run

private boolean heaterOn; // output of turnHeaterOn —
whether to run

private Period period; // morning, day, evening, or night

private DayType day; // week day or weekend day

// Decide whether to turn the heater on, and for how long.
public boolean turnHeaterOn (ProgrammedSettings pSet) {..}

Sibylle Schupp Software Testing - Lecture 8 _



Slides and audiovisual material for private use only. Download or further distribution pr_
'
Example (cont'd)

// Introduction to Software Testing
// Authors: Paul Ammann & Jeff Offutt
// Decide whether to turn the heater on, and for how long.
public boolean turnHeaterOn (ProgrammedSettings pSet) {
int dTemp = pSet.getSetting (period, day);
if (((curTemp < dTemp — thresholdDiff)
|| (override && curTemp < overTemp — thresholdDiff))
&& (timeSincelLastRun > minlLag))
{ // Turn on the heater
// How long? Assume 1 minute per degree (Fahrenheit)
int timeNeeded = curTemp — dTemp;
if (override)
timeNeeded = curTemp — overTemp;
setRunTime (timeNeeded);
setHeaterOn (true);
return (true);
}
else {
setHeaterOn (false);
return (false);

}
} // End turnHeaterOn

Sibylle Schupp Software Testing - Lecture 8 —



Slides and audiovisual material for private use only. Download or further distribution pr_

Example (predicates)
The example code contains two predicates:

// predicate pl
if (((curTemp < dTemp — thresholdDiff)

|| (override && curTemp < overTemp — thresholdDiff))
&& (timeSincelLastRun > minLag))

// predicate p2
if (override)

We introduce abbrevations for the clauses:

curTemp < dTemp - thresholdDiff
override

curTemp < overTemp - thresholdDiff
timeSinceLastRun > minlLag

o N0 T w

Thus,
p1 = (al|(b&&c))&&d) and pr = b

Sibylle Schupp Software Testing - Lecture 8 —



_es and audiovisual material for private use only. Download or further distribution —
Reachability

Reachability: when are p;, p> reached?

Condition

p1  true (“p1 is always reached”)
p2 (all(b&& c))&&d) (“p2 depends on p1”)

Determine reachability conditions before defining TRs (for a certain
coverage criterion).



Slides and audiovisual material for private use only. Download or further distribution pr_
Controllability

Assume predicate coverage.

o Consider the true cases of p1, pp. Set as TR: a=b =c =d = true
(other truth assignments exist as well)

o Find test values (other test values exist as well):

Clause Test Values
a curTemp < dTemp - thresholdDiff 63, 69, 5

b override true

c curTemp < overTemp - thresholdDiff 63, 70, 5

d timeSinceLastRun > minlLag 12, 10

o Problem: controllability.
Predicate p; depends on the local variable dTemp.

Sibylle Schupp Software Testing - Lecture 8 —



Slides and audiovisual material for private use only. Download or further distribution p_

Predicate coverage (true case)

Q@Test
public void turnHeaterOn_True (){
// a true

thermo.setCurrentTemp (63);
thermo.setThresholdDiff (5);
// b true .. c true .. d true
thermo.setMinLag (10);
thermo.setTimeSincelLastRun (12);

assertTrue(thermo.turnHeaterOn(settings));

@BeforeEach

public void setUp() {
thermo = new Thermostat();
settings = new ProgrammedSettings();

settings.setSetting (Period .MORNING, DayType.WEEKDAY, 69);
thermo.setPeriod (Period .MORNING) ; // param. for getSetting
thermo .setDay(DayType.WEEKDAY) ;

Sibylle Schupp Software Testing - Lecture 8 —



_es and audiovisual material for private use only. Download or further distribution —

Selected laws of the Boolean algebra

Mathematical notation

Active clause coverage depends on determining values. The computation of
determining values uses laws of the Boolean algebra.

o de Morgan laws

—|(a V b) = —-aA-b
—(aAb) = —aVv-b
o & laws
true®a = -—a
false a = a
adb = (aA-b)V(-aAb)
o V laws and A laws
aVva = a
ana = a
aV-a = true
aN—a = false



Slides and audiovisual material for private use only. Download or further distribution p_

Finding values for minor clauses

o Let ¢ be a clause in p. We assume that each clause occurs only once.

o Denote by pc—tme the predicate in which the occurence of ¢ in p has
been replaced by true. Similarly, p.—fase denotes the predicate that one
obtains if one replaces c in p by false.

o Set
Pc = Pc=true D Pc=false

For all values for which p.=true, ¢ determines p.

Sibylle Schupp Software Testing - Lecture 8 —



Slides and audiovisual material for private use only. Download or further distribution pr_

Example (correlated active clause coverage, CACC)

Consider again
p = (all(b&& ¢)) &&d)

Compute determining values for major clause a:

(truel|| (b&& c)) &&d) @ (false|| (b&& c)) &&d)
(true&& d) @ ((b&& c) && d)

d® ((b&&c) && d)

true ® ((b&& c) && true))

(b&&c)

('blfte)

Pa

[l

o The clause a determines the predicate p iff d=true and b or c=false.
o Similarly, pp =la&& c&& d, p. ='a&& b&& d, py = al|| (b&&c)

Sibylle Schupp Software Testing - Lecture 8 —



Slides and audiovisual material for private use only. Download or further distribution pr_

Example (TRs for correlated active clause coverage)

(2l (b&& c)) &&d)

a b c d p
a,p, | true | true | false | true || true
false | true | false | true || false
b,pp | false | true | true | true || true
false | false | true | true || false
c,pc | false | true | true | true || true
false | true | false | true || false
d,pg | true | true | true | true || true
true | true | true | false || false

o For CACC, six tests suffice (duplicates for pp, pc).

o In the TRs, we capitalize the value of the major clause

Sibylle Schupp

Ttft  FtFt

fTTt fFtt

Software Testing - Lecture 8

tttT

tttF



_es and audiovisual material for private use only. Download or further distribution —

Example (cont'd): test cases

Q@Test
public void turnHeaterOn_PaF (){

// Ftft

// a false
thermo.setCurrentTemp (66);
thermo.setThresholdDiff (5);

// b true

thermo.setOverride(true);

// c false
thermo.setOverTemp(65);

// d true
thermo.setMinLag (10);

thermo.setTimeSinceLastRun (12);

assertFalse (thermo.turnHeaterOn(settings));

o For each of the six test cases: set variables and oracle appropriately.



Slides and audiovisual material for private use only. Download or further distribution p_

Program transformation: motivation (7)
Consider the following example:

if ((a&&b) [[ c){
S.

i

}

else {
S2;

}

o ACC criteria are comparatively expensive. In the example, CACC

requires 4 tests:

Sibylle Schupp

Software Testing - Lecture 8

a b c | (anb)ve | CACC
1 | true | true | true true
2 | true | true | false true X
3 | true | false | true true X
4 | true | false | false false X
5 | false | true | true false
6 | false | true | false false X
7 | false | false | true false
8 | false | false | false false



and audiovisual material for private use only. Download or further distribution—

Example (program transformation)

o Could one transform the code into code with predicates that have
fewer clauses?

if (a) {
if (b)
S1;
else {
if (c)
S1;

else
S2;

else {
if (c)

else
S2;




Slides and audiovisual material for private use only. Download or further distribution pr_

Example (program transformation), cont'd

o Predicate coverage requires 5 tests:

a b ¢ | PC (other choices exist)
1 | true | true | true X
2 | true | true | false
3 | true | false | true X
4 | true | false | false X
5 | false | true | true X
6 | false | true | false
7 | false | false | true
8 | false | false | false X
o Problems:

o More tests (need to reach each predicate)
o CACC of the original problem not necessarily satisfied
o Readability and maintainability hampered

Sibylle Schupp

Software Testing - Lecture 8 —



Slides and audiovisual material for private use only. Download or further distribution pr_

Predicates with side effects

Another problem:
o When a value changes while the predicate is evaluated, the program
has a side effect.
o Conditions for a side effect:

@ A clause occurs twice; and
@ a clause in between changes one of its variables.

o Ex.

if (a & (b || a)) |

where b could be the return value of the function changeVar(a) (and
thus requires its invocation).

o Problem: cannot write a test that has two different values for the same
predicate.

Sibylle Schupp Software Testing - Lecture 8 —



and audiovisual material for private use only. Download or further distribution—

Summary (logic coverage for source code)

o In source code, predicates occur frequently (while, if, for)

o The hard part in testing: reachability
o Internal variables

o Avoid transformations that hide the structure



_nd audiovisual material for private use only. Download or further distributi_
Outline

@ Semantic logic coverage of programs

@ Logic coverage for specifications
e Logic coverage Il @ Semantic logic coverage of FSMs



_es and audiovisual material for private use only. Download or further distribution —

Logic coverage for specifications

o Specifications can be formal and informal

o Formal: mathematical logic (~ software verification)
o Informal: natural languages

o Formal specifications can be used (almost) directly

o Informal specifications need to be formalized
o Common example: preconditions



_es and audiovisual material for private use only. Download or further distribution —

Preconditions

o Preconditions are often expressed as comments in method headers.

void saveAddress(string name, string state, int zip,
string street, string city)

// name must not be empty

// state must be valid

// zip must be 5 numeric digits

// street must not be empty

// city must not be empty

o As a Boolean expression: name !="" A state in stateList A
zip > 0000 A zip < 99999 A street |I="" A city I=""



and audiovisual material for private use only. Download or further distribution—

Conjunctive Normal Form

A predicate is in conjunctive normal form (CNF) if it consists of clauses or

disjunctions, connected by the A operator.

o Ex.: aAbAcAd (where a, b, c,d can be disjunctions)

o In CNF, a major clause is active (determines) when all other clauses
are true.

o TR for ACC coverage: all true and the diagonal of “false” values
a b c

true | true | true | true
false | true | true | true
true | false | true | true
true | true | false | true
true | true | true | false

oG Wy -



and audiovisual material for private use only. Download or further distribution—

Disjunctive Normal Form

A predicate is in disjunctive normal form (DNF) if it consists of clauses or

conjunctions, connected by the V operator.

@ aV bV cVdwhere a, b, c,d could be conjunctions.

o In DNF, a major clause is active (determines) when all other clauses
are false.

o TR for ACC coverage: “all false” and the diagonal of “true” values
a b c

false | false | false | false
true | false | false | false
false | true | false | false
false | false | true | false
false | false | false | true

SOl hWwWw N



Slides and audiovisual material for private use only. Download or further distribution p_

Summary (logic coverage of specifications)

o Logic specifications are quite frequent.

o Preconditions, asserts, OCL, design-by-contract
o Formal languages: SAT, LTL

o Available at different times in the software life cycle

o Methods and classes (unit testing)
o Dependencies between classes and components (module testing)
o System (system testing)

o CNF or DNF simplify finding TRs.

Sibylle Schupp Software Testing - Lecture 8 —



_nd audiovisual material for private use only. Download or further distributi_
Outline

@ Semantic logic coverage of programs

@ Logic coverage for specifications
e Logic coverage Il @ Semantic logic coverage of FSMs



_es and audiovisual material for private use only. Download or further distribution —

Logic coverage for finite state machines

o Recall: FSMs can be considered graphs

o Nodes represent states
o Edges represent transitions among states

o Transitions are often guarded by a logical expression

o Testing: cover “all” logical expressions



Slides and audiovisual material for private use only. Download or further distribution prohibiteds]

Example (FSM)

secondPlatform = right

= emergencyStop
Left Doors | doorsClear A closeDog
Open i

All Doors
trdinSpeed = 0 A platform=left A trainSpeed = 0 A platform=right A
(location = inStation v (location = inStation v
(emergencyStop A overrideQpen A (emergencyStop A overrideOpen
fecation = inTunnel)) A location = inTunnel))

Introduction to Software Testing, Edition 2 (Ch 8)

Sibylle Schupp Software Testing - Lecture 8



_es and audiovisual material for private use only. Download or further distribution —

Example (determination)

The predicate p

trainSpeed = 0 A platform=left A (location = inStation V (emergencyStop
A overrideOpen A location = inTunnel))

o For each of the 6 clauses, find the truth assignments that let the clause
determine the value of the predicate.

° ComPUte PtrainSpeed=0: Pplatform=left: - - -



Slides and audiovisual material for private use only. Download or further distribution pr_

Example (determination), cont'd

The predicate p

trainSpeed = 0 A platform=left A (location = inStation V (emergencyStop
A overrideOpen A location = inTunnel))

9 Ptrainspeed=0 =
platform=left A (location = inStation V (emergencyStop A
overrideOpen A location = inTunnel))

9 Pplatform=left =
trainSpeed = 0 A (location = inStation V (emergencyStop A
overrideOpen A location = inTunnel))
9 Plocation=inStation =

trainSpeed = 0 A platform=left A (- emergencyStop V —
overrideOpen V = (location = inTunnel)))

Sibylle Schupp Software Testing - Lecture 8 —



Slides and audiovisual material for private use only. Download or further distribution p_
Example (CACC)

trainSpeed | platform

=0

= left

location | emergenq Over-| locatic
= in-| cyStop | ride-| = in-
Station Open| Tunne

trainSpeed=0
trainSpeed # 0
platform=left
platform=£left
inStation
—inStation
emergencyStop
—emergencyStop
overrideOpen
—overrideOpen
inTunnel
=inTunnel

Sibylle Schupp

Software Testing - Lecture 8



Slides and audiovisual material for private use only. Download or further distribution pr_

Example (CACC), cont'd

trainSpeed
=0

platform
= left

location
= in-
Station

emergen-
cyStop

Over-
ride-
Open

locatio
= in-
Tunnel

trainSpeed=0
trainSpeed # 0
platform=left
platform=£left
inStation
—inStation
emergencyStop
—emergencyStop
overrideOpen
—overrideOpen
inTunnel
=inTunnel

Sibylle Schupp

T
F

Software Testing - Lecture 8




Slides and audiovisual material for private use only. Download or further distribution pro_
1
Example (CACC), cont'd

trainSpeed | platform| location | emergenq Over- locatio

=0 =left | = in-| cyStop | ride-| = in-

Station Open| Tunnel
trainSpeed=0 T t t t t t
trainSpeed #0 | F t t t t t
platform=left t T t t t t
platform#left t F t t t t
inStation t t T f f f
—inStation t t F f f f
emergencyStop | t t f T t t
—emergencyStop | t t f F t t
overrideOpen t t f t T t
—overrideOpen t t f t F t
inTunnel t t f t t T
=inTunnel t t f t t F

Sibylle Schupp Software Testing - Lecture 8 2022 35



Slides and audiovisual material for private use only. Download or further distribution pr_
Example (CACC): problem

trainSpeed | platform| location | emergen{ Over-| location

=0 = left = in-| cyStop | ride-| = in-

Station Open| Tunnel
inStation t t T f f f
—inStation | t t F f f f

o The model contains two locations for the train: inStation and inTunnel.
@ Thus, the two predicates cannot both be false (or true).
o "“Dependent clauses”

o Options
o Rewrite the predicate to eliminate dependencies (not always possible)
o Change truth assignment. In the example, change t t F f f

Sibylle Schupp Software Testing - Lecture 8 —



Slides and audiovisual material for private use only. Download or further distribution p_
Example (CACC): revised truth assignments

trainSpeed | platform| location | emergenq Over- locatio
=0 = left = in-| cyStop | ride-| = in-
Station Open| Tunnel
trainSpeed=0 T t t t t f
trainSpeed #0 | F t t t t f
platform=left t T t t t f
platform#left t F t t t f
inStation t t T f f f
—inStation t t F f f t
emergencyStop | t t f T t t
—emergencyStop | t t f F t t
overrideOpen t t f t T t
—overrideOpen t t f t F t
inTunnel t t f t t T
=inTunnel t t f t t F
infeasible | | |

|

Sibylle Schupp Software Testing - Lecture 8



Slides and audiovisual material for private use only. Download or further distribution proh_

Example (accidential transitions)

When the major clause is true, the transition is taken.

All Doors
Open

xacnndPhdw. ondPlatform= left
S < )
emergencyStop 4 - overrideOpen A

Left Doors doorsClear A closs DourPressed

Right Doors

Open | “appliestoal zel.m °Pe"
\

/

_| Al Doors =

srinSpeed = 0 A platform=lefc A Closed ‘trainSy platform=right A

(Iocation = inStati < ~ (location = inStation v
(emergencyStop A overrideOpen
A location = inTunnel))

Sibylle Schupp

Major Clause

Expected Output

trainSpeed=0
trainSpeed # 0

Left Doors Open
All Doors Closed

platform=left
platform=£left

Left Doors Open
All Doors Closed

inStation
—inStation

Left Doors Open
All Doors Closed

emergencyStop
—emergencyStop

Left Doors Open
All Doors Closed

overrideOpen
—overrideOpen

Left Doors Open
All Doors Closed

inTunnel
=inTunnel

Software Testing - Lecture 8

Left Doors Open
All Doors Closed



Slides and audiovisual material for private use only. Download or further distribution pro_

Accidental transitions

o In the general case: when the major clause is true, the transition is
taken. When the major clause is false, no transition is taken.

o Now consider
Major Clause

Expected Output

platform=left
platform=£left

Left Doors Open
All Doors Closed 77

o If platform#left, it holds that platform=right. The expected output
(transition) should be “Right Doors Open”.

o The transition is accidental since it is implicit.

o Obviously, accidential transitions must be recognized by hand.

Sibylle Schupp Software Testing - Lecture 8



Slides and audiovisual material for private use only. Download or further distribution p_

Complicating issues for test automation

o We have seen:

o Dependent clauses
o Accidental transitions
o Reachability

o The tests must reach the state where the transition starts (“prefix”).
o Additional issues:

o Some tests must reach particular final states.
o Mapping
o The predicates in the FSM may not match the predicates in the program.
o The predicates in the FSM might encapsulate sequences of actions in
the program. Ex: trainspeed = 0.

Sibylle Schupp Software Testing - Lecture 8 —



_es and audiovisual material for private use only. Download or further distribution —
Summary (FSM logic testing)

o FSM is one of the most widely used notation.

o Used at all levels of the software development process
o Used in many domains, in particular embedded software

o Many languages exist

o UML state diagrams, Petri Nets, decision tables, Z, ...
o Safety

o Often used in guards, often as safety constraints



_ and audiovisual material for private use only. Download or further distributio—
In-class exercise

remove

void remove()

Removes from the underlying collection the last element returned by this iterator (optional operation). This method can be called only once per call to next (). T
i

behavior of an iterator is unspecified if the underlying collection is modified while the iteration is in progress in any way other than by calling this method.
Throws:

UnsupportedOperationException - if the remove operation is not supported by this iterator

IllegalStateException - if the next method has not yet been called, or the remove method has already been called after the last call to the next meth

Software Testing - Lecture 8



_nd audiovisual material for private use only. Download or further distributi—

In-class exercise (cont'd)



_nd audiovisual material for private use only. Download or further distributi_

References

o AO, Ch. 8.3, 8.4, 85



	Logic coverage II
	Semantic logic coverage of programs
	Logic coverage for specifications
	Semantic logic coverage of FSMs


